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Abstract We derive the mass balance of Greenland ice sheet from the Gravity Recovery and

Climate Experiment (GRACE) for the period January 2003–October 2014. We have found an

ice mass loss with peak amplitude of -15 cm/yr in the southeastern and northwestern parts,

and an acceleration of -2.5 cm/yr2 in the southwestern region. Global warming is a well-

known suspected triggering factor of ice melting. We use MODIS-derived Ice Surface

Temperature (IST), and continuous and cross wavelet transforms have been determined to

investigate the common power and relative phase between GRACE derived time-series of ice

mass changes and IST time-series. Results indicate a high common power between the two

time-series for the whole study period, but with different time patterns.
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1 Introduction

Since the past century, the mass balance of Greenland ice sheet has been adversely affected

by climate warming. If the whole ice sheet would melt, sea level would rise by roughly 7 m

(Houghton et al. 2001), thus the monitoring of Greenland mass balance in space and time is

essential.

Gravity Recovery and Climate Experiment (GRACE) satellite mission has been widely

used for monitoring mass changes over Greenland ice sheets (Baur et al. 2009; Chen et al.

2006; Joodaki and Nahavandchi 2012; Ramillien et al. 2006; Velicogna et al. 2014; Veli-

cogna and Wahr 2005; Wouters et al. 2008). Sørensen et al. (2011) estimated the mass balance
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of the Greenland ice sheet from Ice, Cloud, and land Elevation Satellite (ICESat) laser

altimetry data. Slobbe et al. (2009) used data from the ICESat and GRACE to estimate the

rates of mass change over Greenland. The results of Velicogna et al. (2014) show a mass loss

rate of 280 ± 58 Gt/yr for the time span of January 2003–December 2013.

In this study, GRACE monthly gravity solutions are used to derive mass changes

(winter gain, summer loss) over Greenland for a period of nearly 12 years. The GRACE

derived results are compared to Ice Surface Temperature (IST) provided by Moderate

Resolution Imaging Spectroradiometer (MODIS) (Hall et al. 2013) to analyse the rela-

tionship between mass loss acceleration and IST changes. Time patterns and periodicities

of the GRACE and MODIS derived time-series are investigated in time–frequency domain

using continuous wavelet and cross wavelet transforms. These wavelet tools are used to

identify the common power and the relative phase between the two time-series.

2 Data and methodology

Fully normalized GRACE RL05 monthly gravity solutions from the processing center of

Center for Space Research (CSR) have been used up to degree and order (l and m) 60

(Tapley et al. 2004) in the time period of January 2003–October 2014. The approximate

spatial scale equivalent to lmax = 60 is around 330 km. Each GRACE monthly solution

consists of Stokes coefficients that were used to estimate monthly mass changes of the

entire Greenland ice sheet. For this, an averaging function that minimizes the combined

measurement error and signal leakage has been constructed [c.f. Eq. (3)]. The GRACE C20

coefficients are replaced with the solutions from Satellite Laser Ranging (Chen et al. 2005)

in order to improve the estimation of mass variations (Sośnica et al. 2014). Furthermore, as

GRACE does not recover spherical harmonic coefficients of degree-1, values of coeffi-

cients for geocentric arrangement are estimated using the method from Swenson et al.

(2008). This model makes use of GRACE data, combined with Glacial Isostatic Adjust-

ment (GIA) and an ocean model.

Critical for a reliable estimate of Greenland mass variations from GRACE monthly

solutions is the correction for systematic errors. In this study, correction for mass con-

tamination from continental water storage outside Greenland and from the ocean has been

applied. Leakages from the continental hydrology and ocean (named leakage in effect in

this study) occur as averaging function in order to eliminate the so-called striping errors

(Swenson and Wahr 2006) extends beyond Greenland.

