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Abstract In this paper, the magnetic model NGDC-720-V3 is used to investigate the

distribution of crustal magnetic anomaly and the depth of Curie surface in west Himalayan

syntaxis and its adjacent area. The Curie surface is compared with regional heat flow, the

Moho, and seismicity. The results show that the magnetic anomaly and Curie surface are

both consistent with the regional tectonic setting. Tarim craton, Tadjik Basin, and Indian

Plate have positive magnetic anomaly and a Curie surface deeper than 36 km, corre-

sponding to low heat flow there. In contrast, orogenic belts such as west Himalayan

syntaxis, Tianshan Mountain, Afghanistan, and Tibetan Plateau have negative anomaly and

a Curie surface shallower than 32 km, corresponding to high heat flow. The north of the

syntaxis presents a positive anomaly on the surface, resulting from Ferghana Basin, while

the negative anomaly in large depth is probably associated with the subduction of the slab

and the resulting heat. The depth of the Curie surface has an inverse relationship to the

Moho depth, which is attributed to temperature and isostatic balance. The distribution of

earthquakes with epicenter deeper than 100 km clearly suggests the subduction of the

Indian plate deep down to the asthenosphere and the deep earthquakes were caused by

shear motion within the subducting slab.
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1 Introduction

Crustal magnetic field is induced by magnetic minerals in the crust and upper mantle.

Magnetic minerals provide an excellent marker for the structure and composition of the

crust (Hemant and Maus 2005a, b; Aitken and Betts 2008). Thus crustal magnetic field can

be used to study regional tectonics (Langel and Hinze 1998; Purucker and Whaler 2007).

West Himalayan syntaxis (also called the Pamir salient) is located at the northwestern tip

of the Himalayan orogen, being the frontier of the collision between the Indian and

Eurasian plates (Fig. 1). As such, the syntaxis and its adjacent area are complex and

interesting in geology and geophysics (Lei et al. 2002; Tiwari et al. 2009; Yang et al.

2009). Study of the crustal magnetic field in west Himalayan syntaxis (65�E–80�E, 30�N–

42�N) and the topography of the magnetic layer basement, can help understand crustal

structure and tectonic evolution.

Temperature is one of the most important parameters in the Earth, which contributes to

the geodynamics of the lithosphere (Mayhew 1982). Considerable attention has been given

to the spatial variation of temperature in lithosphere (Čermák and Bodri 1991; Seipold

1992; Artemieva and Mooney 2001). Near-surface heat flow is the primary observable

quantity to determine temperature underground. However, the heat flow itself is insuffi-

cient to accurately determinate the temperature distribution over a wide region because

measurement of the heat flow is often sparse and uneven (Tanaka et al. 1999). Moreover,

Fig. 1 Geographic map of west Himalayan syntaxis and its adjacent area, as well as regional faults and
earthquakes in 2005–2015 from the China Earthquake Data Center. The red square represents the syntaxis.
FB Ferghana Basin, MRT Main Boundary Fault, QMF Qia Man Fault, SPF South Pamir Fault, MPF Middle
Pamir Fault, NPF North Pamir Fault, MDF Mai Dang Fault, KPF Ke Ping Fault, KKF Kaci Kunlun Fault,
XKF South Kunlun Fault (Colour figure online)
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we cannot directly measure the geothermal parameters at large depth. These limitations

prevent us from understanding the temperature in the crust.

As an alternative, spectrum analysis of the magnetic anomaly may be used to determine

the thermal state of the crust (e.g., Spector and Grant 1970). As temperature increases with

depth, magnetic minerals in the lithosphere will transform from ferromagnetic state to

paramagnetic (Nagata 1961), and the interface of the phase change is called Curie surface,

the depth of which reflects the critical temperature (Bhattacharyya and Leu 1975b). The

spectrum method has been applied to investigate the Curie surface in the USA (Mayhew

1985; Blakely 1988), in Greece (Tsokas et al. 1998; Stampolidis and Tsokas 2002), in

Japan (Okubo et al. 1989; Okubo and Matsunaga 1994), in Central Europe (Chiozzi et al.

