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a b s t r a c t

We present a routing system that considers uncertainties, which are prevalent in any
real transport system. Given desired departure or arrival times and a utility function
representing the traveller’s preferences, our method computes not just a single path
through the network, but a more sophisticated and adaptive journey plan called routing
policy. For each stop and time instance, a policy specifies the list of services that the
passenger is recommended to take.

We show that the problem of finding an optimal policy is NP-hard. We also give a
polynomial-time algorithm for a relaxation of the problem when the number of recom-
mended services is limited at each stop and time. A computational case study for the
public transport network of Budapest shows that the obtained routing policies can lead
to substantial travel time savings compared to deterministic plans, and that considering
multiple service policies leads to an improvement compared to previous solutions using
single-service policies.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Public transport plays an essential role in reducing the traffic load, but disturbances due to congestion as well as planned
or unplanned events such as maintenance work or accidents can have strong effects on travel times of public transport
vehicles and its quality of service. As a result, public transport is often perceived as unreliable and therefore not always used
to its full potential.

Journey planning is a key process in public transport, where travellers get informed how to make the best use of a given
system for their individual travel needs. Nowadays, public transport providers routinely offer journey planning applications
either on theirwebsites or viamobile applications. For a given journey request, these applications usually offer one or several
routes, which are linear sequences of activities or legs that form the itinerary. A common trait of the underlying journey
planning algorithms is that they assume a deterministic environment. However, as changing traffic conditions can have
strong effects on travel times, vehicles in public transport often deviate from their schedule.

On the other hand, there are often multiple alternative services which a passenger can choose from at a given location.
Public transport providers have started to take advantage of such options and offer dynamic journey planning capabilities,
for example push services to alert travellers of broken connections and to deliver updated journey plans by re-planning the
journey anew from the current location and based on the current traffic conditions. Despite providing some adaptability,
linear journey plans are not able to capture the full amount of flexibility inherent in multi-service public transport systems,
because re-planning always occurs after some deviation from the assumed original conditions has occurred.
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To fully exploit the given flexibility and to pre-plan adaptive decisions accordingly, we propose to use the concept of a
routing policy instead of a linear journey plan. A routing policy is a state dependent routing advice at each location. A routing
advice may consist of more than one service and specifies exactly which service to take in each situation. The traveller
may define an arrival time dependent utility value at the destination, representing her preferences regarding arrival time
deviations and delays. The goal is to find a policy that maximizes the expected value of the utility that can be achieved by
following the policy.

Previous work. Finding shortest paths in a network with respect to given arc travel times is a central problem in
combinatorial optimization. The fundamental results of Dijkstra [9], Bellman [3], Ford [14] and Floyd [13] are well-known
examples of route planning algorithms. Due to their wide applicability, improved versions of these algorithms were
introduced, e.g. the A* algorithm by Hart et al. [19], which is the basis of many street map based route planners. A common
property of these algorithms is that they work with static arc travel times and provide a single route as a solution.

There have been various attempts to address uncertainty in routing problems. The travel time of an arc can be modelled
as a randomvariablewith a given probability distribution. In thismodel the effectiveness of a route can bemeasured inmany
ways: both the expected travel time and the reliability areworth to be considered.When time-independent distributions are
assumed, one can take the mean travel times and find the path with minimum expected travel time by Dijkstra’s algorithm.
Time-dependent distributions have also been considered. In [18], Hall showed that standard shortest path algorithms do
not necessarily find minimum travel time paths in this case. He introduced a ‘time-adaptive decision rule’ in which the next
node is defined for each step as a function of the arrival time to the node. However, mostly heuristics are known for these
problems, see for example [2,27].

Amore general framework is obtained if the quality of a route is measured in terms of a utility function. Loui [21] showed
that optimal solutions can be found for numerous special cases such as linear, exponential or quadratic utilities. In one of
the earliest works, Frank [15] defined a reliable optimal path as a path maximizing the probability of arriving before a given
time. This problem was later given the name Stochastic On-Time Arrival (SOTA) problem [10]. Murthy and Sarkar [22] gave
an exact solution to the SOTA problem in case the travel times follow normal distributions.