To estimate the contaminations from continental hydrology outside Greenland, we

utilize monthly land water content data from the Noah Land Surface Model with the Global

Land Data Assimilation System (GLDAS) (Rodell et al. 2004). Circulation and Climate of

the Ocean (ECCO) (Fukumori 2002; Kim et al. 2007) is used to account for contamination

from ocean water mass. Fully normalized harmonic coefficients from the GLDAS and

ECCO are used and removed from the GRACE Stokes coefficients (Wahr et al. 1998):

DC
GLDAS=ECCO

lm

DS
GLDAS=ECCO

lm

( )
¼ 1

4p
1 þ Kl

2lþ 1

3qw
aqave

ZZ
Dr u; kð Þ

qw

� �
GLDAS=ECCO

cosmk
sinmk

� �
PlmðsinuÞdA

ð1Þ

where DC
GLDAS=ECCO

lm and DS
GLDAS=ECCO

lm are the harmonic coefficients of degree l and

order m of GLDAS and ECCO models; a is the radius of the Earth (6371 km), qw and qave
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are the density of water (1000 kg/m3) and average density of the Earth (5517 kg/m3),

respectively. Kl is the load Love number of degree l, Dr u; kð Þ is the change in surface

density at the point with latitude of u and longitude of k, PlmðsinuÞ is normalized asso-

ciated Legendre function, and dA is the surface element which is defined as:

dA ¼ p
180

� �2

cosududk ð2Þ

Also, GIA is assumed and has been subtracted from the GRACE Stokes coefficients.

Results of a 3-D finite-element model developed by Geruo et al. (2013) has been applied.

This model uses the ICE-5G deglaciation history and VM2 viscosity profile, and the same

PREM-based elastic structures as Peltier (2004).

In order to estimate the monthly mass variability, 132-month mean have been subtracted

from the corrected coefficients. Surface mass variation is modelled as surface density

variation in unit of mass=surface area in a spherical layer (Wahr et al. 1998):

Dr u; kð Þ ¼ aqave
3

Xlmax
l¼0

Xl

m¼0

2lþ 1

1 þ Kl

Wl DClm cosmkþ DSlm sinmk
� �

PlmðsinuÞ ð3Þ

In Eq. (3) DClm and DSlm are GRACE observed Stokes coefficients (corrected for the

leakage in and GIA effects) defined as changes relative to the mean of the 132 monthly

solutions; Wl is the Gaussian-averaging kernel, defined as (Wahr et al. 1998):

Wlþ1 ¼ � 2lþ 1

b
Wl þWl�1

W0 ¼ 1W1 ¼ 1 þ e�2b

1 � e�2b
� 1

b

b ¼ ln 2

1 � cos r=a
� �

ð4Þ

where r is the filtering radius. The Gaussian filter, Eq. (4) is used to reduce striping error

of the GRACE monthly solutions (Velicogna and Wahr 2013). However, the filtering also

affects the contribution from actual geophysical signals. Chen et al. (2005) studied spatial

sensitivity of the GRACE time-variable gravity observations. The GRACE errors dominate

at averaging radius below 250 km (Wahr et al. 1998). We apply a Gaussian smoothing

function with a 250 km radius (Wahr et al. 1998). This smoothing radius is large enough to

eliminate the stripes, meanwhile it is small enough to recover small-scale features of

geophysical variations (Velicogna and Wahr 2013).

Note that to estimate the mass changes, surface mass anomaly should be integrated over

the area of interest, since
Dr u;kð Þ

qw
in Eq. (1) is interpreted as Equivalent Water Thickness

EWT, i.e. in mm unit. The mass change of Greenland can be thus expressed as an integral

over the unit sphere:

Dm ¼ rDr u; kð Þs u; kð ÞdA ð5Þ

where
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s u; kð Þ ¼ 0; outside the region

1; inside the region:

�
ð6Þ

For an ideal estimate of mass variability, the kernel would be 1 inside the region of interest

and 0 outside of it, and there would be no signal reduction at the hypothetical lmax = ?
(Wahr et al. 1998). When we apply the Gaussian smoothing function with a 250 km radius

on GRACE data and truncate the Stokes coefficients, the kernel value is less than 1 inside

Greenland, and it extends outside its area. It is thus the effect of truncation of spherical

harmonics, which is corrected using the method of Velicogna and Wahr (2006). The

applied kernel function minimizes the combined measurement error and signal leakage

(Swenson et al. 2003).