2005), in Bulgaria (Trifonova et al. 2009), in Turkey (Maden 2010; Saleh et al. 2013), and

in China (Hu et al. 2006; Gao et al. 2015a, b).

In June, 2009, the National Geophysical Data Center (NGDC) of the USA established a

geomagnetic field model NGDC-720-V3 by combining data from satellite, ground, oceanic

and aeromagnetic surveys. In that model, the order of spherical harmonic functions is up to

720 and the resolvable spatial wavelength is as fine as 55 km (Maus 2010). In this paper,

we are motivated to investigate the crustal magnetic anomaly in west Himalayan syntaxis

and its adjacent area, using the NGDC-720-V3 model. Depth of the Curie surface is

calculated through spectrum analysis of the magnetic anomaly. Finally, the Curie surface is

compared with regional heat flow, the Moho, and seismicity.

2 Tectonic setting

As shown in Fig. 1, west Himalayan syntaxis is located in the northwestern Tibet Plateau.

It connects the Himalaya with Tianshan Mountain and separates Tarim Basin from Tadjik

Basin. To the south of the syntaxis is Indian Plate. To the west is Tadjik Basin floored by

Triassic or Jurassic extended continental crust (Tapponnier et al. 1981; Burtman and

Molnar 1993; Brookfield and Hashmat 2001). To the north is Tianshan Mountain, a

complex Paleozoic accretionary orogen reactivated during the Neogene (Windley et al.

1990; Sobel et al. 2006). To the east is Tarim Basin, the basement of which is comprised of

Precambrian crust.

West Himalayan syntaxis arises from the northward collision between the Indian and

the Eurasian plates (Burtman and Molnar 1993; Negredo et al. 2007; Sobel et al. 2011),

which is evident in the orientation of the faults there (Fig. 1). Its tectonic evolution was

divided into three stages (Windley 1988; Pegler and Das 1998). At the first stage, several

plates from Gondwanaland migrated northward and the Tethys gradually closed during the

Mesozoic-Lower Tertiary. At the second stage, the plates accreted to the southern margin

of the Eurasia, and the Indus suture zone occurred around 40–50 Ma ago. During the third

stage, the post-collision indentation of Indian craton into Eurasia Plate resulted in a crustal

shortening as much as 2000 km.

West Himalayan syntaxis developed rapidly over the last 10 Ma, as Indian Plate moved

northward 530 km relative to the Eurasia (Dewey et al. 1989). The movement displaced

the earlier-formed collision mountains northward and the indenter separated the originally

continuous Tadjik–Tarim Basin into two basins. West Himalayan syntaxis was a low-relief

plateau on the northwest side of Karakorum–Hindu Kush mountains during the earlier

Cenozoic (Ducea et al. 2003).
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The syntaxis and its surrounding area are one of the most active areas with strong

seismicity (Koulakov and Sobolev 2006; Mechie et al. 2012). Figure 1 shows that in west

Himalayan syntaxis, most of the earthquake occurring in 2005–2015 had epicenters deeper

than 100 km. In contrast, the surrounding area is dominated by earthquakes with epicenters

shallower than 50 km. This difference indicates that west Himalayan syntaxis may have a

mechanical and/or thermal evolution different from the surrounding area.

3 Crustal magnetic anomaly

The crustal magnetic anomaly is generated by induced magnetization and remanent

magnetization. Induced magnetization plays a main role in the crustal magnetic anomaly

within the continents (Counil et al. 1991; Maus and Haak 2002), whereas remanent

magnetization is the dominant cause for crustal magnetic anomaly beneath the oceans

(Cohen and Achache 1994; Dyment and Arkani-Hamed 1998). Treloar et al. (1986)

showed through laboratory and theoretical studies that in the lower crust, remanent

magnetization is much smaller than induced magnetization.

