
ORI GIN AL STU DY

Generalized total Kalman filter algorithm of nonlinear
dynamic errors-in-variables model with application
on indoor mobile robot positioning

Hang Yu1 • Jian Wang2 • Bin Wang3 • Houzeng Han2 • Guobin Chang1

Received: 15 June 2017 / Accepted: 30 September 2017 / Published online: 17 October 2017
� Akadémiai Kiadó 2017

Abstract In this paper, a nonlinear dynamic errors-in-variables (DEIV) model which

considers all of the random errors in both system equations and observation equations is

presented. The nonlinear DEIV model is more general in the structure, which is an

extension of the existing DEIV model. A generalized total Kalman filter (GTKF) algorithm

that is capable of handling all of random errors in the respective equations of the nonlinear

DEIV model is proposed based on the Gauss–Newton method. In addition, an approximate

precision estimator of the posteriori state vector is derived. A two dimensional simulation

experiment of indoor mobile robot positioning shows that the GTKF algorithm is statis-

tically superior to the extended Kalman filter algorithm and the iterative Kalman filter

(IKF) algorithm in terms of state estimation. Under the experimental conditions, the

improvement rates of state variables of positions x, y and azimuth w of the GTKF algo-

rithm are about 14, 29, and 66%, respectively, compared with the IKF algorithm.
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1 Introduction

An errors-in-variables (EIV) model is different from a Gauss–Markov model, which takes

the random errors of both observation vector and coefficient matrix into account. Golub

and van Loan (1980) solved the EIV model by the singular value decomposition (SVD)

technique, and named the algorithm as total least squares (TLS) for the first time. In the

geodetic field, the TLS solution was first applied to coordinate transformation (Liu 1983;

Liu and Liu 1985; Liu et al. 1987). Teunissen (1988) derived the exact solution. Thereafter,

studies on the TLS theories and applications are expanded and deepened, such as weighted

TLS (Schaffrin and Wieser 2008; Shen et al. 2011; Mahboub 2012; Amiri-simkooei and

Jazaeri 2012; Xu et al. 2012; Fang 2013; Chang 2015; Mahboub et al. 2015; Shi et al.

2015), constrained TLS (Mahboub and Sharifi 2013; Fang 2014, 2015; Fang and Wu

2016), outliers processing for TLS (Amiri-Simkooei and Jazaeri 2013; Lu et al. 2014;

Wang et al. 2016), TLS for quadratic form estimation (Fang et al. 2015), Bayesian

inference for the EIV model (Fang et al. 2017), TLS prediction (Li et al. 2012; Wang et al.

2017), TLS variance component estimation (Amiri-simkooei 2013, 2016; Xu and Liu

2013, 2014; Xu 2016; Wang and Xu 2016), and TLS precision estimation (Xu et al. 2012;

Amiri-Simkooei et al. 2016; Wang and Zhao 2017).

Obviously, TLS algorithms have been intensively investigated for standard (non-dy-

namical) EIV model. The parameter vector is time-independent within the context of the

TLS principle. However, the model parameter is non-static in majority of applications.

Kalman filter (KF) algorithm, which is a common algorithm to deal with dynamic model

and obtain time-dependent parameters, has been widely used. It was demonstrated in

numbers of studies and many different algorithms were investigated, such as the extended

KF (EKF) (Gelb 1974), the iterative KF (IKF) (Bell and Cathey 1993), Sage–Husa filter

(Sage and Husa 1969), the particle filter (Liu and Chen 1998), unscented KF (Julier et al.

1995), the continuous-discrete KF (Crassidis and Junkins 2011). From the viewpoints of

applications, the study of KF has involved in many problems, such as integrated navigation

(Han et al. 2015, 2017; Li et al. 2016), GPS positioning (Xu 2003), and target tracking

(Baheti 1986).

However, the main challenge faced by the above mentioned KF algorithms is that the

random errors of transition matrix of system equations and coefficient matrix of obser-

vation equations are ignored. In addition, not too many studies are found that focused on

this problem. Schaffrin and Iz (2008) established the dynamic errors-in-variables (DEIV)

model for the first time, and a total Kalman filter (TKF) solution within the framework of

TLS principle was proposed. Considering the existence of outliers, data snooping tech-

nique have been applied to the TKF algorithm by Schaffrin and Uzun (2011). Mahboub

et al. (2016) extended the TKF algorithm to a general weighted TKF (WTKF) algorithm

which considers a fully correlated dispersion matrix for all of random errors of observation

equations. We note that the random errors of transition matrix were not taken into account

in these three literatures. Recently, Mahboub et al. (2017a, b) consider the drawback of this

kind and present integrated TKF (ITKF) algorithm and constrained ITKF (CITKF) algo-

rithm to solve the DEIV model with or without constraints. In the majority of geodetic

problems, however, the elements of transition matrix and coefficient matrix are not directly

measured variables but are functions of those variables. Therefore, it is necessary to study

TKF algorithm under nonlinear DEIV model.