3 Results and discussion

Using Eq. (3) and convolving the GRACE Stokes coefficients with the averaging

function of Eq. (4), time series of surface mass variation have been estimated in a

1� 9 1� grid covering Greenland for the period of January 2003–October 2014. We

then form an approximate estimate of total mass change for each month by summing

the mass change by cosine latitude weighting of the estimates at the different grid

elements. Then, linear regression (considering a linear trend, an annual and a semi-

annual periodic terms) has been determined for each time-series. Figure 1a shows time-

series of Greenland monthly mass changes estimated in Gt. We obtain a trend of

-277 ± 30 Gt/yr. The uncertainty of 30 Gt/yr is an error estimate and accounts for the

least squares adjustment error, the truncation error, the leakage error, the GIA cor-

rection and the gravity field model errors. The mass loss is increasing by time from

2003 to 2012 in a relatively consistent pattern, while in the year 2012 a sudden fall of

the time series can be observed, which is followed by a relatively less intense melting

process (c.f. Fig. 1).

In order to determine the acceleration of the mass variation, a quadratic model to the

time series has been fitted. The quadratic model includes an acceleration term along with

the bias, the linear, the annual and the semiannual terms. For the period 2003–2014, a

linear trend of -151 ± 35 Gt/yr and an acceleration of -21 ± 2 Gt/yr2 has been deter-

mined. The uncertainty of 2 Gt/yr2 is an error estimate and accounts for only the least

squares adjustment error.

To investigate which of the linear or quadratic models fits better to the time-series, the

adjusted R-Squared (RAdj
2 ) of the data fit has been determined. RAdj

2 is defined as (Johnson

and Wichern 2002):

R2
Adj ¼ 1 � 1 � R2

� � N � 1

N �M � 1
ð7Þ

where R2 ¼ 1 � SSE=SST, where SSE is the sum of squared residuals, SST is the sum of

the squared difference of each observation from the mean, N is the number of observations,

and M is the number of term in the model. The RAdj
2 provides a measure of the proportion of

variance of the observed signal that can be accounted for by the regression model,

adjusting for the number of terms in the model. RAdj
2 can take any value less than or equal to

1, with a value closer to 1 indicating a better fit.
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Fig. 1 Estimated Greenland monthly mass change from January 2003 to October 2014 from GRACE
solutions by CSR processing center. Filtering radius is 250 km. The best fitting a linear and b quadratic
trend are shown as red line and curve, respectively
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For Greenland, we find that RAdj
2 for the quadratic model is 0.988. Comparing the RAdj

2

for both models shows that the value for quadratic model is 2% larger than for the linear

one, suggesting that the data are better modeled by a quadratic model.

It should be stated here that there are other regression models that can be used, e.g. the

moving window least squares fit (Földváry 2012).

Figure 1 shows that seasonal changes of the ice mass are superimposed on long-period

variability. In order to eliminate the long-term trend in Greenland mass variability, the

bias, linear trend, annual and semi-annual terms has been subtracted, from which Fig. 2a is

derived. Similarly, secular acceleration has been determined, c.f. Fig. 2b. As seen in Fig. 2,

largest mass losses are occurring in southern, southeastern and northwestern parts with a

maximum of -15 cm/yr and the mass loss is increasing by time in southwestern parts with

a maximal acceleration of -2.5 cm/yr2.