Currently, induced and remanent magnetization in the crustal magnetic anomalies over

the continents cannot be decoupled/distinguished from each other, as little is known about

the structure of remanent magnetization within the continents (Hulot et al. 2009). Lesur

and Gubbins (2000) attempted to use geomagnetic secular variation to separate remanent

magnetization from induced magnetization, but they failed to achieve a satisfactory sep-

aration. As such, remanent magnetization is usually ignored in the continental crust (He-

mant and Maus 2005a, b; Maule et al. 2005; Hemant and Mitchell 2009). Along this line,

the crustal magnetic field in our study region (i.e., west Himalayan syntaxis and its

adjacent area) is well assumed to be dominated by induced magnetisation.

3.1 Calculation of crustal magnetic field

In the spherical harmonic series of the geomagnetic field, terms with harmonic degrees

n C 16 serve as the crustal magnetic field (Hemant et al. 2007; Maus et al. 2007; Purucker

and Whaler 2007). For instance, the vertical component DZ of the crustal magnetic

anomaly can be expressed as follows:

DZ ¼ �
XN

n¼16

Xn

m¼0

ðnþ 1Þ a

r

� �nþ2

gmn cosmkþ hmn sinmk
� �

Pm
n ðcos hÞ; ð1Þ

where r, k and h are radius, longitude and latitude, respectively, a is the average radius of

the Earth (6371.2 km), Pm
n ðcos hÞ are the Schmidt quasi-normalized associated Legendre

functions of degree n and order m, gmn and hmn are spherical harmonic coefficients, and N is a

truncation level. Since 721–740 order coefficients of the NGNC-720-V3 model almost

vanish, N is set to degree 720 in this paper. Substituting the model coefficients into Eq. (1)

yields the crustal magnetic anomaly on the Earth surface. With r C a, we can calculate the

crustal magnetic anomaly over the ground at various altitudes. The computational grid is

set to be 0.1� 9 0.1�, which will facilitate the computation of derivatives.
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3.2 Distribution of crustal magnetic anomaly

The spatial distribution of the crustal magnetic anomaly at altitude 0, 20 and 400 km are

shown in Fig. 2. The crustal magnetic anomaly on the ground has the following charac-

teristics. Tarim Basin, Ferghana Basin, Tadjik Basin, and Indian Plate have positive

magnetic anomaly, whereas west Himalayan syntaxis, Afghanistan, and Tibet Plateau have

negative anomaly.

The decay of the crustal magnetic anomaly with altitude is associated with the scale of

magnetic body, the magnetism, and the burial depth. The magnetic anomaly arising from a

small shallow magnetic body attenuates faster than that generated by a large deep magnetic

source. With the increase of altitude, local magnetic anomaly may diminish and magnetic

anomaly induced by deep larger magnetic body will become dominant.

At altitude 20 km (Fig. 2b), the magnetic anomalies in Afghanistan, Tianshan Moun-

tain, and west Himalayan syntaxis decay rapidly, indicating that they originate from local

shallow sources. In contrast, the positive magnetic anomalies in Tarim Basin, Indian Plate,

and Tadjik Basin decay slowly, implying large deep magnetic sources there. The anomaly

at altitude 400 km (Fig. 2c) which comes from crustal magnetic structure of long wave-

length according to Hemant and Mitchell (2009), shows a distinct negative anomaly over

west Himalayan syntaxis and its north, in contrast to the positive anomalies over Tarim

Fig. 2 Crustal magnetic anomaly over west Himalayan syntaxis and its adjacent area, with altitude at
a 0 km, b 20 km, and c 400 km. For abbreviations, see the caption of Fig. 1 (Colour figure online)
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craton to the east, Indian craton to the south, and Tadjik Basin to the west. We shall explain

this in the Sect. 2.

4 Curie isothermal surface

The Curie point is approximately 580 �C for magnetite under the atmospheric pressure.