In this contribution, we proposed a generalized total Kalman filter (GTKF) algorithm

for nonlinear DEIV model. Although the system equations and observation equations of

the nonlinear DEIV model are structurally similar to the nonlinear Gauss–Helmert model
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(GHM) (Neitzel 2010; Chang 2015; Chang et al. 2017), the randomness of state vector is

considered in this model as well. Considering the nonlinear characteristics of the nonlinear

DEIV model, the derivations of the proposed algorithm fully takes advantage of the Gauss–

Newton method of nonlinear least squares, which makes the GTKF algorithm simple in

understanding and easy to implement. Then, a first order dispersion matrix of posterior

state vector is obtained by using the variance propagation law. Through numerical

examples, the performance of GTKF algorithm is illustrated in comparison with EKF

algorithm and IKF algorithm.

The remainder of this paper is organized as follows: in Sect. 2, the nonlinear DEIV

model and GTKF algorithm are formulated. In Sect. 3, the iterative scheme of GTKF

algorithm is presented. Simulation experiments are illustrated and analyzed in Sect. 4.

Finally in Sect. 5, conclusions are summarized.

2 Nonlinear dynamic errors-in-variables model and its generalized total
Kalman filter algorithm

2.1 Nonlinear dynamic errors-in-variables model

At an epoch k, both system equations and observation equations are now expressed as

nk ¼ ukðak � eak ; nk�1Þ þ uk; ð1Þ

yk ¼ f kðbk � ebk ; nkÞ þ eyk ; ð2Þ

where nk�1 and nk are the m 9 1 time dependent state vectors (unknowns) at epoch k - 1

and k, respectively, ak is the p 9 1 observation vector contaminated by the p 9 1 random

error vector eak , bk is the q 9 1 observation vector contaminated by the q 9 1 random

error vector ebk , yk is the n 9 1 vector of observations, eyk is the n 9 1 random error

vector, uk is the m 9 1 random system error vector.

The posterior estimate nþk�1 obtained from the final result at the previous epoch k - 1

fulfills the following equation

nþk�1 ¼ nk�1 � wk�1; ð3Þ

where the superscript ‘‘?’’ represents the a posterior value, wk�1 is the random error of

nþk�1.

Assuming that all error terms in Eqs. (1), (2), and (3) are normally distributed, the

stochastic model can be described as

wk�1

eak
uk
ek

2
664

3
775�

0
0
0
0

2
664

3
775 ;

Rk�1 0 0 0
0 Qak 0 0
0 0 hk 0
0 0 0 Qk

2
664

3
775

0
BB@

1
CCA; ð4Þ

where Rk�1, Qak
, and hk are the corresponding dispersion matrices of wk�1, eak , and uk, Qk

is a (n ? q) 9 (n ? q) fully correlated dispersion matrix of ek, where

ek ¼
eyk
ebk

� �
; ð5Þ
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Qk ¼
Qyk

Qykbk

Qbkyk
Qbk

� �
; ð6Þ

In Eqs. (5) and (6), Qbk
and Qyk

are the dispersion matrices of ebk and eyk , Qbkyk
and Qykbk

are the cross dispersion matrix between ebk and eyk .

We further assumed that wk�1, eak , uk, and ek are statistically independent of the current

and previous state and independent of each other.

2.2 Formulation of generalized total Kalman filter algorithm

The standard Kalman filter algorithm can be performed through two stages, namely, the

prediction and the correction. In the prediction stage, the main goal is to give the one-step

prediction of the state estimate using the system equations. In the correction stage, how-

ever, the observation equations are involved to improve the current (predicted) estimate.

We note that Eqs. (1) and (2) are essentially nonlinear models, the Gauss–Newton method

of nonlinear least squares is employed to derive the solution of both two stages.

Since we are going to use the system equations to give the one-step prediction of the

state vector n̂�k (the superscript ‘‘-’’ represents a one-step predicted value, the symbol ‘‘^’’

above a variable represents an estimate), the observation equations are not involved in the

prediction stage.

The Taylor series expansion is applied to the right-hand side of Eq. (1) at the

approximate values e0
ak

and nþk�1 of eak and nk�1. Thereby, Eq. (1) is now expressed as

nk ¼ ukðe0
ak
; nþk�1Þ þGkðnk�1 � nþk�1Þ þHkðeak � e0

ak
Þ þ uk; ð7Þ

where Gk ¼
oukðeak ;nk�1Þ

onT
k�1

���ðe0
ak
; nþk�1Þ, Hk ¼

oukðeak ;nk�1Þ
oeT

ak

���ðe0
ak
; nþk�1Þ.

Since the prior information of nk�1 is known, the adjustment for the prediction stage can

be viewed as the optimization problem with random parameters (Fang 2013; Schaffrin

2009). Therefore, the Lagrange objective function of the prediction stage can be con-

structed by combining Eqs. (3) and (7), namely,

UP ¼ wT
k�1R

�1
k�1wk�1 þ uT

k h
�1
k uk þ eT

ak
Q�1

ak
eak þ 2kT

1 ðwk � nk�1 þ nþk�1Þ
þ 2kT

2 ðnk � ukðe0
ak
; n0

k�1Þ �Gkðnk�1 � nþk�1Þ �Hkðeak � e0
ak
Þ � ukÞ;

ð8Þ

where k1 and k2 denote the Lagrange multipliers. The solution of the Lagrange objective

function can be achieved through the following Euler–Lagrange necessary conditions