The mass balance is a combination of increased surface temperature, increased snow

accumulation, and increased glacial discharge at the coasts. Recent surface mass balance

estimates suggest accumulation at high interior elevation and fast melting at low eleva-

tions. We test these suggestions by a comparison with the elevations and slope aspects

from the Digital Elevation Model (DEM) (GLAS/ICESat 1-km laser altimetry DEM)

(DiMarzio et al. 2007), c.f. Fig. 3. When comparing the DEM (Fig. 3a) with the GRACE

results of Fig. 2a, a relatively inverse relation between ice melting and elevation can be

seen. In other words, melting is increased with lower elevation, as expected. In addition,

comparing the slope aspect (Fig. 3b) with the GRACE results of Fig. 2a, ice melting is

found to occur mainly on south-facing and west-facing slopes rather than at north-facing

and east-facing slopes. It is in accordance with the expectations, since south-facing slopes

receive much more heat than the north-facing slopes. In addition, east-facing slopes catch

sun only in the morning when temperatures are colder while west-facing slopes catch the

sun in the warm afternoon. Consequently, east-facing slopes are colder than west-facing

slopes.

The temporal evaluation of Greenland’s mass balance (c.f. Fig. 1) shows that mass

increases slowly between October and April (e.g. Wouters et al. 2008). It also shows mass

decrease between May and September. To investigate the mass balance seasonal varia-

tions, April–May–June (A–M–J) as months of beginning the melt season, and August–

September–October (A–S–O) as months of ending the melt season are considered. We

compute the ‘summer loss’ with subtracting the mass of A–M–J from A–S–O, and the

‘winter gain’ with subtracting the previous year’s A–S–O from the A–M–J. The net of each

year is the sum of the summer loss and winter gain of the same year (Joodaki and

Nahavandchi 2012; Wouters et al. 2008).

Table 1 shows these indicators for each year between 2003 and 2014. The largest net

mass loss of -571 Gt was occurred in the year 2012, where we have the maximum

summer loss of -733 Gt. In contrast, the year 2013 with the least summer loss of -219 Gt,

has the least net mass balance of -5 Gt.

According to Table 1, years 2012, 2011, and 2010 had the maximum summer loss, and

2013 and 2006 had the minimum summer loss. As for the winter gains, years 2005, 2011,

and 2006 had the maximum, and 2010, 2012, and 2014 had the minimum change.

cFig. 2 GRACE-derived ice mass balance a linear trend and b acceleration in equivalent water thickness for
January 2003–October 2014 over Greenland
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Fig. 3 a DEM and b slope aspect of Greenland
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To compare the GRACE results with the temperature changes over Greenland in

summer and winter, monthly temperature anomaly with respect to the monthly mean over

2003–2014 period from MODIS-derived IST data has been determined. Figure 4 shows the

mean seasonal anomaly of IST for each year (winter months with respect to the winter

mean for period 2003–2014 and summer months with respect to the summer mean for

the same period). Comparing the MODIS derived results of Fig. 4 with the GRACE

derived results of Table 1, we find an agreement between summer temperature anomalies

and the GRACE-derived summer loss. GRACE-derived mass anomalies show very

similar tendency in summer losses and winter gains with the temperature anomaly plots

of Fig. 4. The comparison also shows that there might be a relative phase difference in

time between the ice mass balance derived from GRACE and the seasonal temperature

anomalies of MODIS. Figure 5 also shows the relationship between mean temperature

anomaly and mean winter gain and summer loss. Obviously, in Fig. 5 the inverse

relationship of temperature anomaly and mass loss is more convincing for the summer

period.

In an attempt to study the relationship between the ice mass balance time series and IST

time series, continuous wavelet transform (CWT) and the cross wavelet transform (XWT)

have been utilized, to expand time-series records into time–frequency space, and to detect

common relative phase in time–frequency space. CWT is used to identify the common

power in each time-series, while XWT is used to identify relative phase between the time

series. These wavelet tools identify localized intermittent periodicities (Tomás et al. 2015).

The used Matlab code is provided by the National Oceanography Center (2014). For the

wavelet analysis, monthly time series of both ice mass and IST are used. Figure 6 shows

the CWT of both time-series. Note that, the ice mass time series are de-trended. From the

analysis of the continuous wavelet power of the ice mass and IST time series, we can

observe a clear annual cycle along the whole observation interval for both time series.

Additionally, a semi-annual seasonal fluctuation can be identified along the whole

observation period.