Depth of the Curie point represents the depth to the bottom of magnetized rock (Lowes

2007). As the lower boundary of magnetic layer, the Curie surface has specific signature in

the crustal magnetic field. Research on Curie isothermal surface could provide valuable

insight in assessment of geothermal energy, calculation of thermal conductivity, as well as

reconstruction of tectonic evolution. The key is how to invert for the Curie surface from the

crustal magnetic anomaly.

4.1 Calculation of the depth of Curie surface

Crustal magnetic anomaly is a combination of the effects of shallow and deep crustal

magnetic sources (Thébault et al. 2010). The Curie point depth is that of deep magnetic

sources. The shallow magnetic bodies may decrease the accuracy of the Curie point depth.

For this reason, the impact from shallow magnetic bodies must be removed from the

magnetic anomaly. Methods of suppressing the effect of shallow magnetic source include

low-pass filter (Gasparini et al. 1981), upward continuation (Guan 2005), multiscale 2D

discrete wavelet analysis (Fedi and Quarta 1998; Hou and Yang 2011), and calculation of

magnetic anomalies over long-to-medium wavelength bands (Hemant and Mitchell 2009;

Rajaram et al. 2009; Kang et al. 2011; Gao et al. 2013), etc. In this paper, the upward

continuation method is selected to eliminate influence from shallow magnetic sources.

Figure 2b shows that the magnetic anomaly at altitude 20 km above the ground has

approximately removed the local features arising from shallow magnetic sources. There-

fore, the magnetic anomaly at altitude 20 km is chosen in this paper to calculate depth of

Curie surface. Such choice may influence the absolute depth of the Curie surface, but

should not have a significant effect on the relative variation of the surface.

As the first order approximation, the spectra analysis method (Spector and Grant 1970;

Tanaka et al. 1999; Li et al. 2010; Aboud et al. 2011) assumed that the magnetic layer

extends infinitely in all horizontal directions, and thus the depth to the top of a magnetic

source is negligible compared to the horizontal scale. Thus the power density spectra of a

magnetic source, P, is (Bhattacharyya and Leu 1975a)

Pð Kj jÞ ¼ Ae�2 Kj jZt 1 � e� Kj j Zb�Ztð Þ
h i2

; ð2Þ

where A is a constant, Zt and Zb are the depth to the top and the depth to the bottom of the

magnetic source, respectively, and K is the wavenumber from the 2D Fourier expansion of

the magnetic anomaly field. For wavelengths smaller than twice of the thickness of the

magnetic layer, Eq. (2) simplifies to:

ln PðjKjÞ1=2
h i

¼ lnB� Kj jZt ð3Þ

where B is a constant. Equation (3) provides an approach to estimate Zt. On the other hand,

Eq. (2) can be rearranged as:
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PðjKjÞ1=2 ¼ Ce�jKjZ0 ½e�jKjðZt�Z0Þ � e�jKjðZb�Z0Þ� ð4Þ

where C is a constant, and Z0 is the depth to the centre of the magnetic source. At long

wavelength, Eq. (4) may be rewritten as:

PðjKjÞ1=2 ¼ Ce� Kj jZ0 e� Kj j �dð Þ � e� Kj j dð Þ
� �

� Ce� Kj jZ0 2 Kj jd ð5Þ

where 2d is the thickness of the magnetic source. Thus for long wavelengths, we have

(Tanaka et al. 1999)

ln½PðjKjÞ1=2=jKj� ¼ lnD� Kj jZ0 ð6Þ

where D is a constant.