1

2

oUP

owk�1

����ðŵ�
k�1; n̂k�1; n̂

�
k ; ê

�
ak
; û�k ; k̂1; k̂2Þ ¼ R�1

k�1ŵ
�
k�1 þ k̂1 ¼ 0; ð9aÞ

1

2

oUP

onk�1

����ðŵ�
k�1; n̂k�1; n̂

�
k ; ê

�
ak
; û�k ; k̂1; k̂2Þ ¼ �k̂1 � GT

k k̂2 ¼ 0; ð9bÞ

1

2

oUP

onk

����ðŵ�
k�1; n̂k�1; n̂

�
k ; ê

�
ak
; û�k ; k̂1; k̂2Þ ¼ k̂2 ¼ 0; ð9cÞ
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1

2

oUP

oeak

����ðŵ�
k�1; n̂k�1; n̂

�
k ; ê

�
ak
; û�k ; k̂1; k̂2Þ ¼ Q�1

ak
ê�ak �HT

k k̂2 ¼ 0; ð9dÞ

1

2

oUP

ouk

����ðŵ�
k�1; n̂k�1; n̂

�
k ; ê

�
ak
; û�k ; k̂1; k̂2Þ ¼ h�1

k û�k � k̂2 ¼ 0; ð9eÞ

1

2

oUP

ok1

����ðŵ�
k�1; n̂k�1; n̂

�
k ; ê

�
ak
; û�k ; k̂1; k̂2Þ ¼ ŵ�

k�1 � n̂k�1 þ nþk�1 ¼ 0; ð9fÞ

1

2

oUP

ok2

����ðŵ�
k�1; n̂k�1; n̂

�
k ; ê

�
ak
; û�k ; k̂1; k̂2Þ ¼ n̂�k � ukðe0

ak
; nþk�1Þ � Gkðn̂k�1 � nþk�1Þ

�Hkðê�ak � e0
ak
Þ � û�k ¼ 0

ð9gÞ

From Eqs. (9a) to (9f), we can readily obtain the following quantities of the one-step

predicted values, namely,

ŵ�
k�1 ¼ 0; k̂1 ¼ 0; k̂2 ¼ 0; ê�ak ¼ 0; û�k ¼ 0; ð10aÞ

n̂k�1 ¼ nþk�1: ð10bÞ

By inserting Eqs. (10a) and (10b) into Eq. (9g), the one-step prediction of state vector

nk is calculated as

n̂�k ¼ ukðe0
ak
; nþk�1Þ �Hke

0
ak
: ð11Þ

We note that the second term in the right-hand side of the above formula can be omitted,

since the approximate (initial) value e0
ak

of eak is usually set to zero for numeral calculation.

To achieve the dispersion matrix associated with n̂�k , we form the expression for the

prior error vector (Brown and Hwang, 2012)

e�nk ¼ nk � n̂�k

�ukðe0
ak
; nþk�1Þ þ GkDnk�1 þHkðeak � e0

ak
Þ þ uk � ðukðe0

ak
; nþk�1Þ �Hke

0
ak
Þ

¼GkDnk�1 þHkeak þ uk

¼Gkwk�1 þHkeak þ uk :

ð12Þ

By using the variance propagation law to Eq. (12), the dispersion matrix of the state

estimation error prior to the measurement update is as follow

Qn̂�k
¼ GkRk�1G

T
k þHkQakH

T
k þ hk: ð13Þ

Equations (11) and (13) provide the prior estimate for the correction stage. It should be

pointed out that the dispersion matrix of n̂�k is in fact a first order approximate matrix

which should be updated through iterative process (Amiri-Simkooei et al. 2016; Wang

et al. 2017).

In similar way, the right-hand members of Eq. (2) is expressed through Taylor series

expansion at (e0
bk

, n̂0
k)
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yk � eyk ¼ f kðe0
bk
; n̂0

kÞ þ Akðnk � n̂0
kÞ þ Bkðebk � e0

bk
Þ; ð14Þ

where Ak ¼
of kðebk ;nkÞ

onT
k

���ðe0
bk
; n̂0

kÞ, Bk ¼
of kðebk ;nkÞ

oeT
bk

����ðe0
bk
; n̂0

kÞ.

Regarding the one-step prediction n̂�k as the prior expectation of nk and taking Eq. (12)

into consideration, we can formulate the objective function of the correction stage, namely,

UC ¼ ðe�nk Þ
TQ�1

n̂�k
e�nk þ eT

kQ
�1
k ek þ 2KT

1 ðe�nk � nk þ n̂�k Þ

þ 2KT
2 ðyk � eyk � f kðe0

bk
; n̂0

kÞ � Akðnk � n̂0
kÞ � Bkðebk � e0

bk
ÞÞ ;

ð15Þ

where K1 and K2 denote the Lagrange multipliers.