Besides looking for optimal paths, a lot of research has been done for finding optimal routing plans, mainly based
on models and techniques from stochastic dynamic programming. A recourse model for stochastic shortest paths was
considered in [24]. Fan et al. [10] applied stochastic dynamic programming to find on-line travel plans, where the next
arc is computed depending on the travel times on the path already visited. Fan and Nie [12] reformulated the SOTA problem
of [15] in terms of stochastic dynamic programming. Their standard successive approximation algorithm converges in acyclic
networks, but its running time is unbounded in the general case. In [11] they proposed a pseudo-polynomial discrete
approximation algorithm for the same problem, which converges in a finite numbers of steps. Hoy and Nikolova [20]
presented a dynamic programming algorithm to find approximately optimal arrival time dependent paths in directed acyclic
networks. Results on the SOTA problem were theoretically and numerically further improved by Samaranayake et al. [25].
The computational difficulties come from the fact that continuous-time convolution products have to be computed several
times, which is hard to solve analytically. Although discretizing the problem might help, the computational effort of the
convolution steps remains large; therefore methods speeding up this process are of interest, see e.g. [26].

There is a fundamental difference between individual transport and public transport routing problems. In the individual
transport case, due to the absence of transfers, the delay uncertainties on road segments simply add up. Hence, if a
distribution is assumed on the arcs that fulfils certain properties, the travel time distribution of a given path can easily be
computed. These results cannot be directly applied to the public transport case, where transfers are fundamental elements of
the system. Botea et al. [6] andDibbelt et al. [8] investigated public transport journey planning in the presence of uncertainty.
They proposed a model in which uncertainty appears as estimated times of arrival of transport vehicles and the duration of
actions such as walking. In [6] a heuristic solution is found by using Weighted AO* as a baseline search method, extended
with different speed-up enhancements. The solution is a probabilistic plan where branches correspond to single choices at
a given stop and have probabilities. The quality of the solution is measured in terms of robustness to uncertainty. In [8] a
dynamic programming algorithm is given to find an arrival time dependent single choice routing plan minimizing expected
arrival time.

If there are multiple services serving the same stop, there might be several good service choices depending on the actual
arrival times. Thus, even if wewere able to find a single choice with largest expected utility, the solutionmay be suboptimal.
The difficulty of the problem therefore lies in selecting a set of ‘alternatives’ for each node instead of a single path. This
framework was previously studied by Nonner [23] who proposed a method that computes a list of services for each stop
depending on the waiting time distributions, and the user is recommended to take the service from the list that arrives first.
As a respectivemodel, Nonner suggested to determine thewaiting time distributions as a function of the passing frequencies
of the services at a given node. The method is also able to use online data provided by monitoring devices, in order to re-
plan and update the lists of alternatives for each stop whenever new information concerning delays, position of a vehicle,
unexpected events, or level of congestion arrives. The notion of ‘routing alternatives’ of [23] was further developed by the
first author et al. [4]. They adopted the notion of ‘policies’ and provided current time dependent policies consisting of not
only a single service but a set of services, so that the resulting travelling advice gets more robust to uncertainty.

Contribution. The aimof the present paper is to examine arrival time dependent policieswithmultiple service choices for
monotone non-increasing utility functions. We formalize the problem and introduce the notion of arrival time dependent
policies in Section 2. In Section 3 we show that there always exists an optimal policy, although finding one is NP-hard.
However, if the number of services that a policy may contain is bounded by a constant k for each stop and time then an
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optimal policy can be found in polynomial-time; the algorithm is discussed in Section 4. Section 5 gives an evaluation of
arrival time dependent policies by comparing them to deterministic routing plans through extensive simulations.