By fitting a straight line through the high wavenumbers of the spectrum of ln [P(|K|)1/2]

via (3) and a straight line through the low wavenumbers of the spectrum of ln{[P(|K|)1/2]/

|K|} via (5), Zt and Z0 can be calculated, respectively. Note that the depth to the bottom of

the magnetic source is:

Zb ¼ 2Z0 � Zt ð7Þ

In the procedure of calculation of the Curie depth, we first divide the study region into a

grid of 23 9 22 squares, each having a size of 150 km 9 150 km. Such grid is appro-

priate, as the square area must be at least four or six times the depth of the magnetic source

(Dimitriadis et al. 1987; Nwobgo 1998). Two neighboring squares have an overlap of

50 %. Second, we calculate ln[P(|K|)1/2] and ln{[P(|K|)1/2]/|K|} for each square. Third, we

select the amplitude spectra in frequency interval 0.275–0.649 rad/km (the medium-to-

high wavenumber domain) to fit Zt via Eq. (3). We have arrived at the frequency limits

after several trials. A higher frequency would lead to detection of small magnetic sources

in the subsurface (Fig. 3a), but the small sources would invalidate the assumption of a

horizontal scale much larger than the depth, or the applicability of Eq. (3). The ratio of

amplitude spectrum to wavenumber in frequency interval 0.099–0.255 rad/km (the low

Fig. 3 Power spectrum analysis for a subregion to calculate a Zt and b Z0 through linear regression (Colour
figure online)
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wavenumber domain) is used to fit Z0 via (6). Finally, the depth to Curie surface is got via

(7). In Fig. 3, an example of the power spectrum fitting in a subregion is illustrated. The

centroid depth Z0 is 16.7 km, the depth to the top Zt is 3.8 km, and the Curie point depth is

25.8 km for the subregion.

After getting the depths to the Curie surface for each square, we use a minimum

curvature method to interpolate the depths of Curie surface for the whole study region.

Figure 4 shows the distribution of the depth to the Curie surface. The result shows that the

Curie surface in west Himalayan syntaxis and its adjacent area varies significantly in depth,

ranging from 20 to 44 km with an average 30 km.

4.2 Curie surface

The variation of the Curie surface in Fig. 4 correlates well with the distribution of the

crustal magnetic anomaly at altitude 20 km (Fig. 2b). This is because a deep magnetic

source will tend to generate positive magnetic anomaly, and vice versa. According to

Fig. 4, the smallest feature of the Curie surface has a horizontal scale of about 100 km,

much larger than the largest depth 44 km, and therefore, the assumption that the magnetic

layer extends infinitely in all horizontal directions is approximately satisfied.

As an orogenic belt, west Himalayan syntaxis is dominated by shallow Curie surface,

which is consistent with the negative anomaly there. To the southwest of the syntaxis,

Afghanistan and to the southeast, Tibet has negative magnetic anomaly, well corre-

sponding to a shallow Curie surface. The depth of the Curie surface in these orogenic belts

ranges from 20 to 32 km.

To the east of west Himalayan syntaxis, Tarim craton has a deep Curie surface and

positive magnetic anomaly. To the south of the syntaxis, Indian Plate has a deep Curie

Fig. 4 Depth of the Curie surface in west Himalayan syntaxis and its surrounding area, as well as value of
the heat flow (Colour figure online)

414 Acta Geod Geophys (2017) 52:407–420

123



surface and positive anomaly. To the west of the syntaxis, Tadjik Basin has a deep Curie

surface and positive magnetic anomaly. The deepest Curie surface in Tarim craton is

42 km, the deepest surface in Indian craton is 44 km, and that in Tadjik craton is 41 km.

The heat flow data in the study region are acquired from the Global Heat Flow Database

of the International Heat Flow Commission (http://www.heatflow.und.edu/data.html),

being listed in Fig. 4. It can be seen that low heat flow is located near Tarim Basin, Tadjik

Basin, east part of Fergana Basin, with a value of 16–70 mW/m2, corresponding to a deep

Curie surface. High heat flow occurs in west Himalayan syntaxis, south Tianshan Moun-

tain, and west of Fergana Basin, reaching more than 70 mW/m2 and corresponding to a

shallow Curie surface.

