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Abstract GOCE Level 2 products of corrected gravity gradients in Local North-Oriented

Frame were used in this study. We analyzed four accurately measured elements of the

gravity tensor, which were transformed to disturbing gravitational gradients. The investi-

gation was carried out in the restricted region of dimension 20� 9 20� covering the south

part of Europe. We applied several types of analytical covariance functions in a local

approximation, which have the best fit to the empirical covariances calculated from the

disturbing gravitational gradients in particular sub-regions. At first, we have investigated

four different types of the 1-dimensional covariance function. Obtained results show that

the Gaussian covariance function approximates the empirical covariances the best from

tested functions. Moreover, a time stability of calculated parameters of the covariance

functions was studied by assuming GOCE data from different time periods. In the second

experiment, we have compared two types of the 2-dimensional covariance function, which

also enables a spatial stochastic modeling. The second study revealed that the least-squares

collocation using the 2-dimensional local covariance function can produce the local grid of

GOCE disturbing gravitational gradients directly from GOCE Level 2 products right below

GOCE orbit, which in general fits well with the recent Earth’s global gravity field models

and might have some advantages. Such local grids can be useful for specific tasks, e.g.

mutual comparing of GOCE data collected during particular time periods.
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1 Introduction

The quantities of the Earth’s gravity field are specified by the spatial correlation, which is

widely used in applications of physical geodesy and geophysics. In general, a correlation

indicates some form of similarity relation between two observables with tendency to have

about same size and sign. If we consider the correlation as a function of position or time,

we obtain a covariance function, which provides the basis for stochastic methods of

regional and global gravity field modelling (Heiskanen and Moritz 1967). The most used

least-squares prediction method in physical geodesy is called least-squares collocation,

where the covariance function is a crucial ingredient. It offers a powerful tool for gravity

field prediction, filtering, and parameter estimation (Tscherning 2010) and is also able to

combine different kinds of terrestrial and satellite data. Produced local (regional) and

global grids may be then used for other research, e.g. estimation of spherical harmonic

coefficients derived by numerical integration.

The covariance functions can take a local and a global form (Moritz 1980). For the

global covariance function, the data have to be distributed over the whole Earth to describe

the stochastic properties of observables throughout the whole spectral range. Evaluation of

the global covariance function requires more computational effort and large sets of data.

Various authors have been dealing with the construction and application of global

covariance function, e.g. Tscherning (1976), Rapp (1978), Pail et al. (2011) and Gatti et al.

(2013). For some purposes, the local covariance function is more suitable rather than the

global one. We are restricted only over a limited area instead of over the whole Earth. This

approach has several advantages like handling with reduced amount of interpreted data,

simpler practical determination and ensuring less computational effort. It allows carrying

out more detailed studies, e.g. the interpolation problem and filtering. Local grids produced

by suggested method may be more flexible than several existing global grids, e.g. Bouman

et al. (2016), in terms of time span of used data or altitude. However, a true shape of the

covariance function is rarely known and it depends on the region of calculation. Therefore,

it must be derived directly from measured data (Jekeli 2010). The local grid is also

characterized by the limited spectral resolution than the global one.

The aim of our contribution is to investigate the statistical behaviour of particular

components of the disturbing gravitational tensor derived from GOCE (Gravity field and

steady-state Ocean Circulation Explorer) on-orbit data. It was the first satellite gravity

gradiometry (SGG) mission in the history, which was developed and led by the European

Space Agency (ESA). GOCE satellite was launched on 17 March 2009 from the Plesetsk

Cosmodrome in Russia. The mission finished after 4 years and 8 months on 11 November

2013, when a design life of the satellite was exceeded of about 20 months. A primary

objective of GOCE was to improve a global model of the Earth’s gravity field and a geoid,

both in spatial detail and accuracy, especially over the ocean (ESA 1999). Nowadays,

GOCE still brings a number of applications in oceanography, geodesy, solid earth physics

and many other disciplines. An extended life time and an extremely low orbit of the

satellite resulted in very interesting and unique data. The spacecraft was equipped by the

electrostatic gravity gradiometer with a set of three pairs of orthogonally mounted 3-axis

accelerometers. It allowed to measure gravity gradients in all directions. However, only

four components (VXX , VYY , VZZ , and VXZ) of the tensor were measured with ultra-high

precision due to the arrangement of accelerometers. A position of the satellite was con-

trolled using the on-board Global Positioning System receiver by the Satellite-to-Satellite

Tracking principle. The orientation of the satellite with regard to inertial reference frame

was monitored by the star-trackers. Three levels of data products are available. Level 0
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includes raw data gathered by GOCE satellite. Level 1b products consist of calibrated

gravity gradients measured in the gradiometer reference frame including the orbit data.