2. Stochastic model

In the forthcoming discussion, we use a simplification of real public transport systems. For ease of representation, we
assume that the transport system consists of individual services between two nodes, that is, each service has only two stops:
its origin and its destination node. We also assume that the probability of two services arriving to the same stop at the same
time is negligible. Of course this simplified set-up gives a very rough model of real public transport systems, but enables
the usage of a much simpler, clearer notation and descriptions of the algorithms. It is important to note that the presented
methods and formulas can be adapted to the case when services have several stops and the services may arrive to the same
stop simultaneously. Accordingly, the computational case study of Section 5 uses a more complex and realistic model which
considers services with several stops, and services are allowed to arrive to a given stop at the same time.

The stochastic model for the public transport network that we consider is the following. The set of stops is represented
by a set of nodes V . We denote the set of services by S. The set of services leaving from node v is denoted by Sv and the
maximum number of services leaving from any node is denoted by ∆ = maxv∈V {|Sv|}. The origin and destination nodes of
service s ∈ S are denoted by os and ds, respectively. The transport network is then represented by a directed graph D = (V , A)
where vw ∈ A if and only if there is a service s ∈ S with os = v and ds = w. The indicator variable of some logical statement
is denoted by χ , for example, χ (x ∈ X) is 1 if x ∈ X and 0 otherwise.

We consider twokinds of probabilistic data: the probability distribution of arrival anddeparture times, and theprobability
distribution of travel times. To characterize these,we introduce the following randomvariables: given a service s, the random
variable of the departure time of s from os is denoted by Ds, the random variable of the arrival time of s to ds is denoted by As,
and the random variable of the travel time of s from os to ds is denoted by Ts. It is assumed that there exists a global constant
τ > 0 such that Ts ≥ τ for each s ∈ S. Clearly, we have

As = Ds + Ts.

For a given random variable X , we will denote the corresponding cumulative distribution function (CDF) by FX (t) and the
probability density function (PDF), if exists, by fX (t). The expected value of X is denoted by E[X], while the conditional expected
value of X given an event H is denoted by E[X |H]. If X is a discrete random variable then P[X ∈ Z] denotes the probability of
X having a value from Z .

Our goal is to give advice how passengers should best use the given stochastic transport network for their travel request
from a given origin to a given destination. We formalize such a travel advice as a routing policy. Informally, a routing policy
assigns a set of services to each stop and time. The set of recommended services depends on the passenger’s arrival time to
the stop, and will not change during the stay at the given stop. More precisely, a policy is a function P : V × R → 2S such
that Pv(t) := P(v, t) ⊆ Sv . Let V ′

⊆ V and assume that for each v ∈ V ′ a time tv ∈ R is given. If Pv(t) is only defined for
t ≥ tv where tv ∈ R for all v ∈ V , then it is called a partial policy.

The interpretation of a policy is the following. If a passenger arrives to stop v at time t0 and a service s ∈ Pv(t0) departs
at time t > t0 from stop v, then the passenger is recommended to take the service at time t . Ties among services leaving
simultaneously is broken uniformly at random. The set of possible policies is denoted byP.

We will characterize the quality of a policy by the utility it provides to the passenger. A utility function is a function
u : R → R which represents the user’s preference according to the time of arrival to the destination node. We assume the
existence of a certain ‘deadline’ (tend) after which the user’s utility is −∞.

Assume that a destination node vd, a utility function u : R → R and a policy P are given. For any stop v ∈ V and time
t ∈ R, the utility induced by P at stop v and time t is denoted by UP

v (t). That is, UP
v (t) denotes our expected utility supposing

we arrive to stop v at time t and we continue our journey according to the policy P . The conditional utility induced by P and
service s at stop v and time t is denoted by UP

v (t | s) and is defined as our expected utility if we take service s at stop v and
time t . When considering continuous time, the induced utility can be computed as

UP
v (t) =

∫
∞

t

∑
s∈Pv (t)

⎛⎜⎜⎝UP
v (t ′|s)fDs (t

′)
∏

s′∈Pv (t)
s′ ̸=s

(
1 −

∫ t ′

t
fDs′

(t ′′)dt ′′
)⎞⎟⎟⎠ dt ′,

where

UP
v (t|s) =

∫
∞

τ

UP
ds (t + t ′)fTs (t

′) dt ′.

