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Abstract Extensive studies on signal noise analysis of Global Navigation Satellite Sys-

tems (GNSS) receivers are mainly based on zero and/or short baselines where a pair of

receivers is required. This paper develops a new signal noise assessment method for a

standalone GNSS receiver. In this new method, the time differenced geometry-free (DGF)

model is formed, where the residual ionospheric delay and multipath remain. In order to

eliminate these systematic trend biases, the second-order polynomial fitting is used. Then

the mixed autoregressive moving average (ARMA) model is further applied to capture this

stationary and time-correlated time series. As a result, the pure random noise of DGF is

obtained, which is finally used to assess the precision of receiver signal in terms of the

error propagation law. The performance of this new method is numerically tested by using

10 sets of data and compared with the methods of zero and short baselines. The results

indicate that the new method is able to assess both the phase and code precision of a

standalone receiver, and the conclusions are consistent to those from the methods of zero

and short baselines. Since again the new method needs only one receiver, it could be

implemented in more applications than the traditional methods, especially in precise point

positioning.
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1 Introduction

The precise point positioning (PPP) based on Global Navigation Satellite Systems (GNSS)

observations has been extensively studied in recent years, where a standalone receiver is

involved for the precise positioning (Zumberge et al. 1997; Ge et al. 2008). Selecting the

appropriate receiver is a critical issue (Rodrı́guezpérez et al. 2007) and the precision of

observations is indispensable for setting up a stochastic model (Wang et al. 2002). Without

realistic stochastic model, one cannot obtain the optimal PPP solutions as well as more

importantly an objective measure of PPP solutions.

A number of researchers have studied the precision evaluation of GNSS receiver

measurements in recent years. The most widely used methods are based on zero and short

baseline where a pair of receivers is involved. Hereafter those are referred to as the zero

and short baseline methods. In zero baseline method, two receivers (usually with the same

type) are connected to the same antenna (including low-noise amplifier) (Nolan et al. 1992;

Van der Marel et al. 2009) and the baseline elements are all known as zero. In this case, the

common external errors, such as atmospheric biases, and multipath etc., can be completely

eliminated in manner of single differenced observations, and only the signal noise remains

(Bona and Tiberius 2000). The drawback of the zero baseline method is that it can only

evaluate signal noise attributed to the receiver since the signal noise attributed to the

antenna is completely eliminated (too optimistic results). In the short baseline method, two

receivers are connected to two antennas spaced by a very short distance, typically several

meters, such that again the common external errors can be significantly eliminated.

However, different from the zero baseline method, two antennas are involved in the short

baseline method, which allow evaluating the signal noise attributed to not only receivers

but also antennas. That is the one reason why the observation precision obtained from zero

baseline method are more easily higher than those from the short baseline method (de

Bakker et al. 2009, 2012). Hence the short baseline method can be applied as a comple-

mentary to the zero baseline method. The disadvantage of the short baseline method with

respect to the zero baseline method is that the remaining unmodeled errors, mainly the

multipath, could not be ignored. In order to retrieve the pure observation noise, additional

data processing operations should be further applied (Amiri-Simkooei and Tiberius 2007;

de Bakker et al. 2009).

While much research has been devoted on evaluating the signal noise on the basis of a

relative mode, little research has been done with a standalone receiver. In the PPP

applications, the stochastic model set-up is normally based on the knowledge obtained

from the zero/short baseline method (Afifi and El-Rabbany 2013). However, if the two

tested receivers do not have the same performance although with the common type, one

cannot obtain the true precision of receiver signals. Moreover, the method of traditional

standalone receiver signal noise assessment is based on the time differenced operator

without taken into consideration the integrated time correlation. Specifically, not only the

mathematical correlations exist due to the operation, but also the physical correlations exist

from the unmodeled errors of the signal itself (El-Rabbany 1994; Howind et al. 1999).

Therefore, it is essential to develop a stable and mature method for evaluating the signal

noise of a standalone receiver.

In this research, we propose a noise assessment method for GNSS signal noise with a

standalone receiver. The key of this new method is how to extract the pure signal noise by

properly eliminating all systematic errors. We first form the time differenced geometry-free

(DGF) model to eliminate all geometry-specific errors. Then we apply the second-order
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polynomial fitting to remove remained systematic biases of ionospheric delay and multi-

path in detrended DGF observations. This two-step processing results in bias-free but time-

correlated DGF observations. The time correlations are attributed to mathematical and

physical correlations. Then a mixed autoregressive moving average (ARMA) model is

further used to capture the noise of DGF, where the time correlations are fully taken into

account. Finally, the signal precision is estimated by means of the error propagation law.