The following necessary conditions must hold for the purpose of optimization,

1

2

oUC

oe�nk

�����ðê
�
nk
; n̂þk ; êk; K̂1; K̂2Þ ¼ Q�1

n̂�k
ê�nk þ K̂1 ¼ 0; ð16aÞ

1

2

oUC

onk

����ðê�nk ; n̂þk ; êk; K̂1; K̂2Þ ¼ �K̂1 � AT
k K̂2 ¼ 0; ð16bÞ

1

2

oUC

oek

����ðê�nk ; n̂þk ; êk; K̂1; K̂2Þ ¼ Q�1
k êk � K̂2

BT
k K̂2

� �
¼ 0; ð16cÞ

1

2

oUC

oK1

����ðê�nk ; n̂þk ; êk; K̂1; K̂2Þ ¼ ê�nk � n̂þk þ n̂�k ¼ 0; ð16dÞ

1

2

oUC

oK2

����ðê�nk ; n̂þk ; êk; K̂1; K̂2Þ ¼ yk � êyk � f kðe0
bk
; n̂0

kÞ

� Akðn̂þk � n̂0
kÞ � Bkðêbk � e0

bk
Þ ¼ 0

: ð16eÞ

From Eq. (16c), one obtains

êk ¼ Qk

In
BT
k

� �
K̂2: ð17Þ

By inserting Eq. (17) into Eq. (16e), we have

yk � f kðe0
bk
; n̂0

kÞ � Akðn̂þk � n̂0
kÞ þ Bke

0
bk
� In Bk½ �Qk

In
BT
k

� �
K̂2 ¼ 0: ð18Þ

Therefore, the Lagrange multiplier K̂2 can be calculated as below

K̂2 ¼ Q�1
gk
ðyk � f kðe0

bk
; n̂0

kÞ � Akðn̂þk � n̂0
kÞ þ Bke

0
bk
Þ; ð19Þ

with Qgk
¼ In Bk½ �Qk

In
BT
k

� �
¼ Qyk

þ BkQbkyk
þ Qykbk

BT
k þ BkQbk

BT
k .

Furthermore, K̂1 can be derived by inserting Eq. (19) into Eq. (16b), namely,

K̂1 ¼ �AT
kQ

�1
gk
ðyk � f kðe0

bk
; n̂0

kÞ � Akðn̂þk � n̂0
kÞ þ Bke

0
bk
Þ: ð20Þ
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By taking Eqs. (16a), (16d), and (20) into consideration, we have the following normal

equation

ðQ�1

n̂�k
þ AT

kQ
�1
gk
AkÞn̂þk ¼ Q�1

n̂�k
n̂�k þ AT

kQ
�1
gk
ðyk � f kðe0

bk
; n̂0

kÞ þ Akn̂
0
k þ Bke

0
bk
Þ: ð21Þ

Then the posterior estimate n̂þk can be calculated as

n̂þk ¼ ðQ�1

n̂�k
þ AT

kQ
�1
gk
AkÞ�1ðQ�1

n̂�k
n̂�k þ AT

kQ
�1
gk
ðyk � f kðe0

bk
; n̂0

kÞ þ Akn̂
0
k þ Bke

0
bk
ÞÞ: ð22Þ

By introducing the matrix inversion lemma (Henderson and Searle 1981)

ðV þ CZDÞ�1 ¼ V�1 � V�1CðZ�1 þ DV�1CÞ�1DV�1 ð23Þ

to Eq. (22), an alternative expression of n̂þk is presented as

n̂þk ¼ n̂�k þ Dn̂k; ð24Þ

where Dn̂k ¼ Qn̂�k
AT
k ðQgk

þ AkQn̂�k
AT
k Þ

�1ðyk � f kðe0
bk
; n̂0

kÞ � Akðn̂�k � n̂0
kÞ þ Bke

0
bk
Þ.

By substituting Eq. (19) into Eq. (17) and taking Eq. (6) into consideration, one can

further obtain the specific expressions of error vectors êyk , êbk as follows

êyk ¼ ðQyk
þ Qykbk

BT
k ÞQ�1

gk
ðyk � f kðe0

bk
; n̂0

kÞ � Akðn̂þk � n̂0
kÞ þ Bke

0
bk
Þ; ð25Þ

êbk ¼ ðQbkyk
þQbkB

T
k ÞQ�1

gk
ðyk � f kðe0

bk
; n̂0

kÞ � Akðn̂þk � n̂0
kÞ þ Bke

0
bk
Þ: ð26Þ

Applying the variance propagation law to Eq. (24), the precision estimator of n̂þk is

derived in first order approximation via

Qn̂þk
¼ Qn̂�k

� Qn̂�k
AT
k ðQgk

þ AkQn̂�k
AT
k Þ

�1AkQn̂�k
: ð27Þ

Substituting the posteriori estimate n̂þk into Eq. (12), we have

Gk Hk Im½ �
ŵk�1

êak
ûk

2
4

3
5� ðn̂þk � n̂�k Þ ¼ 0: ð28Þ

The formulation of Eq. (28) can be viewed as the conditional adjustment in least

squares theory (Zhou et al. 2014). Therefore, the estimation of error vectors ŵk�1, êak , and

ûk can be estimated as

ŵk�1

êak
ûk

2
4

3
5 ¼

Rk�1 0 0
0 Qak

0
0 0 hk

2
4

3
5

GT
k

HT
k

Im

2
4

3
5Q�1

n̂�k
ðn̂þk � n̂�k Þ: ð29Þ

To achieve the posterior state vector, the above procedure should be implemented

iteratively.
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3 Iterative scheme of generalized total Kalman filter algorithm

Proposed algorithm for solving generalized total Kalman filter of nonlinear DEIV model is

introduced as follows. Note that the superscript i denotes the iterative index.