To circumvent the computational difficulties involved when handling continuous functions, we restrict the problem to a
finite time horizon and discretize the planning horizon into small intervals of a few seconds. We can therefore assume that
every event happens at time t ∈ [T ] = {0, 1, . . . , T }, where T corresponds to the deadline. Consequently, all distributions
are discrete on the set {0, 1, . . . , T }. In the discrete version, a policy is a function P : V × [T ] → 2S . The travel time of a
service is strictly positive and, as the time is discretized, at least as large as one time interval.
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As we assumed that services do not arrive simultaneously, in the discrete case we have

UP
v (t) =

T∑
t ′=t

∑
s∈Pv (t)

⎛⎜⎜⎝UP
v (t ′|s)P[Ds = t ′]

∏
s′∈Pv (t)

s′ ̸=s

⎛⎝1 −

t ′−1∑
t ′′=t

P[Ds′ = t ′′]

⎞⎠
⎞⎟⎟⎠ ,

and

UP
v (t|r) =

T−t∑
t ′=1

UP
dr (t + t ′)P[Tr = t ′].

Before discussing how to find policies with high expected utility, let us call attention to a peculiar feature of arrival
time dependent travel plans. By definition, such a policy solely depends on the arrival time to a given stop and so does not
condition on the time until the deadline. However, there might be situations when it is worth reconsidering and changing
the set of suggested services according to the amount of time spent at the given stop. Such routing policies, called current
time dependent policies, are also of interest and are considered in [5]. A significant difference between the two approaches is
that optimality can be defined for arrival time dependent policies (see Section 3), while an analogue concept does not work
for the current time dependent case as an optimal policy may not exist at all. The results of the present paper, including the
existence of an optimal policy, are meant when the space of policies is restricted to the arrival time dependent ones.

3. Optimal policies

A policy is called optimal if UP
v (t) ≥ UP ′

v (t) for each P ′
∈ P, v ∈ V and t ∈ [T ]. The notion of an optimal policy is

demonstrated by the following example.

Example 1. Assume that the network consists of two nodes v and w and three services s1, s2 and s3 going form v to w.
The services depart from v as follows: s1 departs in intervals I1 and I2 with probability 1

2 and induces utility 3, s2 departs in
interval I3 with probability 1 and induces utility 2, and s3 departs in intervals I2 and I3 with probability 1

2 and induces utility
1. Not arriving to stop w at all has utility 0.

In this very simple case it is possible to guess the optimal policy. Note that it makes sense to include a service in the set of
recommended ones for a given interval even if the service in question departs with probability 0 as a policy do not change
after the passenger’s arrival to the stop.

In I3, the optimal policy consists of the single service s2 as it arrives with probability 1 and is clearly better than s3. For
interval I2, the optimal policy contains s1 and s2. Indeed, taking only s1 would not be enough as it may have already left in I1.
Finally, for I1 the optimal policy consists of the single service s1 as it arrives in I1 or I2 with probability 1 and has the highest
induced utility.

By definition, the set of recommended services depends only on the arrival time to a given stop. That is, the induced
utility does not depend on the policy at the same stop in later time instances. This suggests that an optimal policy may
always exist. Beside showing that this impression is indeed true, the proof of the next theorem also provides a recurrence
relation between the optimal policies at different times.

Theorem 2. There always exists an optimal policy.

Proof. Recall that the length of a time interval is a strictly positive lower bound for the travel times. Let t ∈ [T ] and assume
that P is a partial policy which is already defined for all t ′ > t optimally, that is, UP

v (t ′) ≥ UP ′

v (t ′) for each P ′
∈ P, v ∈ V

and t ′ > t . Take an arbitrary stop v ∈ V and a subset X ⊆ Sv of services at v. We define a new partial policy PX as follows:

PX
w(t

′) =

{
Pw(t ′) if t ′ > t,
X if t ′ = t and w = v.