2 Methodology

2.1 The DGF model

The GNSS observation equations of phase and code from receiver r to satellite s on

frequency i read (Leick et al. 2015)

/s
r;i ¼ qsr þ cdtr � cdts þ kiN

s
r;i � Isr;i þ Ts

r þ ms
r;i þ fr;i � fs;i þ esr;i ð1Þ

Ps
r;i ¼ qsr þ cdtr � cdts þ Isr;i þ Ts

r þMs
r;i þ nr;i � ns;i þ esr;i ð2Þ

where /s
r;i and Ps

r;i are the phase and code observations, respectively; qsr is the receiver-to-

satellite range; c is the speed of light in a vacuum; dtr and dts are the receiver and satellite

clock errors, respectively; ki is the wavelength of the i-th frequency; Ns
r;i is the integer

ambiguity; Isr;i is the ionospheric delay; Ts
r;i is the tropospheric delay; ms

r;i and Ms
r;i are the

multipath effects of phase and code, respectively; fr;i and fs;i are the phase hardware delays

with respect to receiver and satellite, respectively; nr;i and ns;i are the code hardware delays

for receiver and satellite, respectively; esr;i and esr;i are the random errors of phase and code,

respectively.

According to (1) and (2), two types of geometry-free (GF) models from the receiver r to

satellite s on frequencies i and j can be calculated as follows

GF1i;j ¼: /s
r;i � /s

r;j ¼ kiN
s
r;i � kjN

s
r;j � 1 � k2

j

.
k2
i

� �
Isr;i þ ms

r;GF1 þ fr;GF1 � fs;GF1 þ esr;GF1

ð3Þ

GF2i ¼: Ps
r;i � /s

r;i ¼ 2Isr;i � kiN
s
r;i þMs

r;i � ms
r;i þ nr;i � ns;i � fr;i þ fs;i þ esr;i � esr;i

� 2Isr;i � kiN
s
r;i þMs

r;i þ nsr;i � fsr;i þ esr;i:
ð4Þ

Because the GNSS signals from the same satellite have almost the same propagation

path, the majority of error sources will be eliminated by the time differenced operator

(Hofmann-Wellenhof et al. 2007). Only the GF1 model contains the ambiguities on fre-

quencies i and j, ionospheric delay, multipath, hardware delays and random errors for

phase. In the GF2 model, the multipath and phase noise are much smaller than those of

code, then consequently neglected. Therefore, only the ambiguities on frequency i or j,

ionospheric delay, multipath, phase and code hardware delays and code random errors

remain. If the GF(t) and GF(t ? 1) are calculated at the epoch of t and t ? 1, the DGF

model is mathematically defined as

DGF tð Þ ¼: GF tþ1ð Þ � GF tð Þ: ð5Þ
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Based on (3) and (4), in absence of cycle slips, the constant ambiguities are removed.

Besides, the hardware delays are eliminated, and the ionospheric delay and multipath are

reduced. There only leave residual ionospheric delay, multipath and random errors.

According to (3) and (4), two types of DGF can be expressed as

DGF1i;j tð Þ ¼: GF1i;j t þ 1ð Þ � GF1i;j tð Þ ¼ D k2
j

.
k2
i � 1

� �
Isr;i tð Þ þ Dms

r;GF1 tð Þ

þ Desr;GF1 tð Þ
ð6Þ

DGF2i tð Þ ¼: GF2i t þ 1ð Þ � GF2i tð Þ ¼ 2DIsr;i tð Þ þ DMs
r;i tð Þ þ Desr;i tð Þ ð7Þ

where the other terms are the same as those defined previously.