These were further processed by the European GOCE Gravity Consortium (E-GGC) to

Level 2 products of corrected gravity gradients in different reference frames. More details

about GOCE mission and provided products can be found in Gruber et al. (2010).

In this study, we have focused only on local covariance functions in the planar

approximation. By the term ‘covariance model’ we will understand the analytical

covariance function together with a small numbers of corresponding parameters. We will

test different types of planar covariance models used in physical geodesy and examine both

the spatial and the time dependencies of their essential parameters. Proving the usefulness

of the local covariance function, we will apply the least-squares collocation method for the

interpolation of the largest component of disturbing gravitational tensor to a regular grid

and compare it with the recent Earth’s global gravity field models: TIM R5 (Brockmann

et al. 2014), EIGEN-6C4 (Förste et al. 2014), and EGM2008 (Pavlis et al. 2012).

2 Local covariance functions

We have restricted our study to local covariance functions described in Moritz (1980),

which are well-known in physical geodesy. Let us suppose, for simplicity, that GOCE

satellite is moving in the circular orbit above the reference sphere R, which lies on the

spherical surface with the radius R1 (see Fig. 1). Then, a local structure of the covariance

function assumes a planar approximation, where the spherical surface is replaced by its

tangent plane around the position of the satellite P. If there are all positions of measured

data points situated on the tangent plane, we can estimate the 1-dimensional covariance

model. In this case, a stochastic dependence in the vertical direction, if exists, is neglected.

Such homogenous and isotropic covariance function depends only on planar distances q
between data points that are calculated from the spherical distances w using a simple

formula:

q ¼ R1 tanw � R1w: ð1Þ

Behavior of the local covariance function can be characterized by three essential

parameters (C0, n, v). A variance C0 corresponds to the covariance for the zero planar

distance q. A correlation length n represents the planar distance q corresponding to one

half of the variance C0. The last dimensionless parameter v is related to the curvature of the

Fig. 1 Planar approximation of
the spherical surface with the
radius R1
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covariance function at the distance q ¼ 0 (Moritz 1980). We have tested four different

types of the 1-dimensional positive definite functions shown in Table 1.

According to Moritz (1980), some 1-dimensional covariance functions can be extended

to outer space by simple modification, where the altitude of data points is z[ 0. Such

modeling is able to express the stochastic dependence in both the horizontal and the

vertical direction between data points P(z) and Qðz0Þ located above the approximation

plane. Altitude z of particular point can be calculated as a difference between its radial

distance r and the radius of approximation sphere R1. Two types of the 2-dimensional

covariance function labeled as CF5 and CF6 are listed in Table 2. Constants A, B, b and m

mentioned in Tables 1 and 2 represent additional parameters, which enable to derive the

essential parameters n and v.

The essential parameters of covariance functions are either applied as theoretical values

or derived from the given data. The second approach is more frequent and requires a

construction of the empirical covariance function (ECF) as the first. ECF is a point-wise

function and its shape primarily depends on the input data, but also on the chosen number

of bins dividing data into a set of equally sized intervals. In 1-dimensional case and

irregularly spaced data, the empirical covariances can be computed as:

cov qa � qi;j\qb
� �

¼ 1

n

Xn

k¼1

ðli � �lÞðlj � �lÞ
� �

k
; ð2Þ

where li and lj are measurements (e.g. gravity gradients), which correspond to the planar

distances qi;j between points i, j and satisfy conditions qi;j 2 qa; qbh Þ, where qa and qb are

the limits of the particular bin. The number of all pairs k of points in data set satisfying that

condition is denoted as n. Taken into account stationarity of the covariance function,

measured quantities are centered, i.e. reduced by the mean value �l. This process of cen-

tration can be supplemented by a subtraction of normal gravity field in the sense of