Let Pv(t) = P
Xopt
v (t) for Xopt = argmaxX⊆Sv {U

PX
v (t)}. By applying the same procedure to all v ∈ V , we get an extension of the

original policy which is optimal for t ′ ≥ t .
The optimal policy is always empty at the destination node. As the utility function is −∞ after a certain deadline T , the

induced utility is −∞ in time T for each node v different from the destination node and for each possible policy at v. Hence
an optimal policy can be determined recursively by going back in time as described above. □

We note that in order to determine an optimal policy Pv(t) for a given node v and time t , we had to compute UPX
v (t) for

every subset X of Sv , hence the proof of Theorem 2 does not provide a polynomial-time algorithm. In fact we will show that
finding an optimal policy is NP-hard. A similar result for the recourse model for stochastic shortest paths and least expected
arrival time utility was given by [24]. We prove NP-hardness for the continuous time case by extending the approach of
Nonner [23].
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Theorem 3. Given a monotone non-increasing utility function at the destination node, the problem of determining an optimal
policy is NP-hard.

Proof. We prove via reduction from ExactCoverBy3Sets (X3C): given a 3-uniform hypergraph H = (V , E), decide if there
exists a subset E ′

⊂ E of hyperedges such that each node v ∈ V is contained in exactly one of them. Such a subset E ′ is called
a perfect matching of the hypergraph. It is known that finding a perfect matching in 3-uniform hypergraphs is NP-hard
[16, SP2].

Given an instance H = (V , E) of X3C with |V | = n and |E| = m, we define a network and a utility function such that an
optimal policy in the network corresponds to a perfect matching of H . Let V = {v1, . . . , vn} and E = {e1, . . . , em}. We note
that n is necessarily a multiple of 3.

Consider a network consisting of 2 stops v, w and m + 1 services going from v to w, denoted by s0, s1, . . . , sm. Let
0 < p, q < 1 be real numbers satisfying 0 < p + q < 1. The exact values of p and q will be defined later on. In time
interval [0, 1), all si arrive uniformly at random with probability 0 < p < 1. In time interval [1, 2), all si with i ≥ 1 arrive
uniformly at random with probability 0 < q < 1. Finally, in time interval [2, 3], services s1, . . . , sm arrive according to the
construction of [23] where arriving probabilities are multiplied by 0 < 1 − p − q < 1. For sake of completeness, we give a
description of Nonner’s construction.

Let r = 1/n and define ti := 1/(1 − r)⌊
i
2 ⌋

n
3 for i = 1, . . . , 2n − 1. We set t̄1 := 0 and t̄i :=

∑i−1
j=1tj for i = 2, . . . , 2n. For

vi ∈ V and ej ∈ E , define

p2i−1
j :=

{
r if vi ∈ ej,
0 otherwise,

and

p2ij :=

{
0 if vi ∈ ej,
r otherwise.

For each hyperedge ej ∈ E , we define a random variable ξj with P[ξj = t̄i] := pij for i = 1, . . . , 2n. These random variables
are well-defined as

∑2n
i=1p

i
j = 1. Now we are in the position to define the arrival times in interval [2, 3]: service sj arrives at

time 2 + t̄i with probability (1 − p − q)pij for j = 1, . . . ,m and i = 1, . . . , 2n.
We note that each service arrives in time interval [0, 3]with probability 1 except s0 which either arrives in [0, 1) or do not

arrive at all. Nowwe turn to the definition of the travel times and the utility function. The travel times are deterministic, and
that taking s0 in [0, 1) has utility 1, taking si in [0, 1) has utility −1, taking si in [1, 2) has utility −M ≤ −1 for i = 1, . . . ,m,
and taking any of the si’s at time t in time interval [2, 3] has utility −M − t .

Let Popt be an optimal policy. Then Popt
v (0) certainly contains s0 as it is the only service with positive utility. However,

Popt
v (0) cannot consist of the single service s0 as otherwise the induced utility would be −∞ due to the fact that s0 may not

arrive at all. The following claim was proved in [23].

Claim 4. Let P be a policy maximizing UP
v (2) under the restriction |Pv(2)| ≤ n/3. Then Pv(2) corresponds to a solution of X3C.