2.2 Process of DGF model

Generally, the residual ionospheric delay and multipath are low frequency signals com-

pared with the signal noise, hence they will have a slight trend (Tiberius et al. 2001; de

Bakker et al. 2009, 2012). This trend term can be handled by low order polynomials if the

time span is not too long (e.g. less than 3 h). Therefore, a constant, a linear, or a second

order polynomial can be used to fit the DGF observations and then remove the systematic

trend. The parameters of the polynomial fitting model are solved by the least squares (LS)

method. In this paper, a second-order polynomial is chosen. Accordingly, the trend term of

DGF (DGFt) is given as

DGFt ¼ a1 þ a2 � t þ a3 � t2 ð8Þ

where a1, a2 and a3 are the parameters to be estimated; t is the epoch number. Hence, the

detrended DGF (DGFd) time series can be obtained by subtracting the DGFt from DGF,

thus becoming a stationary time series.

It follows from (5) that the DGF observations contain the GNSS signals of consecutive

epochs, which will result in mathematical correlations. Besides, there also exist physical

correlations due to the unmodeled errors in GNSS data (El-Rabbany 1994; Howind et al.

1999). Therefore we need a technique that can correctly describe such time-correlated

process in order to extract the pure random noise v(t) of DGF. The DGFd time series can be

treated by an ARMA model, which provides a description of a stationary process in terms

of two polynomials (Chatfield 1984; Box et al. 1994; Hamilton 1994).DGFd (t-1), DGFd (t-

2),…, DGFd (t-p) are the autoregressive terms and v(t-1), v(t-2),…, v(t-q) are the moving

average terms. Hence the preprocessed DGF can be regarded as ARMA(p,q) model. The

DGFd is then given as

DGFd tð Þ ¼ f tð Þbþ v tð Þ ð9Þ

with

f tð Þ ¼ DGFd t � 1ð Þ;DGFd t � 2ð Þ; � � � ;DGFd t � pð Þ; v t � 1ð Þ; v t � 2ð Þ; � � � ; v t � qð Þ½ �

b ¼ u1;u2; � � � ;up; h1; h2; � � � ; hq
� �T

where u1,…, up are the autoregressive parameters; h1,…, hq are the moving average

parameters. If there are K epochs, the multi-epoch model can be formed
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Y Kð Þ ¼ F Kð Þbþ V Kð Þ ð10Þ

with

Y Kð Þ ¼ DGFd tð Þ;DGFd t þ 1ð Þ; � � � ;DGFd Kð Þ½ �T

F Kð Þ ¼ f tð Þ; f t þ 1ð Þ; � � � ; f Kð Þ½ �T

V Kð Þ ¼ v tð Þ; v t þ 1ð Þ; � � � ; v Kð Þ½ �T:

Now the LS solutions of these K epochs can be derived as

b̂ ¼ FT Kð ÞF Kð Þ
� ��1

FT Kð ÞY Kð Þ ð11Þ

Because f(t) depends on the previous epochs, an iterative estimation procedure is required.

In practice, there are many choices of ARMA(p,q) model orders in (10). Therefore, the

most appropriate orders of autoregressive and moving average parameters should be

determined from the alternative choices. Then a criterion to measure quantitatively the

model quality is applied. In this study, the Bayesian information criterion (BIC) is used,

which is defined as (Schwarz 1978):

BIC b̂
� �

¼ �2lþ pþ qð Þ � lnK ð12Þ

where l is the optimized log likelihood objective function value associated with the

parameter estimates; other terms in (12) are the same as those defined previously. The best

order is chosen when one certain set of parameters b̂ obtain the minimum BIC value.

In the end, the random noise of DGF can be estimated as

V̂ Kð Þ ¼ Y Kð Þ � F Kð Þb̂: ð13Þ

2.3 Determination of signal noise

In order to determine the signal precision, the standard deviation (STD) of DGF random

noise is calculated first. Then to obtain the unbiased estimation, the corrected sample STD

(Welford 1962) is given by:

rv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PK
t¼1

v tð Þ � vð Þ2

ðK � pÞ � ðpþ qÞ

vuuut
ð14Þ

where �v is the mean value of DGF random noise over K epochs, and all the terms in (14)

are the same as those defined previously.