physical geodesy. Number of calculated empirical covariances, which corresponds to the

number of bins, usually exceeds the number of unknown parameters of their analytical

expression and allows applying the least-squares approach. In 2-dimensional case, the

empirical covariance also depends on the sum of altitudes zþ z0:

cov qa �qi;j\qb; ðzþ z0Þa �ðzþ z0Þi;j\ðzþ z0Þb
� �

¼ 1

n

Xn

k¼1

li � �lð Þ lj � �l
� �� �

k
; ð3Þ

where the measurements li and lj also satisfy the second condition ðzþ z0Þi;j 2
ðzþ z0Þa; ðzþ z0Þb
� �

with the limits ðzþ z0Þa and ðzþ z0Þb of particular bin.

Table 1 The 1-dimensional local covariance functions (Moritz 1980)

Covariance function Expression length Correlation Curvature parameter

CF1: Gaussian covðqÞ ¼ C0 expð�A2q2Þ n ¼ 1
A

ffiffiffiffiffiffiffi
ln 2

p
2 ln 2

CF2: with m ¼ 2 (Hirvonen’s) covðqÞ ¼ C0

ð1þB2q2Þ2 n ¼
ffiffiffiffiffiffiffiffiffiffi
21=2�1

p

B
4ð21=2 � 1Þ

CF3: with m ¼ 1=2 covðqÞ ¼ C0

ð1þB2q2Þ1=2 n ¼
ffiffi
3

p

B
3

CF4: with m ¼ 3=2 covðqÞ ¼ C0

ð1þB2q2Þ3=2 n ¼
ffiffiffiffiffiffiffiffiffiffi
22=3�1

p

B
3ð22=3 � 1Þ
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3 Data preparation

As mentioned above, we have analyzed the corrected gravity gradients of GOCE Level 2

products (EGG_TRF_2) available via ESA GOCE Virtual Archive website (http://eo-

virtual-archive1.esa.int/Index.html). Calibrated gradients in these products are given in

Local-North Oriented Frame (LNOF). Geocentric position of the GOCE center of mass is

defined by its spherical latitude /, longitude k and a radial distance r for a particular

observation epoch. This enables to calculate the spherical distances w between the pairs of

data points and the altitudes above the approximation plane eventually. For more infor-

mation about the EGG_TRF_2 products and the definition of LNOF system, see Gruber

et al. (2010).

Our experiment has focused on four accurately measured components of the gravity

tensor (VXX , VYY , VZZ , and VXZ). All gradients flagged as outliers were excluded from

further analysis. A region of interest (20� � 20�) covers the south part of Europe and is

restricted to / 2 30�N; 50�Nh i, and k 2 10�E; 30�Eh i. To study the behavior of local

covariance functions in different areas, we have divided this region into four sub-regions of

10� � 10� labeled as R1, R2, R3 and R4 (see Fig. 2). Measured quantities should be

corrected for a systematic part of gravity field before evaluation of empirical covariances.

Therefore, the gravity gradients were transformed to disturbing gravitational gradients TXX ,

TYY , TZZ , and TXZ . These are obtained from the observed gravity tensor by subtraction of

corresponding elements of normal gravity tensor by ‘Normal tensor’ software (Šprlák

2012) using GRS-80 reference ellipsoid. Calculated gradients in the test region are

depicted in Fig. 2. Measurements from 19 January 2011 to 31 May 2011 were used for the

visualization. Adjacent sub-regions are characterized by a different pattern of disturbing

gravitational gradients. The amplitudes vary from - 1.5 E to 1.0 E (E = Eötvös, 1 E =

10�9 s�2) and are the largest for TZZ component.

4 Experiment with the 1-dimensional local covariance functions

The first experiment investigates performance of the 1-dimensional covariance functions

CF1, CF2, CF3 and CF4 presented in Table 1. Let us assume a simplified situation, where

GOCE satellite is moving on the spherical surface above the Earth. We consider that the

radius of such sphere is equal to R1 ¼ 6628 km, what corresponds to the mean radial

distance of the satellite in the region of interest. Then, all data points should have zero

altitudes (z ¼ 0) above the tangent plane, which locally approximates the sphere.