To compare the Curie surface with the Moho discontinuity (Moho), we invert for the

Moho using the Parker–Oldenburg method (Gómez-Ortiz and Agarwal 2005) based on the

Bouguer gravity anomalies, which derived from the World gravity model WGM2012

(Bonvalot et al. 2012). To remove the very details in the final map, low-pass filtering of the

Bouguer anomalies was conducted using the 2D seven-point smoothing method (Liu

2004). We adopt a constant density contrast of 0.5 g/cm3 (Rabbel et al. 2013) to estimate

the Moho depths (Fig. 5). As shown in Fig. 5, the Moho depth and the Curie surface

present roughly an inverse correspondence. In west Himalayan syntaxis, south Tianshan

Mountain, Afghanistan, and Tibetan Plateau, the Moho is deep but the Curie surface is

shallow. In Tarim Basin, Tadjik Basin, and Indian Plate, the situation is in reverse, and the

Curie surface and Moho also present an inverse correspondence in depth.

The depths of the Curie surface and the Moho are close in Tarim Basin and Tadjik

Basin, such that the Moho could be considered as a magnetic boundary. Above is the

magnetic crust, while below is the nonmagnetic upper mantle. In north Indian Plate, the

depth of the Curie surface is larger than that of the Moho, indicating that the upper mantle

there is magnetic. South Tianshan Mountain, west Himalayan syntaxis, Afghanistan, and

Fig. 5 Depth of the Moho under west Himalayan syntaxis (Colour figure online)
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Tibetan Plateau are Cenozoic orogenic belts, where the depth of Curie surface is less than

32 km but the Moho is deeper than 60 km.

Such inverse correlation between the depth of the Curie surface and that of the Moho

may be attributed to temperature: An orogenic belt has high temperature which facilitates

the formation of folds. Because the elevation of an orogenic belt is higher than that of the

basin, the Moho beneath the orogenic belt must be deeper than that under the basin, to

achieve isostatic balance (Sleep and Fujita 1997). This is essentially the Airy-Heiskanen

isostatic model, which is based on mechanical considerations. The orogenic belt is more or

less similar to a low density wood floating on the surface of water (analogous to the

mantle). Because the density difference between an orogenic belt and the air is much larger

than that between the orogenic belt and the mantle, the depth difference in Moho between

the orogenic belt and the basin must be much larger than the elevation difference between

them. This is confirmed by the fact that in Fig. 1, the elevation difference between

mountain and basin is about 4000 m, while the depth difference in Moho is about 30 km.

The higher temperature in the orogenic belts associated with the deeper Moho results in, on

the other hand, a shallow Curie surface, such that the Moho and the Curie surface are

inversely correlated in depth.

5 Discussion

For comparing the seismicity and the thermal state of the study area, we plot the epicenters

with magnitude larger than Ms 3.0 occurred from 2005 to 2015 in Fig. 1. The seismic data

are from the China Earthquake Data Center catalogues. The seismicity is distributed along

the fault zones. Comparing Fig. 4 with Fig. 1, it is found that most of the earthquakes

occur where the Curie surface is shallow. The probable mechanism is that generally at

where the Curie surface is shallow, the hot mantle materials are upwelling and the upward

movement tends to trigger earthquakes. An exception is that along the MPF (in Pamir) in

Fig. 1 are distributed with many earthquakes deeper than 100 km but this area has shallow

Curie surface implying hot crust. The reason is the subduction of the Hindu Kush slab from

the south deep into the asthenosphere underlying the hot Pamir (Negredo et al. 2007).

Actually, the distribution of earthquakes with epicenter deeper than 100 km (in Fig. 1)

clearly suggests the subduction of the Indian plate deep down to the asthenosphere and the

deep earthquakes were probably caused by shear motion within the subducting slab.

The orientation of faults and geological structures in west Himalayan syntaxis and the

adjacent area, as shown in Fig. 1, indicates that as Indian Plate moves northward, It is

blocked by the rigid Tarim Basin on the east and the rigid Tadjik Basin on the west, such

that the crustal material wedged northward between these two basins, as shown in Fig. 2c.