According to the error propagation law, the signal precision can be estimated. For the

GF1 model, the signal precision can be calculated as follow when using the i-th and j-th

frequencies for one certain satellite:

r2
v1

tð Þ ¼ r2
ei t þ 1ð Þ þ r2

ei tð Þ þ r2
ej t þ 1ð Þ þ r2

ej tð Þ ð15Þ

where rv1
tð Þ is the STD of the DGF1 random noise at the epoch t; rei t þ 1ð Þ and rei tð Þ are

the STDs of phase random noise on the frequency i at the epoch t ? 1 and t, respectively;

rej t þ 1ð Þ and rej tð Þ are the STDs of phase random noise on the frequency j at the epoch
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t ? 1 and t, respectively. Because the random noise is independent of time, the r2
ei t þ 1ð Þ

and r2
ei tð Þ, r

2
ej t þ 1ð Þ and r2

ej tð Þ can be treated equal. Then (15) is derived as

r2
v1
¼ 2r2

ei þ 2r2
ej : ð16Þ

For one receiver, the precision of phase measurements is related to the wavelength (Han

1997; Langley 1997)

r2
ei

r2
ej

¼ k2
i

k2
j

: ð17Þ

Since we can get the rv1
for every satellite, in this study, only the satellites above 35�

elevation are applied, which can largely reduce the external influence (Euler and Goad

1991; Bona 2000). Therefore we can use the mean value of rv1
(rv1

), which is more

accurate to substitute the rv1
. Finally, the dual frequency carrier phase noise from (16) and

(17) can be estimated as:

rei ¼
�rv1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1 þ k2
j

.
k2
i

� �r ð18Þ

rej ¼
�rv1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1 þ k2
i

.
k2
j

� �r : ð19Þ

For the GF2 model and signal frequency i, the similar relationship as for the GF1 model

is:

r2
v2

tð Þ ¼ r2
ei
t þ 1ð Þ þ r2

ei tð Þ þ r2
ei
t þ 1ð Þ þ r2

ei tð Þ
� 2r2

ei

ð20Þ

where rv2
tð Þ is the STD of the DGF2 random noise at the epoch t; rei t þ 1ð Þ and rei tð Þ are

the STDs of code random noise on the frequency i at the epoch t ? 1 and t, respectively;

the other terms in (20) are the same as those defined previously. Because the phase random

noise is much smaller than the code random noise, the phase random noise can be ignored.

Analogously, the mean value of rv2
(rv2

) can be calculated from the satellites of which

elevations are higher than 35�. As a result, the noise of the code signal is estimated as

rei ¼
�rv2ffiffiffi

2
p : ð21Þ

3 Dataset and analysis

The following two tests are carried out to assess the accuracy and reliability of the pro-

posed method. For simplicity this new method is called AMRA-e. Specifically, test one

comprises the zero and short baseline data, afterwards data of a standalone receiver is

processed in test two.
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3.1 Dataset 1—zero baseline/short baseline data

In this investigation, the performances of the zero baseline, short baseline and ARMA-e

methods are analyzed and compared, especially for the new method. Data of 5 groups of

dual-frequency GPS receivers are analyzed with a sampling interval of 1 s, of which group

A, B and E are zero baselines and the others are short baselines. Two receivers of the same

type are used in each baseline. Because the baseline lengths vary from 0 to 20 m and the

time spans last from 45 to 180 min, they are sufficient to perform our analysis. Table 1

gives the details of the dataset.

In the zero and short baseline methods, the double differenced ambiguities need to be

fixed firstly. In this study, the LAMBDA method is applied (Teunissen 1995; Verhagen and

Li 2012), and then the single differenced residuals between receivers of each satellite are

calculated by LS adjustment. The STDs of the single differenced residuals for all satellites

are used as the precision estimates and are sorted in ascending order of elevations. After

that, the mean precision for each elevation interval of 0.3� from 0� to 90� are computed,

and the signal noise for one receiver can be estimated by dividing by
ffiffiffi
2

p
according to the

error propagation law. Figures 1 and 2 show the relation between the signal precision and

their elevation from group A to D. Precisely, Fig. 1 shows the group A and B, and Fig. 2

shows the group C and D. It can be seen that the precision of GPS signals is elevation-

dependent. At the beginning, the signal precision improves with the rise of elevations.

Specifically, in zero baselines, the phase precision improves from more than 1 mm to about

0.2 mm and the code precision improves from about 1 to 0.1 m. In short baselines, the

precision of phase and code measurements improves from about 3 to 0.5 mm and 3 to

0.4 m, respectively. However, the precision keeps steady and even can be considered

constant when the elevations are higher than 35�, as shown by the red dotted lines. The

results agree with the analyses of Euler and Goad (1991) and Bona (2000). The reason is

that most elevation dependent effects are eliminated above 35� elevation. In conclusion, it

is possible that the majority of external effects can be eliminated in the analysis of signal

precision when the satellite elevations are higher than 35�. Later discussions are based on

this conclusion.