The ice surface temperature is a well-known triggering factor of ice melting. To study

further the relationship between the ice mass balance and the temperature anomaly, cross

Table 1 Greenland mass bal-
ance derived from GRACE
monthly gravity field solution
provided by CSR between 2003
and 2014

Year A–M–J
[Gt]

A–S–O
[Gt]

Summer loss
[Gt]

Winter gain
[Gt]

Net balance
[Gt]

2003 1473 988 -485 _ _

2004 1189 777 -412 201 -211

2005 1083 548 -535 306 -229

2006 790 464 -326 242 -84

2007 672 170 -502 208 -294

2008 368 -133 -501 198 -303

2009 108 -322 -430 241 -189

2010 -215 -757 -542 107 -435

2011 -480 -1102 -622 277 -345

2012 -940 -1673 -733 162 -571

2013 -1459 -1678 -219 214 -5

2014 -1514 -1896 -382 164 -218
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analysis of the time series was determined. The XWT is equivalent to the complex

product of two series. The magnitude of XWT is high only where both CWTs of time-

series displays high values simultaneously, so that XWT reveals areas in the two

dimensional time–frequency space with high common power. This way time patterns

common in the two data sets can be identified. The phase of the XWT indicates the time

Fig. 4 a Winter and b summer temperature anomaly over Greenland between 2003 and 2014
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lag between the two time series. For instance, it is zero when the two time series are

coincident in time, and it is ±180� if one is maximum when the other is minimum.

Figure 7 shows the XWT of ice mass fluctuations and IST in Greenland. A high common

power between the two time series in the annual period for the whole study period is

evident. Some power signal at the semi-annual period is also evident. The relative phase

relationship is shown as arrows, with arrows pointing right if the time lag is zero (in-

phase) and pointing left if the time lag is ±180� (anti-phase). The arrows pointing

straight down and up indicate ±90� time lag. The XWT analysis shows that ice mass

change and ice surface temperature are not in-phase and show anti-phase relationship in

all the sectors with significant common power. The results are in agreement with results

shown in Table 1 and Fig. 4.

Fig. 5 Plots of a winter gain versus winter temperature anomaly and b summer loss versus summer
temperature anomaly
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4 Conclusion

In this study, mass balance of Greenland ice sheet for January 2003–October 2014 from

the GRACE data has been computed. We evaluated the linear and quadratic trends in

Greenland at the continental scale. The regions with acceleration signal appears clearly

over the area. The mass loss is increasing with time in several regions. Most of

Greenland experience this acceleration, with the largest losses in southeastern and

northwestern Greenland. In the northwest Greenland, the mass loss is also increasing at

a significant level, but its magnitude is lower, and the signal is confined along the

coast.

Fig. 6 Continuous wavelet transform of a the mean mass fluctuation and b IST from 2003 to 2014

Fig. 7 Cross wavelet transform of the ice mass fluctuations and IST. Arrows show the relative phase
relationship, in which straight upward arrows indicate that ice mass changes and IST show anti-phase
relationship
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Summer loss, winter gain and the net mass balance in Greenland for 2003–2014 have

also been evaluated. We found minimum net mass balance in 2012 and 2010 with a

maximum in 2013. We found a net mass balance of -571 Gt in 2012, and net mass balance

of -5 Gt in 2013. To relate these mass balances to climate effects, we evaluated MODIS-

derived seasonal ice surface temperature and compared the temperature profiles with

GRACE-derived ice mass changes. The comparison in time domain showed common

power between the two data series. To study further, the seasonal relationships between the

GRACE and MODIS derived time series, continuous and cross wavelet transforms in time–

frequency domain have been used. Wavelet tool helps to understand the seasonal kinematic

behavior of the ice mass fluctuation showing the common power between two time series

for the whole study period (2003–2014). We found a high common power between the two

time series in annual period for the whole study period. Some power signal at the semi-

annual period is also detected. The time series comparison between GRACE ice mass loss

and MODIS ice surface temperature has also confirmed that these two data sets are not in-

phase.
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