1. Epoch k = 0: input prior estimate nþ0 and its dispersion matrix R0;

2. Epoch k = k ? 1: input ak, bk, yk, Qak
, hk, Qk;

3. Set iteration counter i = 0: êðiÞak ¼ 0, ê
ðiÞ
bk

¼ 0;

4. One-step prediction: n̂�k ¼ ukðêðiÞak ; n
þ
k�1Þ and set n̂

þ ð0Þ
k�1 ¼ nþk�1, n̂0

k ¼ n̂
þ ð0Þ
k ¼ n̂�k ;

5. Update G
ðiÞ
k , H

ðiÞ
k , A

ðiÞ
k , B

ðiÞ
k at approximate values (êðiÞak , n̂

þ ðiÞ
k�1 , ê

ðiÞ
bk

, n̂
þ ðiÞ
k );

6. Calculate:

Q
ðiÞ
n̂�k

¼ G
ðiÞ
k Rk�1ðGðiÞ

k ÞT þH
ðiÞ
k Qak

ðHðiÞ
k ÞT þ hk ; ð30aÞ

QðiÞ
gk

¼ Qyk
þ B

ðiÞ
k Qbkyk

þ Qykbk
ðBðiÞ

k ÞT þ B
ðiÞ
k Qbk

ðBðiÞ
k ÞT ; ð30bÞ

l
ðiÞ
k ¼ yk � f kðê

ðiÞ
bk
; n̂þ ðiÞ

k Þ � A
ðiÞ
k ðn̂�k � n̂þ ðiÞ

k Þ þ B
ðiÞ
k ê

ðiÞ
bk

; ð30cÞ

Dn̂ðiÞk ¼ Q
ðiÞ
n̂�k
ðAðiÞ

k ÞTðQðiÞ
gk

þ A
ðiÞ
k Q

ðiÞ
n̂�k
ðAðiÞ

k ÞTÞ�1l
ðiÞ
k ; ð30dÞ

n̂
þ ðiþ1Þ
k ¼ n̂�k þ Dn̂ðiÞk ; ð30eÞ

êðiþ1Þ
ak

¼ Qak
ðHðiÞ

k ÞTðQðiÞ
n̂�k
Þ�1ðn̂þ ðiþ1Þ

k � n̂�k Þ ; ð30fÞ

ŵ
ðiþ1Þ
k�1 ¼ Rk�1ðGðiÞ

k ÞTðQðiÞ
n̂�k
Þ�1ðn̂þ ðiþ1Þ

k � n̂�k Þ ; ð30gÞ

ê
ðiþ1Þ
bk

¼ ðQbkyk
þ Qbk

ðBðiÞ
k ÞTÞðQðiÞ

gk
Þ�1l

ðiÞ
k ; ð30hÞ

n̂þ ðiþ1Þ
k�1 ¼ nþk�1 þ ŵ

ðiþ1Þ
k�1 ; ð30iÞ

i ¼ iþ 1 ;

7. Repeat step 5–6 until Dn̂ðiÞk � Dn̂ði�1Þ
k

���
���\e (e is a predefined threshold);

8. Calculate: Qn̂þk
¼ Q

ðiÞ
n̂�k

� Q
ðiÞ
n̂�k
ðAðiÞ

k ÞTðQðiÞ
gk

þ A
ðiÞ
k Q

ðiÞ
n̂�k
ðAðiÞ

k ÞTÞ�1A
ðiÞ
k Q

ðiÞ
n̂�k

;
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9. For the next epoch: set nþk ¼ n̂
þ ðiÞ
k and Rk ¼ Qn̂þk

;

10. If k B t (t denotes the final epoch) return to step 2, else go to step 11;

11. End.

4 Numerical examples and analyses

Integrated navigation is one of the important implementation techniques for the application

of indoor and outdoor positioning. For a moving unit, integrated navigation tries to

determine its instantaneous position and attitude by using Kalman filter algorithm. In an

outdoor environment, GPS is undoubtedly the primary choice to be implemented due to the

global coverage. However, the GPS performance largely suffers from the constraint

environments such as urban canyons, multipath error, and large residual atmospheric error.

Therefore, it makes the carrier phase ambiguity resolution difficult to achieve and fur-

thermore affects the high-accuracy positioning solutions (Han et al. 2017). In regards to an

indoor environment, the GPS signal is blocked. Ultra-wideband (UWB) wireless radio

system, which operates in the frequency band 3.1–10.6 Hz, has been the focus of attention

especially in a closed environment owing to the capacity of strong anti-jamming perfor-

mance and immunity of multipath. Nevertheless, the drawback of GPS and UWB is that

they are vulnerable to the external environment, such as non-line of sight factor, which

makes the two systems cannot be expected to achieve 100% coverage sometimes (Li et al.