Concerning the ARMA-e method, the data of group E is illustrated firstly. For sim-

plicity, we take the GF1 model for satellite G15 of station 1 as an example. In order to

retrieve the pure random noise of the DGF time series, we should preprocess the DGF time

series firstly. The GF observations and their time differenced series are shown in Figs. 3

and 4, respectively. It can be seen from Fig. 3 that the GF observations change slowly

approximately from about 3.0 to 3.8 m during 45 min, since they contain the ambiguities

Table 1 Description of the dataset

Group Length Epoch Receiver Antenna Observation
name (m) numbers type type types

A 0 10800 JAVAD TRE_G3TH ASH701945G_M L1/L2/P1/P2

B 0 7200 ASHTECH UZ-12 ASH701945G_M L1/L2/P1/P2

C 1.60 6300 TRIMBLE NETR9 LEIAR25 L1/L2/P1/P2

D 20.04 7200 LEICA GRX1200 LEIAR25 L1/L2/P1/P2

E 0 2700 SOUTH S86 AOAD/M_T L1/L2/P1/P2
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Fig. 1 The relation between the signal precision and elevation on zero baselines of group A (left) and B
(right). The red dotted lines denote 35� elevation. (Color figure online)
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Fig. 2 The relation between the signal precision and elevation on short baselines of group C (left) and D
(right). The red dotted lines denote 35� elevation. (Color figure online)
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Fig. 3 The GF observations for satellite G15 of station 1
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on two frequencies, ionospheric delay, multipath and hardware delays. Figure 4 shows that

the DGF observations fluctuate between -1 and 1 mm with a slight trend. The integer

ambiguities and hardware delays are removed and the ionospheric delay as well as mul-

tipath are reduced compared with the GF observations. Then the second-order polynomial

fitting method and ARMA model are applied to process the time series. After that, the

random noise of DGF is calculated which is shown in Fig. 5. It can be seen that the random

noise of DGF is steady between -1 and 1 mm with 0 mm as the center. A closer look at

Fig. 5 confirms that noise series has smaller amplitudes and are more steady than the DGF

observations. To investigate whether the DGF and its noise are random, the sample

autocorrelation functions are computed as shown in Fig. 6. For more details on calculating

the sample autocorrelation function, see Chatfield (1984), Box et al. (1994) and Hamilton

(1994). By computing a set of autocorrelation coefficients, a graph called correlogram is

obtained to plot the sample autocorrelation coefficients against the lag k for k = 0,1,…, m,

where m is usually no more than 20. The area between the two dotted lines is the 95%

confidence bounds. See the right panel of Fig. 6, 19 out of 20 of the values of autocor-

relation coefficients lie between ± 0.038 (i.e.,�2=
ffiffiffiffiffiffiffiffiffiffi
2700

p
), therefore the DGF noise can be

regarded random. In summary, we can draw the conclusion that the method of ARMA-e is

able to effectively capture the pure random noise of DGF.

Similarly, the results for other satellites with elevations above 35� are also calculated.

The DGF trends and noise are shown in Figs. 7 and 8, respectively. It can be clearly seen

from Fig. 7 that the trend exhibits in DGF observations, of which the biggest changes in the

magnitude are up to about 0.2 mm. Since the order of magnitude is equal to the phase

500 1000 1500 2000 2500
-2

-1

0

1

2

Epoch number

A
m

pl
itu

de
 [m

m
]

Fig. 4 The DGF observations for satellite G15 of station 1
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Fig. 5 The noise of DGF observations for satellite G15 of station 1
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noise, the detrending is required. Figure 8 shows these noise magnitudes are all vary from

about -1 to 1 mm. They are similar from each other, thus indicating the reliability of the

ARMA-e method. Tables 2 and 3 give the detailed results for every satellite of the two

stations in group E. Judging from the parameters p and q of ARMA models, the mathe-

matical model of the preprocessed DGF are slight different from each other. Meanwhile, it

can also be found that both a mathematical correlation and a physical correlation exist in

the preprocessed DGF model because the p and q are greater than 1 except for satellite G15

and G19 of station 2 in the GF2 model, which supports the findings of El-Rabbany (1994)

and Howind et al. (1999) discussed before. As a result, the time correlation should be taken

into account when analyzing the signal noise. At last, the measurement precision is

assessed for these two receiver systems, which are given in Table 4. Compared with the

results of the two stations, it can be concluded that the performance of these two receivers

is almost the same.

