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Abstract The coherences between daily time series of four low-frequency seismic noise

properties which were calculated for 78 broadband seismic stations of the network F-net in

Japan and 81 broadband seismic stations in California for 13 years of observation,

2003–2015, is investigated. The studied time interval includes Tohoku mega-earthquake,

M9, on March 11, 2011. The chosen noise properties are the following: minimum nor-

malized entropy of squared wavelet coefficients, multifractal singularity spectrum support

width, generalized Hurst exponent and index of linear predictability. These properties were

estimated daily as median values taken over all stations of the networks. For each pair of

these noise properties from Japan and California squared coherence spectrums were esti-

mated within moving time window of the length 730 days. The maximum values of

squared coherence spectra for periods more than 20 days were essentially increasing as the

time window approaches the time moment of Tohoku mega-earthquake and achieved their

maximum values for position of moving time window strictly before the seismic catas-

trophe. This fact is interpreted as a consequence of general global seismic noise syn-

chronization before huge seismic catastrophe.

Keywords Seismic noise � Multifractals � Entropy � Wavelets � Synchronization

1 Introduction

The low-frequency microseismic oscillations and their correlation with the processes

occurring in the hydrosphere and atmosphere of the Earth, which are the major sources of

microseismic energy, are a common subject of research in geophysics (Kobayashi and

Nishida 1998; Tanimoto 2001, 2005; Rhie and Romanowicz 2004). It is however evident
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that the variations in the structure of the microseismic background may also reflect the

changes in the properties of the Earth’s crust, which is the medium where the microseismic

signals propagate.

Variations of the low-frequency noise properties from different parts of the Earth have a

rather strong correlations and coherences. The seismic noise coherence effects were

investigated in the papers (Lyubushin 2014a, 2015). It was shown that multiple spectral

coherences and wavelet-based correlations are increasing in time and this increasing

coincides with dramatic increasing of strongest earthquakes rate which is observed starting

from Sumatra mega-earthquake at 26 Dec of 2004, especially starting from 2007. Now we

try to investigate coherences between pairs of 4 integral (i.e. calculated by information

from all stations of networks) seismic noise properties for two dense clusters of broadband

seismic stations—network F-net in Japan and joint of three regional networks in California

and try to answer on the question whether approaching to the seismic catastrophe is

accompanied by increasing of coherence between seismic noise properties in these regions

which are placed at such big distance from each other.

2 Data

For the analysis a vertical broadband seismic oscillations components with 1-s sampling

time step (LHZ-records) from the broadband seismic networks in Japan and California

were downloaded from the beginning of 2003 up to the end of 2015. This time interval has

a length 13 years and includes time moments of Tohoku mega-earthquake in Japan at

March 11, 2011.

Data from Japan were taken from 78 stations of the network F-net (Fig. 1a) from the

address:http://www.fnet.bosai.go.jp/faq/?LANG=en.

Data from California were taken from 81 stations of three regional networks (Fig. 1b)

which are presented by addresses: http://ds.iris.edu/mda/AZ, http://ds.iris.edu/mda/BK,

http://ds.iris.edu/mda/CI.
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Fig. 1 Positions of broadband seismic stations in Japan (Fig. 1a—78 stations) and in California (Fig. 1b—
81 stations)
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Initial data are provided by seismic sensors STS-1 and STS-2, the units in records are

given as velocity in meters per second and they were taken from these sites ‘‘as is’’. In this

paper the seismic data were analysed after transforming them to sampling time step 1 min

by calculating mean values within adjacent time windows of the length 60 s. Thus, the

minimum period of seismic noise variations for the analysis equals 2 min. No other pre-

liminary processing operations of the seismic records were performed. It should be noticed

that four seismic noise properties which are analysed in this paper are dimensionless and

are invariant to the scale of the records.