2016). Inertial Navigation System (INS) and other sensors, such as odometer and mag-

netometer, has the capability of autonomous navigation. The integration of these sensors

with GPS and/or UWB can enhance the reliability and availability of an integrated system

(Farrell 2008; Fan et al. 2017).

In this part, an integrated system for a mobile robot experiment in an indoor environ-

ment is introduced. Multiple sensors, such as UWB, odometer, and INS, are used to

provide range, velocity and angular rate information which contribute to the determination

of the final position and azimuth of the robot. Considering the moving unit is on a planar

surface, then the height of it is known to be h during the test, namely z = h. Therefore the

position variable can be deemed as two dimensional, and the azimuth angle is the only

attitude variable (Farrell 2008).

On the basis of the mobile robot experiment, the observation equations and the system

equations are essentially nonlinear DEIV model, thus the existing TKF algorithms cannot

be employed in this situation. A more reasonable result can be achieved by using the

algorithm proposed in this paper.

At an epoch k, the robot kinematics is described by (Farrell 2008; Aftatah et al. 2016)

xk ¼ xk�1 + ðvk � evk Þ � sinðwk�1 þ ðxk � exk
Þ � DtÞ � Dt þ ux ;

yk ¼ yk�1 + ðvk � evk Þ � cosðwk�1 þ ðxk � exk
Þ � DtÞ � Dt þ uy ;

wk ¼ wk�1 þ ðxk � exk
Þ � Dt þ uw ;

ð31Þ

where wk denotes the azimuth angle, Dt denotes the sampling interval, vk is the velocity

measured by odometer and its direction is the corresponding to the moving direction, evk is

the error of vk, xk denotes the angular rate measured by gyro during the sampling interval

Dt, exk
is the error of xk, the symbols ux, uy, and uw represent system errors based on

violation of the no-slip assumption.

Equation (31) has the following matrix form
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nk ¼ nk�1 þ
ðvk � evkÞ �M
xk � exk

� �
� Dt þ uk; ð32Þ

with nk ¼ xk yk wk½ �T, M ¼ sinðwk�1 þ ðxk � exk
Þ � DtÞ

cosðwk�1 þ ðxk � exk
Þ � DtÞ

� �
and uk ¼ ux uy uw½ �T.

At epoch k,

uk ¼ nk�1 þ
ðvk � evkÞ �M
xk � exk

� �
� Dt; ð33aÞ

ak ¼ vk xk½ �T; eak ¼ evk exk
½ �T: ð33bÞ

Therefore,

Gk ¼
ouk

onT
k�1

 !0

¼ ouk

oxk�1

� �0
ouk

oyk�1

� �0
ouk

owk�1

� �0
� �

; ð34Þ

with
ouk

oxk�1
¼

1

0

0

2
4
3
5,

ouk

oyk�1
¼

0

1

0

2
4
3
5,

ouk

owk�1
¼

ðvk�1 � evk�1
Þ � cosðwk�1 þ ðxk � exk

Þ � DtÞ
�ðvk�1 � evk�1

Þ � sinðwk�1 þ ðxk � exk
Þ � DtÞ

1

2
4

3
5�Dt.

Hk ¼
ouk

oeT
ak

 !0

¼ ouk

oevk

� �0
ouk

oexk

� �0
� �

; ð35Þ

where
ouk

oevk
¼ � M

0

� �
� Dt, ouk

oexk
¼

�ðvk � evkÞ � cosðwk�1 þ ðxk � exk
Þ � DtÞ � Dt

ðvk � evk Þ � sinðwk�1 þ ðxk � exk
Þ � DtÞ � Dt

�1

2
4

3
5 � Dt.

The observation equations are constructed with the range and azimuth angle information

obtained from ls base stations and magnetometer measurement, namely,

p1k

..

.

plk
~wk

2
6664

3
7775�

ep1k

..

.

eplk
ewk

2
6664

3
7775 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1

s � ex1
s
� xkÞ2 þ ðy1

s � ey1
s
� ykÞ2

q

..

.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxls � exls � xkÞ2 þ ðyls � eyls � ykÞ2

q

wk

2
666664

3
777775
; ð36Þ

where p1k���plk are the l range measurements from the base stations to the tested subject

position, ~wk is the azimuth angle obtained from magnetometer measurement, (xs
1, -

ys
1)���(xsl , ysl) are the positions of base stations which are corrupted by random errors.

Thus, at epoch k,

f k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1

s � ex1
s
� xkÞ2 þ ðy1

s � ey1
s
� ykÞ2

q

..

.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxls � exls � xkÞ2 þ ðyls � eyls � ykÞ2

q

wk

2
666664

3
777775
; ð37Þ

bk ¼ x1
s y1

s � � � xls yls
	 
T

; ebk ¼ ex1
s

ey1
s

� � � exls eyls
	 
T

: ð38Þ
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The matrices Ak and Bk can be derived by

Ak ¼
of k

onT
k

 !0

¼ of k
oxk

� �0
of k
oyk

� �0
of k
owk

� �0
� �

¼ Dkð Þ0 0l�1

01�2 1

� �
; ð39Þ

and Dk ¼ ðD1
kÞ

T � � � ðDi
kÞ

T � � � ðDl
kÞ

T
h iT

, Di
k ¼ Di1

k Di2
k

	 

, Di1

k ¼

�
xis�e

xis
�xkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxis�e
xis
�xkÞ2þðyis�e

yis
�ykÞ2

q , Di2
k ¼ �

yis�e
yis
�ykffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxis�e
xis
�xkÞ2þðyis�e

yis
�ykÞ2

q .