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

Lag

S
am

pl
e 

au
to

co
rr

el
at

io
n

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

Lag

S
am

pl
e 

au
to

co
rr

el
at

io
n

Fig. 6 The sample autocorrelation functions of DGF (left) and its noise (right) for satellite G15 of station 1
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Fig. 7 The trends of DGF for all satellites of station 1
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Fig. 8 The noise of DGF for all satellites of station 1

Table 2 Calculated results of
station 1 with ARMA-e

G03 G15 G16 G19 G22

(p, q) of GF1 (4,5) (2,4) (4,3) (2,5) (3,4)

rv1
(mm) 0.263 0.374 0.319 0.281 0.295

(p, q) of P1 GF2 (3,3) (3,3) (2,5) (5,4) (5,3)

rv2
of P1(m) 0.076 0.193 0.153 0.111 0.113

(p, q) of P2 GF2 (1,3) (1,3) (4,4) (4,5) (5,5)

rv2
of P2(m) 0.065 0.195 0.154 0.102 0.104

Table 3 Calculated results of
station 2 with ARMA-e

G03 G15 G16 G19 G22

(p, q) of GF1 (5,1) (5,4) (2,4) (4,5) (4,5)

rv1
(mm) 0.243 0.372 0.311 0.269 0.276

(p, q) of P1 GF2 (1,3) (1,1) (3,3) (5,4) (2,5)

rv2
of P1(m) 0.079 0.205 0.159 0.112 0.122

(p, q) of P2 GF2 (2,2) (4,3) (3,3) (1,1) (2,4)

rv2
of P2(m) 0.067 0.206 0.157 0.104 0.114

Table 4 Related results of the two receiver systems with ARMA-e

Station rv1
(mm) rv2

of P1(m) rv2
of P2(m) re1

(mm) re2
(mm) re1

(m) re2
(m)

1 0.306 0.129 0.124 0.13 0.17 0.11 0.10

2 0.294 0.135 0.130 0.13 0.16 0.11 0.11
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In the end, we compute the GPS signal precision of each receiver for all groups using

ARMA-e, zero baseline and short baseline methods. Table 5 shows the calculated results

of these three methods. Firstly, the precision varies from 0.13 to 0.98 mm for phase and

0.07–0.93 m for code among these three methods. It indicates that the empirical precision

of phase and code (2 mm and 0.2 m, respectively) is not realistic especially for the high-

end receivers, which agrees with the conclusions of Li (2016). Secondly, in ARMA-e

method, the signal precision of the two receiver systems is different from each other in

group A, B, C and D, whereas only group E is not. It tells us that although two receivers

share the same type, we cannot ensure the two receivers have the equal performance in real

applications. Thirdly, in zero baseline method, re1
, re2

, re1
and re2

are much smaller than

those in short baseline method. It indicates that the signal precision calculated for short

baselines contains the unmodeled errors such as residual ionospheric biases and multipath

effects.

3.2 Dataset 2—standalone receiver data

To analyze the stability of the ARMA-e method, the other test is carried out with data from

a standalone receiver. This receiver system mainly contains two parts: the HITARGET

V60 receiver and its antenna, with sampling interval of 1 s. This receiver is positioned on

the rooftop or field at different times during successive 3 days. We collect the dataset

during five different periods, of which the time span varies from 15 to 60 min. More details

are shown in Table 6. It can be seen that the dataset has good representations and diver-

sities. Firstly, the data are collected at different time and different locations, thus indicating

a good temporal and spatial representation, respectively. Secondly, the length of obser-

vation time differs to demonstrate the applicability of the proposed method.