3 Seismic noise statistics

3.1 Minimum normalized entropy En of squared wavelet coefficients

Let x(t) be the finite sample of the signal t ¼ 1; . . .;N—index, numerating the counts. The

normalized entropy is defined by the formula:

En ¼ �
XN

k¼1

pk � logðpkÞ= logðNÞ; pk ¼ c2
k

,
XN

j¼1

c2
j ; 0�En� 1 ð1Þ

Here ck; k ¼ 1;N are the orthogonal wavelet coefficients which were found from

minimized the value (1). We try 17 orthogonal wavelets (Mallat 1998): 10 usual wavelets

of Daubechies (number of vanishing moments equals to integer numbers from 1 up to 10)

and 7 a so called symlets with numbers of vanishing moments varying from 4 up to 10. For

low-frequency noise the parameters En were estimated within adjacent time windows of

the length N = 1440, i.e. 1 day, after removing trend by polynomial of the 8-th order.

Minimum normalized entropy En was suggested in (Lyubushin 2012) and was used for

investigating sesimic noise properties in (Lyubushin 2013a, b, 2014a; Lyubushin et al.

2014).

3.2 Multifractal parameters Da and a�

Multifractal singularity spectrum FðaÞ (Feder 1988) of the signal xðtÞ is defined as a fractal

dimensionality of time moments ta which have the same value of local Lipschitz–Holder

exponent: hðtÞ ¼ lim
d!0

lnðlðt; dÞÞ=lnðdÞð Þ, i.e. hðtaÞ ¼ a, where lðt; dÞ ¼ ðmax xðsÞ�
min xðsÞÞ, maximum and minimum values are taken for argument t � d=2� s� t þ d=2,

where d is the length of time interval. The value lðt; dÞ is a measure of signal variability in

the vicinity of time moment t (Feder 1988). If XðtÞ is a usual self-similar monofractal

signal (Taqqu 1988) with Hurst exponent value 0\H\1, then FðHÞ ¼ 1;FðaÞ ¼ 0 8a 6¼
H but finite sample estimate of singularity spectrum does not obey these rigorous theo-

retical conditions of course.

Practically the most convenient method for estimating singularity spectrum is a

method of multifractal detrended fluctuations analysis (DFA) (Kantelhardt et al. 2002)

which is used here. The function FðaÞ could be characterized by following parameters:

amin; amax;Da ¼ amax � amin and a�—an argument providing maximum to singularity

spectra: Fða�Þ ¼ max
a

FðaÞ. Parameter a� is called a generalized Hurst exponent and it

gives the most typical value of Lipschitz–Holder exponent. Parameter Da, singularity

spectrum support width, could be regarded as a measure of variety of stochastic behavior.
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For removing scale-dependent trends (which are mostly caused by tidal variations) in

multifractal DFA-method of singularity spectrums estimates a local polynomials of the

8-th order were used.

Multifractal analysis is a rather popular tool in geophysical studies (Ramirez-Rojas et al.

2004; Ida et al. 2005; Currenti et al. 2005; Telesca et al. 2005; Lyubushin et al. 2012).

Estimates of multifractal properties Da and a� of low-frequency seismic noise were used in

the papers Lyubushin (2008, 2010, 2011a, b, 2013a, b, 2014b, 2015) for the purposes of

earthquake prediction and dynamic estimate of seismic danger.

3.3 Index of linear predictability cPred

This index was proposed in (Lyubushin 2010), see also (Lyubushin 2011b, 2012). Let xðtÞ
be the recorded signal. Let us take ‘‘long’’ adjacent time windows of the length N counts

and consider ‘‘short’’ time window of the length n counts, n \N, which is moving from

left to right direction within each ‘‘long’’ adjacent window with minimum mutual shift 1

sample. These ‘‘short’’ time windows are used for constructing two predictors one step

ahead within each ‘‘long’’ window.