According to Fig. 2a, the north side of west Himalayan syntaxis has strong positive

magnetic anomaly. However, Fig. 2c shows that in the deep, west Himalayan syntaxis and

its north is dominated by negative crustal magnetic anomaly. It is because this area is

occupied by the Ferghana basin characterized by positive anomaly.

According to Fig. 2c, west Himalayan syntaxis and its north have strong negative

anomaly in the depth, but to the east of the syntaxis (Tarim craton), to the west (Tadjik

basin), and to the south (Indian craton), have positive anomaly. This framework may be

caused by northward subduction of Indian craton beneath Eurasian Plate (Kind et al. 2002).

The subduction caused melting of the slab and upwelling of heat, such that there is no
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magnetism in the deep lithosphere under the syntaxis and the Curie surface appears to be

uplifted.

The Curie surface in north Tianshan Mountain is as deep as 39 km, while that in south

Tianshan Mountain is as low as 25 km (Fig. 4), which implies different thermal evolution

histories between them. Study of the seismic wave velocity structure (e.g., Lei et al. 2002)

showed that in south Tianshan Mountain, the shallow and low velocity sediments to the

south probably underthrusted into the deep crust, producing heat by friction and leading to

a shallow Curie surface than that under north Tianshan Mountain.

West Himalayan syntaxis and Tibet Plateau both formed as a result of the close of the

Tethys ocean (Pegler and Das 1998). Nonetheless, west Himalayan syntaxis is the frontier

of the collision between the Indian and the Eurasian plate. Figure 1 shows that the

earthquakes in west Himalayan syntaxis are stronger and more frequent than those in

Tibetan Plateau during the period from 2005 to 2015. Thus west Himalayan syntaxis is

characterized by more active tectonics than Tibet Plateau. Figure 4 also shows that the

Curie surface in west Himalayan syntaxis is shallower than that in Tibetan Plateau, indi-

cating a hotter crust than that in Tibetan Plateau.

6 Conclusions

The magnetic anomaly in west Himalayan syntaxis and the surrounding area well reflected

the regional tectonic structure. The orogenic belts such as west Himalayan syntaxis,

Tianshan Mountain, Afghanistan, and Tibetan Plateau have negative anomaly, whereas

Tarim craton, Indian Plate, and Tadjik Basin have positive magnetic anomaly. The north of

the syntaxis presents a positive anomaly on the surface, resulting from Ferghana Basin,

while in the depth the negative anomaly is probably associated with the subduction of the

slab and the resulting heat.

The depth of the Curie surface was calculated by the upward continuation of the

magnetic anomaly field and linear regression of the power spectra. The topography of the

Curie surface appears to be consistent with the crustal magnetic anomaly and the tectonic

setting. Shallow Curie surface well corresponds to negative anomaly found along orogenic

belts, while deep Curie surface is associated with positive magnetic anomaly and resides in

cratons or basins. The Curie surface is roughly consistent with the observed heat flow, i.e.,

high heat flow occurs where the Curie surface is shallow, while low heat flow occurs where

the Curie surface is deep.

The Curie surface and the Moho present an inverse correspondence in depth. In west

Himalayan syntaxis, Tianshan Mountain, Afghanistan, and Tibetan Plateau, the Curie

surface is shallow where the Moho is deep. In Tarim Basin, Tadjik Basin, and Indian Plate,

the Curie surface is deep where the Moho is shallow. Such correlation is attributed to

isostatic balance. On the other hand, the orogenic belt in the study area is characterized by

elevated subsurface temperature resulting in shallow Curie surface beneath the belt.

Many earthquakes deeper than 100 km are distributed along the MPF (in Pamir) where

the Curie surface appears to be shallow, implying hot crust. Such a distribution evidently

indicates the subduction of the Hindu Kush slab from the south deep down to the

asthenosphere underlying the Pamir. The deep earthquakes were likely to be induced by

shear motion within the subduction slab.
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