Figures 9 and 10 give two types of GF, DGF, DGF noise time series. As Fig. 9 shows,

the GF1 observations changes slowly approximately from about -45.5 to -46.9 m mainly

because of the system influences such as ambiguities on two frequencies, ionospheric

delay, multipath and hardware delays. The amplitudes of the DGF phase observations

Table 5 Related results of these five groups with ARMA-e, zero baseline and short baselinemethods

Group name Receiver system Zero baseline/Short
baseline

Receiver system ARMA-e

L1 L2 P1 P2 L1 L2 P1 P2

A Rec.1 0.19 0.35 0.12 0.12 Rec.1?Ant.1 0.16 0.21 0.15 0.15

Rec.2 Rec.2?Ant.1 0.26 0.34 0.10 0.10

B Rec.1 0.21 0.30 0.11 0.11 Rec.1?Ant.1 0.25 0.32 0.07 0.07

Rec.2 Rec.2?Ant.1 0.15 0.19 0.12 0.11

C Rec.1?Ant.1 0.98 0.89 0.87 0.30 Rec.1?Ant.1 0.20 0.25 0.11 0.11

Rec.2?Ant.2 Rec.2?Ant.2 0.18 0.23 0.12 0.10

D Rec.1?Ant.1 0.67 0.71 0.93 0.87 Rec.1?Ant.1 0.17 0.21 0.10 0.11

Rec.2?Ant.2 Rec.2?Ant.2 0.18 0.23 0.11 0.11

E Rec.1 0.13 0.18 0.10 0.10 Rec.1?Ant.1 0.13 0.17 0.11 0.10

Rec.2 Rec.2?Ant.1 0.13 0.16 0.11 0.11

‘Rec.’ and ‘Ant.’ stand for the receiver and antenna respectively. L1 and L2 are corresponding phase
precision in unit of mm. P1 and P2 are corresponding code precision in unit of m
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fluctuate between -2 and 2 mm with 0 mm as the center, which is more stable than the GF

observations because there are only residual ionospheric delay and multipath left. The STD

of DGF phase noise is 0.67 mm, but the STD of DGF phase observations are 0.83 mm. The

reason is that the DGF observations have been modeled by ARMA-e method. Similar

findings are valid for GF2 P1 observations as shown in Fig. 10. Table 7 shows the detailed

results for the ARMA-e method of each group. It can be seen that the results are relatively

consistent with each group. More specifically, the precision differences of L1, L2, P1 and

P2 between the maximum and minimum among these five groups are 0.03, 0.03 mm, 0.02

and 0.01 m, respectively. Therefore, the results of different groups can be treated equal.

Accordingly, the noise of this receiver system can be computed, where the precision of L1,

L2, P1 and P2 are 0.33, 0.43 mm, 0.22 and 0.17 m respectively. In summary, we can see

that the precision of phase and code noise is almost the same even for different observation

times and locations. This indicates that our method is robust since it is independent of the

external environment.

Table 6 Description of the dataset

Number Location Observation time (GPS time) Satellites to be used

No.1 Roof 2015/4/12 11:00:00-11:59:59 G03 G16 G19 G23 G27

No.2 Field 2015/4/13 04:00:00-04:59:59 G12 G14 G18 G22 G25

No.3 Roof 2015/4/13 11:00:00-11:29:59 G03 G16 G19 G23 G27

No.4 Field 2015/4/13 15:00:00-15:29:59 G01 G07 G08 G09 G28

No.5 Roof 2015/4/14 01:00:00-01:14:59 G02 G05 G15 G26 G29
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Fig. 9 The related GF1 observations for satellite G03 of No. 1 (top the GF1 time series; middle the DGF1
time series; bottom the noise of DGF1 time series)
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4 Concluding remarks

This paper develops an alternative noise assessment method useful for standalone GPS

receiver system. To obtain the receiver signal precision, the ARMA model is applied to get

rid of mathematical and physical correlations in detrended DGF time series.

Since the new method focuses on single receiver system (i.e., one receiver and one

antenna) without external impacts, it is especially suitable to be applied for PPP receivers.

However, this method requires dual frequency or triple frequency measurements, limiting

its practical applications to some extent. In essential, this method can be transformed easily

to process other types of data, such as GLONASS, Galileo and BeiDou signals, which is

useful in multi-constellation PPP when setting up the stochastic model.
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Fig. 10 The related GF2 P1 observations for satellite G03 of No. 1 (top the GF2 time series; middle the
DGF2 time series; bottom the noise of DGF2 time series)
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No.2 0.35 0.45 0.23 0.18
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