The 1-st predictor is trivial and for each time moment t[ n, t ¼ 1; . . .;N, within ‘‘long’’

window, it is calculated as mean value over previous ‘‘short’’ window: x̂0ðtÞ ¼Pt�1
s¼t�n xðsÞ=n. Thus, we can compute the error of trivial predictor: e0ðtÞ ¼ xðtÞ � x̂0ðtÞ and

its variance: V0 ¼
PN

t¼nþ1 e
2
0ðtÞ=ðN � nÞ.

The 2nd predictor is based on using correlations between neighbor values of the signal

xðtÞ and use the autoregression model AR(2) of 2-nd order: x̂ARðtÞ ¼ a1xðt � 1Þ þ a2

xðt � 2Þ þ d; t[ n.

Vector of AR(2)-parameters c ¼ ða1; a2; dÞT is defined by least squares method using

values of the signal xðtÞ within ‘‘short’’ time window of the length n which is adjacent to

time moment t[ n from left-hand side:

ĉðtÞ ¼ A�1ðtÞ � RðtÞ;AðtÞ ¼
Xt�1

s¼t�ðn�2Þ
YðsÞ � YTðsÞ; RðtÞ ¼

Xt�1

s¼t�ðn�2Þ
xðsÞ � YðsÞ ð2Þ

where YðsÞ ¼ ðxðsÞ; xðs� 1Þ; 1ÞT . Similar to trivial predictor we can compute the error of

AR(2)-predictor: eARðtÞ ¼ xðtÞ � x̂ARðtÞ and its variance VAR ¼
PN

t¼nþ1 e
2
ARðtÞ=ðN � nÞ.

Index of linear predictability is defined as cPred ¼ V0=VAR � 1.

The 2nd autoregression model AR(2) is selected because this is the minimal order for

the AR-model, which enables one to describe the oscillatory motion and could provide the

maximum spectral density between the Nyquist frequency and zero (Box and Jenkins 1970;

Kashyap and Rao 1976). The AR-prediction makes use of the correlation property of the

nearby values of increments of the recorded signals. If such a correlation exists and signal

xðtÞ is linearly predictable within current ‘‘long’’ time window of the length N sample then

VAR\V0, and cPred[ 0.

4 Spectral measure of coherence

Here we apply spectral measure of coherence kðs;xÞ which was suggested in (Lyubushin,

1998, 1999) for multidimensional time series processing in the problems of geophysical

monitoring. This spectral measure was applied for investigating synchronization effects in
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multidimensional time series in seismology (Lyubushin 2008, 2009, 2010, 2014a),

hydrology (Lyubushin et al. 2004) and climate researches (Lyubushin and Klyashtorin

2012). Here we use it in the particular case of 2-dimensional time series (Lyubushin et al.

2015). In general case kðs;xÞ is constructed as the module of the product of component-

by-component canonical coherences

kðs;xÞ ¼
Ym

j¼1

mjðs;xÞ
�� �� ð3Þ

Here, m� 2 is the total number of jointly analysed time series; x is frequency; s is the

time coordinate of the right-hand end of the moving time window consisting of a definite

number of adjacent samples; and mjðs;xÞ is the canonical coherence of the j-th scalar time

series, which describes the strength of coupling of this series with all other series. The

quantity mjðs;xÞ
�� ��2 is the generalization of the ordinary squared spectrum of coherence

between two signals for the case, when the second signal is not scalar but vector. The

inequality 0� mjðs;xÞ
�� ��� 1 is fulfilled, and the closer the value of mjðs;xÞ

�� �� to unity, the

stronger the linear relation of variations at the frequency x in the time window with the

coordinate s of the j-th series to analogous variations in all other series.