As services s1, . . . , sn play exactly the same role in time interval [0, 2), the claim implies the following: if we could choose
the parametersM , p and q in such a way that Popt

v (0) consists of exactly n/3+ 1 services, then Popt
v (0) in fact contains s0 and

a subset of {s1, . . . , sm} corresponding to a perfect matching of H , showing that our problem is also hard.
For any integer 1 ≤ k ≤ m, let

Tk = min
σ⊆{s1,...,sm}

|σ |=k

E[min
i∈σ

Dsi |Dsi ≥ 2 ∀i = 1, . . . ,m].

Assume for a moment that Popt
v (0) consists of k + 1 services. Recall that one of these services is s0. Then the induced utility

UPopt
v (0) can be computed as follows:

UPopt

v (0) =
1−k
1+k (1 − (1 − p)k+1)

− M(1 − p)((1 − p)k − (1 − p − q)k) (1)

− (M + Tk)(1 − p)(1 − p − q)k.

That is, in order to ensure thatPopt
v (0) consists of exactly n/3+1 services, it suffices to findM , p and q such that themaximum

of (1) as a function of k is attained at k =
n
3 . As each si (i = 1, . . . ,m) arrives in time interval [0, 3] with probability 1, Tk ≤ 3

for every 1 ≤ k ≤ m. Fix p = q =
1−ε
2 . For a sufficiently small ε, we have

UPopt

v (0) ≈
1−k
1+k (1 −

1
2k+1 ) − M 1

2k+1 . (2)

Let f (k) :=
2k+2

+k2 ln 2−ln 2−2
k2 ln 2+2k ln 2+ln 2

. The derivative of (2) is zero forM = f (k). That is, forM = f (n/3) the maximum of (2) – and so
the maximum of (1)– is attained in k = n/3 as required, thus concluding the proof. □
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Fig. 1. Determining an optimal k-policy.

4. Determining an optimal k-policy

By Theorem 3, finding an optimal policy is NP-hard. Note that the proof of Theorem 2 does not provide an efficient
algorithm for finding an optimal policy as for a fixed node v and time t it requires to compute UPX

v (t) for every subset X
of Sv .

However, if the number of services that a policymay contain for each node–time pair is bounded by a constant k, then the
problem becomes tractable. We call a policy a k-policy if |Pv(t)| ≤ k for each v ∈ V , t ∈ [T ]. The set of k-policies is denoted
by Pk. A k-policy P is called optimal if it is optimal among Pk, that is, UP

v (t) ≥ UP ′

v (t) for each P ′
∈ Pk, v ∈ V and t ∈ R.

Let Pk
v (t) denote the optimal k-policy at stop v ∈ V and time t ∈ [T ]. The proof of Theorem 2 sheds light on the following

recurrence relation between the optimal policy values:

Pk
v (t) = argmax

X⊆Sv
|X |≤k

{UPX

v (t)} (3)

where

PX
w(t

′) =

{
Pk

v (t
′) if t ′ > t,

X if t ′ = t and w = v.

Hence we get the following recurrence relation between the optimal utility function values:

UPk

v (t) = max
X⊆Sv
|X |≤k

T∑
t ′=t

∑
s∈X

⎛⎜⎝UPk

v (t ′|s)P[Ds = t ′]
∏
s′∈X
s′ ̸=s

⎛⎝1 −

t ′−1∑
t ′′=t

P[Ds′ = t ′′]

⎞⎠
⎞⎟⎠ .

The above recurrence relations make the usage of a dynamic programming approach possible. Starting from the end of
the time horizon, one can go back step-by-step in time to determine an optimal k-policy, thus giving a polynomial-time
dynamic programming algorithm, called Optimal-k-Policy, for determining an optimal k-policy.

Initially, set Pv(t) = ∅ for each v ∈ V and t ∈ [T ], UP
v (t) = −∞ for v ̸= vd and UP

vd
(t) = u(t), where u(t) is the utility

function given by the passenger. At a general stage of the algorithm Pv(t ′) is already defined for each v ∈ V and t ′ > t , and
(3) is used to determining the policy for every stop v ∈ V in time t , see Fig. 1.