Bk ¼
of k
oeT

bk

 !0

¼ D0
kð Þ0

01�2l

� �
; ð40Þ

with D0
k ¼

D1
k 0 0

0 . .
.

0
0 0 Dl

k

2
64

3
75.

The superscripts ‘‘0’’ in Eqs. (34), (35), (39) and (40) represent that related expressions

are replaced by the corresponding approximate vectors (n0
k�1,e0

ak
) and (n0

k ,e0
bk

).

Assuming that all the error vectors mentioned above are normally distributed and are

generated with the given dispersion matrices.

At initial epoch, i.e. k = 0, the dispersion matrix of the random error vector of n0 is set

to R0 ¼ diag ð½1 cm2; 1 cm2; ð0:5�Þ2�Þ. For the system equations, the variance of evk and

exk
are set to r2

ev
¼ ð0:9 m=s)2 and r2

ex
¼ ð0:8�=sÞ2

, therefore, Qak
¼ diag ðr2

ev
; r2

ex
Þ; the

dispersion matrix of random system error vector uk is set to

hk ¼ diag ð½1 cm2; 1 cm2; ð0:1�Þ2�Þ. For the observation equations, the true positions of

base stations (xi
s, yi

s), where i = 1, 2, 3, 4, are given as: (0:5 m; 1 m), (0:5 m; 12 m),

(6 m; 12 m), and (6 m; 1 m); The true positions are biased by the random errors with the

accuracy of 3 cm; Range and azimuth measurements are biased by the random errors with

the accuracy of 6 cm and 0.5�, respectively.

In this experiment, we set the refresh rate of correction stage is 1 Hz while the pre-

diction stage is set to 100 Hz, which means that the sampling interval of Dt is 0.01 s. It is

thus clear that most of the time only predictions are computed, but corrections are made

only when range measurements and azimuth angles are obtained.

In the application of GTKF algorithm, four different trajectories are simulated in an

indoor environment (see Fig. 1). We note that the initial true state vector is given as

n0 ¼ 1 m 2 m 30�½ �T for the first trajectory (i.e. Fig. 1a), for the second and third

trajectories (i.e. Fig. 1b, c), we set n0 ¼ 1 m 2 m 0�½ �T, and for the last trajectory (i.e.

Fig. 1d), we set n0 ¼ 1 m 2 m 60�½ �T.

Since the algorithms proposed by Schaffrin and Iz (2008) and Mahboub et al. (2016)

can only deal with linear model situation, in this section, the following three schemes are

implemented and compared to show the effectiveness of the proposed GTKF algorithm.

Scheme 1 Extended Kalman filter (EKF) algorithm

Scheme 2 Iterative Kalman filter (IKF) algorithm (Bell and Cathey 1993);

Scheme 3 Generalized total Kalman filter (GTKF) algorithm presented in this paper
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The threshold for IKF and GTKF are both set to 10-6. The test results of the above three

schemes according to the four simulated trajectories are illustrated in Fig. 2. As can be

seen from (a–d) of Fig. 2, GTKF algorithm (Scheme 3) can achieve the best estimates,

which fits the true solution line better in contrast to extended Kalman filter (Scheme 1) and

iterative Kalman filter (Scheme 2) algorithms. It should be pointed out that Schemes 1 and

2 ignore the random observational errors in both system equations and observation

equations. Nevertheless, GTKF (Scheme 3) algorithm takes all of random errors into

consideration. We hence draw the conclusion that GTKF algorithm is more reasonable in

theory.

In addition, we run the four simulation experiments based on different trajectories for

10,000 times. The statistics on the absolute errors (i.e. the estimated position and attitude

variables minus their counterparts of true values) of each algorithm are presented in Fig. 3.

From (a–d) of Fig. 3, it is not difficult to find that the IKF algorithm has a slight

improvement in comparison with EKF algorithm in terms of statistical absolute errors.

Additionally, the absolute errors obtained by GTKF algorithm are generally smaller than

those obtained by the other two algorithms. For the proposed GTKF algorithm, the

x variable is increased by 14%, the y variable is increased by 29%, and the w variable is

increased by 66% in contrast to the IKF algorithm.

Here, we analyze the computational complexity in terms of the proposed GTKF algo-

rithm. The computational complexity of EKF and GTKF is compared. It should be pointed

out that the complexity mentioned here is only refers to the time complexity. Table 1 lists

the computational complexity of some basic equations of the proposed GTKF algorithm.