For calculating the measure (3) it is necessary to estimate spectral matrix Sðs;xÞ of the

size m� m within each time window with time coordinate s. For this purpose we use

vector autoregression model (Marple 1987):

ZðtjsÞ þ
Xp

k¼1

AkðsÞ�Zðt � kjsÞ ¼ eðtjsÞ ð4Þ

where t is time index within current time window with time coordinate s, ZðtjsÞ is the piece

of m-dimensional time series corresponding to the current time window, p is an autrore-

gression order, A kðsÞ are matrices of autoregression coefficients of the size m� m, eðtjsÞ is

m-dimensional residual signal with zero mean and covariance matrix UðsÞ ¼ MfeðtjsÞ
eTðtjsÞg. Matrices A kðsÞ and UðsÞ are defined in each time window using Durbin–

Levinson procedure and the spectral matrix is calculated using formula:

Sðs;xÞ ¼ F�1ðs;xÞ � UðsÞ � F�Hðs;xÞ; Fðs;xÞ ¼ E þ
Xp

k¼1

AkðsÞ � expð�ixkÞ ð5Þ

where E is a unit matrix of the size m� m, ‘‘H’’ is the sign of Hermitian conjunctions.

5 Results

For low-frequency noise the linear predictability index cPred was estimated for incre-

ments of waveforms. The transition to increments is dictated by the necessity to avoid

dominance of low frequencies associated with tides and other trends. In the calculations

of the linear predictability index for 1-min data, the estimations were performed in the

adjacent long time windows of length N ¼ 1440, i.e. 1 day. The ‘‘short’’ time window

length n ¼ 60, i.e. 1 h.

After estimating daily values of statistics En, Da,a� and cPred from each station of the

network we can calculate their median values and thus construct 4 daily time series which

characterize integral properties of each network. Figure 2 presents graphics of these daily
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time series (4383 samples within each series) noise properties in Japan and California. The

annual variations of the seismic noise properties could easily be notices, especially from

the behaviour of running average curves (bold green lines). We suppose that annual

variations are caused by changing in the structure of seismic noise as the result of influence

of winter storms in the ocean (Rhie and Romanowicz 2004; Tanimoto 2005).

The next step of investigation is estimate of evolution of squared coherence spectra for

each of four pairs of time series presented at Fig. 2, from its left and right columns. We

applied the spectral measure (3) for the case when m ¼ 2 within time window of the length

730 daily samples with mutual shift seven samples. We used autoregression order p ¼ 5 in

the formula (4). The choice of the 2-years length of moving time window is following from

the purpose to get rid of the influence of seasonal 1-year variations of seismic noise

properties which are clearly seen at the Fig. 2.

In general case when m[ 2 the value (3) is calculated using canonical coherences of

the m-dimensional time series ZðtÞ (Lyubushin 1998, 1999), but for our particular case

when m ¼ 2 the value (3) equals to S12ðs;xÞj j2= S11ðs;xÞ � S22ðs;xÞð Þ, where S11ðs;xÞ and

S22ðs;xÞ are diagonal elements of the matrix (5), i.e. parametric estimates of the power
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Fig. 2 Graphics of median values of 4 daily seismic noise properties calculated over all stations in Japan
(left-hand column of graphics, stations from Fig. 1a) and in California (right-hand column of graphics,
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singularity spectrum support width; a�—generalized Hurst exponent; cPred—index of linear predictability.
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spectra of two signals within time window with time coordinate s, and S12ðs;xÞ is their

mutual cross-spectrum.

Time–frequency diagrams of squared coherence spectrums are presented at the Figs. 3,

4, 5 and 6. It could be noticed that most of maximum values of squared coherence belong

to the frequency range corresponding to periods more than 20 days and that peak values

are achieved for position of moving time window which is close to time moment of

Tohoku mega-earthquake (time mark 2011.189) and laying strictly before this time

moment. At the beneath one-dimensional graphs at the Figs. 3, 4, 5 and 6 these evolutions

are presented for squared coherence spectra maximums which are calculated within each

time window for frequency values corresponding to periods more than 20 days. From the

Figs. 3, 4, 5 and 6 we see that time moments before earthquake is characterized by

Fig. 3 Time–frequency diagram of evolution of squared coherence spectrum between median values of
minimum normalized entropy En of squared wavelet-coefficients for daily seismic noise waveforms from
broadband seismic networks in Japan and California in dependence on right-hand end position of moving
time window of the length 730 days taken with mutual shift 7 days. The beneath graph presents maximum
values of squared coherence spectrum in each window with respect to frequency values corresponding to
periods more than 20 days. The bold purple vertical line indicates time moment of Tohoku mega-earthquake
in Japan on 11 March, 2011, M = 9
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increasing trend of coherence behaviour and that maximum values correspond to position

of time window directly before the seismic event.