Recall that the maximum number of services using the same stop was denoted by ∆. A very rough estimation shows that
the running time of the algorithm is O(|V | · T 3

· ∆k
· k2). If k is constant, this means to have a polynomial-time algorithm for

computing an optimal policy.

5. Computational case study

In this section we compare the proposed routing method with the deterministic algorithm. The computations are based
on theGeneral Transit Feed Specification (GTFS) data of the Budapest public transport Network [7].GTFS is a common format
for public transport schedules and provides for trip planning functionality, see [17]. The algorithms are implemented in C++
with heavy use of the open source LEMON graph optimization library (see [1]). The code is platform independent, the actual
tests were performed on a Linux based server with a 3.50GHz Intel Core i7-5930K CPU and 32GB RAM.
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5.1. Extending the model

For the description and analysis of the algorithm above, we have assumed a simplified model where the services were
given as simple trips between two nodes without intermediate stops. For the computational case study, we use a more
complex and realistic model which, according to the GTFS data format, considers services with several trips (following each
other in a prescribed order). A service has several trips consisting of several hops, hence the definition of policy must be
modified accordingly. In this case, a policy is a function P : V × [T ] → 2S×V such that if (s, w) ∈ Pv(t) then

• s ∈ Sv ,
• w ̸= v is a stop of service swhich is after v,
• (s, w′) ̸∈ Pv(t) for each stop w′

̸= w of service s.

In the extended model, (s, w) ∈ Pv(t0) means the following: if a passenger arrives to stop v at time t0 then she is suggested
to take service swhenever it arrives and to get off from it at stop w.

5.2. Data preprocessing and generation of the stochastic model

In order to prepare the necessary input data, the raw GTFS data is preprocessed in several steps. In a first step, irrelevant
services are discarded so that only services working on the date of travel are considered. In a second step the list of services
is filtered according to the given passenger preferences, only keeping those services that theoretically may play role in the
journey. Simultaneously, a deterministic shortest path is computed between the start and the destination node as a reference
solution.

Next, a probabilistic model is set up for determining arrival, departure and travel time distributions. The model may be
based on the assumption of a simplified distribution (e.g., Gammadistribution for travel times), but can also take into account
GTFS real-time data and statistics obtained from real-life measurements.

5.3. Policy generation

As a starting step, an optimal deterministic solution is computed which has the highest utility in the time period defined
by the user and has the latest departure time from the starting node. This is later used as a reference solution by the method
to find a proper policy. Then, a dynamic programming procedure is used to determine the induced utility of being at stop v

at time t for each node and time. The length of a time interval was set to 20 s.
In the main part of the procedure, a queue of ‘active’ nodes is maintained, which is initialized with the destination node

vd. At the beginning, only vd is marked as active. In the following iterations, assume that policies and induced utilities are
computed for all v ∈ V and t ′ > t . The top node v is removed from the queue, and for each service s ∈ Sv , time t ∈ [T ] and
stop w preceding v on the route of s we update UP

w (t), UP
w (t | s) according to Optimal-k-Policy, and also change Pw(t) if

necessary. If an improvement is found for some triple (s, t, w), then stop w is pushed to the end of the queue and is marked
as ‘active’. This Bellman–Ford-like algorithm computes the induced utilities for each stop and each time. The algorithm
terminates when no improvement is found or an upper bound on the number of iterations is reached.

As the result is not a single route, an important question is how to represent the obtained policy. First of all, it is
unnecessary to show the policy at each node, as this is only interesting for the starting node and nodes that are possibly
visited during the journey. Moreover, to decrease the amount of data written out, Pv(t) is only displayed if it is not identical
toPv(t−1). The output of themodel – which is a policy for each node – is further post-processed as the presence ofmultiple
choices may result in complicated route plans. For example in case of several equally good stops it may be unclear where to
take alight from a given service. The deterministic solution computed earlier is used to break ties based on latest departure
times.