Fig. 1 The top view of the simulated trajectories
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The computational complexity of the one-step prediction [i.e. Eq. (11)] is the same for

both EKF and GTKF. Thus, for the sake of simplicity, the complexity of the one-step

prediction is not considered. The GTKF algorithm mainly involves Eqs. (30a)–(30i) and

Eq. (27). We assume that the average iteration number is T. Hence, according to Table 1,

the computational complexity of the GTKF algorithm is obtained as

SGTKF ¼ ð8T þ 2Þm3 þ ð4T þ 4Þn2mþ ð4T þ 6Þnm2 þ ðT � 3Þnm� ðT þ 1Þm2

þ 4Tm2pþ 4Tmp2 � Tmpþ 3Tmþ 8Tn2qþ 4Tnq2 þ 2Tnqþ Tn� Tp

� Tqþ ð2T þ 1ÞOðn3Þ þ 2TOðm3Þ :
ð41Þ

It is not hard to conclude that the computational complexity of EKF algorithm is

(Merwe and Wan 2001)

SEKF ¼ 6m3 þ 8n2mþ 10nm2 � 2nm� 2m2 þ nþ 2Oðn3Þ : ð42Þ

From Eqs. (41) and (42), we know that the EKF algorithm and the proposed GTKF

algorithm are essentially a linear time algorithm. The computational complexities of EKF

and GTKF will be proportional to O(m3Þ and/or O(n3Þ arithmetic operations. In addition,

the average iteration numbers of the GTKF algorithm is T = 6.3051 in this example.

Therefore, compared with the EKF algorithm, the complexity of the GTKF algorithm is

moderate, especially when considering the modern high-performance computers.

From the iterative scheme of Sect. 3, we found that once the error terms eak and ebk are

set to zero, GTKF algorithm will be degraded to IKF algorithm. When the DEIV model is

linear and the random errors of transition matrix are ignored, the proposed algorithm will
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Fig. 2 The position and attitude solutions of different algorithms: a–d are the solutions based on the
simulated trajectory of Fig. 1a–d, respectively
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be numerically equivalent to the WTKF algorithm. This can be illustrated by the following

underlying equations. For the sake of simplicity, the matrix and vector symbols in the

right-hand side of equations of the remaining paragraph are directly abstracted from

Mahboub et al. (2016). When the DEIV model appears in a linear form, the vector n̂�k
becomes n̂�k ¼ x̂i, the vector n0

k becomes n0
k ¼ x̂i þ l

^

i, the matrix Ak becomes

Ak ¼ Ai � E
^

Ai
, the symbol Bke

0
bk

becomes Bke
0
bk
¼ �E

^

Ai
ðx̂i þ l

^

iÞ, hence the vector
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Fig. 3 The mean values of absolute error of different algorithms from 10,000 simulations: a–d are the mean
values based on the simulated trajectory of Fig. 1a–d, respectively

Table 1 Computational complexities of some basic equations of GTKF

Equation Addition and multiplication Division and matrix inversion

(27) 4n2m ? 6 nm2 ? 2 m3 - 3 nm - m2
O(n3Þ

(30a) 4 m3 ? 2m2p ? 2mp2 - m2 - mp 0

(30b) 6n2q ? 2nq2 - nq 0

(30c) 2 nm ? 2nq ? n ? m 0

(30d) 4n2m ? 4 nm2 - nm - m O(n3Þ
(30e) m 0

(30f) 2m2p ? 2mp2 ? m - p O(m3Þ
(30g) 4 m3

O(m3Þ
(30h) 2n2q ? 2nq2 ? nq - q O(n3Þ
(30i) m 0
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function f kðe0
bk
; n̂0

kÞ is represented as f kðe0
bk
; n̂0

kÞ ¼ (Ai � E
^

Ai
Þðx̂i þ l

^

iÞ, and finally the

variance–covariance Qgk
becomes Qgk

¼ ðN � ððl^i þ x̂iÞT 	 ImÞMÞQðN � ððl^i þ x̂iÞT	
ImÞMÞT

. Moreover, if the random errors of transition matrix are omitted, Qn̂�k
will be

equivalent to Qn̂�k
¼ hi þUiR

0
i�1U

T
i . Taking all of these equations into consideration,

Eq. (24) is in fact numerically identical to the solution x
^

i ¼ x̂i þ l
^

i in Mahboub et al.

(2016). Furthermore, based on the similar analysis, GTKF algorithm is also numerically

identical to TKF algorithm by further discarding the correlation of coefficient matrix and

observation vector.

5 Conclusions

The main goal of this paper is to derive a universal Kalman filter, named generalized total

Kalman filter (GTKF) algorithm, for nonlinear dynamic errors-in-variables (DEIV) model.

The nonlinear DEIV model is presented which considers all of random errors in both

system equations and observation equations. In addition, a GTKF algorithm and its cor-

responding iterative scheme are derived and designed. The derivations of the GTKF

algorithm fully takes advantage of the Gauss–Newton method of nonlinear least squares,

which makes the GTKF algorithm simple in understanding and easy to implement. The

results of the indoor mobile robot experiments clearly show a significant improvement of

GTKF algorithm in the accuracy of the estimated state vectors, and hence validate the

effectiveness of the proposed algorithm. The existing TKF algorithm and WTKF algorithm

can be viewed as a special form of GTKF algorithm under different assumptions. There-

fore, the developed algorithm has a wider range of applications. However, the current study

assumes that random errors of the nonlinear DEIV model have the same variance com-

ponent and are not contaminated by gross errors. For future studies, the variance com-

ponent estimation and data-snooping and/or robust estimation methods will be adopted to

solve these problems.
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