6 Conclusion

Strong effect of increasing coherence between behaviour of different parameters of low-

frequency seismic noise in Japan and California before Tohoku mega-earthquake on March

11, 2011 in Japan is detected by analysis of seismic noise waveforms from broadband

seismic networks.

Results presented at the Figs. 3, 4, 5 and 6 show that there is an explicit precursory

increasing of coherence in the behaviour of seismic noise properties in Japan and

Fig. 4 Time–frequency diagram of evolution of squared coherence spectrum between median values of
multifractal singularity spectrum support width Da for daily seismic noise waveforms from broadband
seismic networks in Japan and California in dependence on right-hand end position of moving time window
of the length 730 days taken with mutual shift 7 days. The beneath graph presents maximum values of
squared coherence spectrum in each window with respect to frequency values corresponding to periods more
than 20 days. The bold purple vertical line indicates time moment of Tohoku mega-earthquake in Japan on
11 March, 2011, M = 9
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California before the Tohoku mega-earthquake despite the big distance between seismic

networks. This could be explained by general phenomenon of increasing of correlation

radius of noise fluctuations within complex system (Earth’s crust in our case) when the

system is approaching to abrupt change of its properties (Gilmore 1981; Nicolis and

Prigogine 1989).

I understand that any speculations and hypotheses about the possibility of earthquake

prediction and the existence of earthquake precursors currently are suspicious and go

beyond the generally accepted rules in scientific articles. That is why I brought only the

facts about the experimental discovery of long-term positive trend in the coherence

between the properties of seismic noise in such remote regions as Japan and California. It

should be emphasized that the growth of coherence was detected for four seismic noise

Fig. 5 Time–frequency diagram of evolution of squared coherence spectrum between median values of
multifractal generalized Hurst exponent a� for daily seismic noise waveforms from broadband seismic
networks in Japan and California in dependence on right-hand end position of moving time window of the
length 730 days taken with mutual shift 7 days. The beneath graph presents maximum values of squared
coherence spectrum in each window with respect to frequency values corresponding to periods more than
20 days. The bold purple vertical line indicates time moment of Tohoku mega-earthquake in Japan on 11
March, 2011, M = 9
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properties that are significantly different from each other in their meaning and calculation

methods. Since the main conclusions of this paper were obtained by joint processing of

long seismic records and subsequent deep averaging of the results of the analysis by a large

number of stations, the probability of random coherence growth is negligible. Any artificial

factors, e.g. time variation of mechanical/electrical property change of seismographs could

scarcely be the reason of coherence growth as well because such kind of changes could not

be synchronized in Japan and California simultaneously.

The effects of increasing of seismic noise coherence before Tohoku mega-earthquake

and before and after Sumatra mega-earthquake on 26 Dec, 2004, M = 9.1–9.3, were

previously investigated in the papers (Lyubushin 2009, 2010, 2014a, 2015).

Fig. 6 Time–frequency diagram of evolution of squared coherence spectrum between median values of
linear predictability index cPred for daily seismic noise waveforms from broadband seismic networks in
Japan and California in dependence on right-hand end position of moving time window of the length
730 days taken with mutual shift 7 days. The beneath graph presents maximum values of squared coherence
spectrum in each window with respect to frequency values corresponding to periods more than 20 days. The
bold purple vertical line indicates time moment of Tohoku mega-earthquake in Japan on 11 March, 2011,
M = 9
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