5.4. Test instance and results

The above procedure was applied to the GTFS data of the Budapest public transport network. This timetable consists
of 5290 stops and 135.959 services. It is not straightforward how to measure the efficiency of a policy in a stochastic
environment. As the introduction of policies versus simple routes was motivated by the lack of reliability of deterministic
travel plans, we measure the performance of a policy by comparing it to the usual deterministic approach. We chose an
arbitrary stop v as a destination node from the map of Budapest uniformly at random, and determined the policy for each
stop different from v for a given date and time. We considered the SOTA (Stochastic On Time Arrival) problem in all cases,
that is, the utility function at v was defined to be 1 up to a certain deadline tend until which the passenger wishes to arrive to
the destination node v, and 0 afterwards. The policies thus obtained were tested by running 500 simulations for each node.

In each instance of the simulation, the departure and travel times were assumed to follow normal distributions with
expected value equal to the deterministic departure and travel times of the corresponding service, respectively. For each
service, the deviations of its travel time distributions were gradually increased while following the route of the service in
order to model that uncertainties between stops add up. Deviations were also changed according to time of day (light or
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Fig. 2. Probability of arriving on time vs. departure time.

heavy traffic) and type of the service (bus, tram, subway). This method is fast and is based on reasonable assumptions on the
nature of traffic, but the proposed method could be also used with historical data.

For each node w different from v and each time t ∈ [T ], we checked whether a passenger leaving from node w at time
t and following either the deterministic solution or the policy succeeds to get to v in time. In both cases, for each node w
we computed the latest time instance when a user has to leave from w in order to arrive to v in time with probability at
least 90%. These values can be compared to each other for the two solutions, hence giving a benchmark for evaluating their
effectiveness. In addition, it enables us to introduce the notion of safety margin which tells us how much earlier we should
start compared to the latest deterministic departure so that we achieve a 90% probability of arriving in time.

Fig. 2 provides illustrative examples of the achievable probability of arriving on time for different departure times from a
fixed stop to a destination node. The results show that the usage of policies significantly increases the probability of arriving
on time, which may be particularly useful at late departure times.

Fig. 3 compares the deterministic solution and the policy for a given destination node v. Each dot on the scatter plot
represents a starting node w different from v. The x coordinate of a dot is the time when a passenger has to leave from w
in order to arrive to v in time with probability at least 90% when following the route of the policy, while its y coordinate is
defined similarly based on the deterministic solution. That is, dots above the line y = x corresponds to stops from where
one may leave later when following the induced policy instead of the deterministic route.

Fig. 4 shows the average safetymargins as a function of the deterministic travel time. The average is taken fromcomputing
the policies from all possible start positions to 4 representative destinations chosen at different parts of the city.

As we are considering k-policies, the maximum number k of services that the policy may contain for a given time is a
parameter that has a significant effect on the efficiency of the solution. Although larger values of k result in better policies, it
also leads to more complicated travel plans, which might discourage passengers from using the system in real applications.
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Fig. 3. Policy vs. deterministic route.

Fig. 4. Average safety margin vs. deterministic travel time.

However, our simulations suggest that moderate values of k already lead to substantial improvements while increasing k
beyond 3 leads to negligible marginal improvement. Thus, for the considered public transport system of Budapest, choosing
a value of k = 3 seems to be a reasonable compromise between solution quality and policy complexity, and we expect
similar settings to perform well in other public transport networks as well.

6. Conclusion

Wepresented a public transport journey planning approach to copewith the typically non-deterministic public transport
environment. The overall goal was to find travel policies that maximize expected utility.

At each location, a policy can encode multiple service choices, from which the traveller should take depending on which
onewill be arriving first. Instead of deterministic travel and arrival/departure times ourmodel uses probability distributions,
which result in a more robust, and on average more effective journey plan. Our approach can handle any passenger-defined
monotone non-increasing utility functions, which allow to encode sophisticated passenger preferences beyond just ‘arriving
in time’ or ‘as fast as possible’.
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