For all sub-regions and four components of the disturbing gravitational tensor the

empirical covariances were evaluated according to Eq. (2). The planar distances q were

divided into 25 equally spaced bins in the range from 0 to 1000 km. We have considered

Table 2 The 2-dimensional local covariance functions (Moritz 1980)

Covariance function Expression length Correlation Curvature parameter

CF5: with m ¼ 1=2 covðP;QÞ ¼ C0b

ðq2þðzþz0þbÞ2Þ1=2 n ¼ b
ffiffiffi
3

p
3

CF6: with m ¼ 3=2 covðP;QÞ ¼ C0b
2ðzþz0þbÞ

ðq2þðzþz0þbÞ2Þ3=2
n ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22=3 � 1

p
3ð22=3 � 1Þ
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measurements from 19 January 2011 to 28 February 2011. ECF of TZZ component is

depicted in Fig. 3. Only positive empirical covariances are displayed as the local covari-

ance model is expressed by the positive definite function according to covariance function

theory (Moritz 1980). In addition, we should not overstep the correlation length within the

interpolation procedure, where all empirical covariances get positive values.

Variances and correlation lengths for the 1-dimensional models from Table 1 were

estimated using the least-squares approach. In order to asses how well the estimated model

approximates the empirical covariances, the coefficient of determination Rsq is calculated

as (Rousseeuw and Leroy 1987):

Rsq ¼ 1 �
PN

i¼1 yi � ŷið Þ2

PN
i¼1 yi � �yð Þ2

; ð4Þ

where the value yi represents positive empirical covariance, ŷi is its least-squares estimate,

and �y is the mean value of y. Derived analytical covariance models for TZZ component are

also shown in Fig. 3. The best estimates are highlighted in bold. It is clearly visible that

Gaussian covariance model CF1 has the best performance in all sub-regions. However,

Fig. 2 The region of interest divided into four sub-regions and scatter plot of analyzed components of the
disturbing gravitational tensor along the GOCE orbit
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differences between the particular models are almost negligible up to the correlation

length, except for CF3 model. For completeness, mean essential parameters from four

estimated models were calculated. Results involving all analyzed components of the dis-

turbing gravitational tensor are summarized in Table 3. It is not surprising that the esti-

mates differ from one region to another, mainly for the mean variance �C0. The highest

values are typical for the sub-region R2 due to the most distinctive variation of disturbing

Fig. 3 The empirical covariance function of TZZ component calculated in four sub-regions and
approximated by analytical covariance models CF1, CF2, CF3 and CF4 with the corresponding coefficient
of determination Rsq (in brackets)

Table 3 Mean variances, corre-
lation lengths and coefficients of
determination calculated from the
estimated covariance models
CF1, CF2, CF3 and CF4 (the
1-dimensional case)

Sub-reg. Param. TXX TYY TZZ TXZ

R1 �C0 (E2) 0.016 0.027 0.059 0.026

�n (km) 204.4 186.4 205.8 229.5

�Rsq (%) 95.9 95.5 94.2 96.4

�C0 (E2) 0.235 0.053 0.412 0.284

R2 �n (km) 215.7 186.8 213.9 222.0

�Rsq (%) 92.6 93.5 92.7 91.5

�C0 (E2) 0.012 0.008 0.024 0.021

R3 �n (km) 145.9 128.4 137.8 138.1

�Rsq (%) 93.3 96.2 93.7 95.1

�C0 (E2) 0.014 0.006 0.030 0.021

R4 �n (km) 199.6 171.5 206.6 166.1

�Rsq (%) 96.4 96.8 96.6 96.3
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gravitational gradients. Lower variances occur in the sub-regions R3 and R4. Correlation

lengths vary between 128 km and 230 km depending on the sub-region.

Furthermore, we were interested in time stability of calculated covariance functions.

Our aim was to study the sensitivity of estimated parameters to the changes of GOCE

satellite orbits and to other phenomena, which affect measured gradients (e.g. mass

redistribution). We have followed the same strategy as described above. The Gaussian

covariance model CF1 showing the best performance in the 1-dimensional case has been

applied to this study. We have examined TZZ component of the disturbing gravitational

tensor in all sub-regions. The radius of the approximation sphere remained unchanged

(6628 km). ECF has been calculated from data collected in 6 two-month intervals during

the year 2011. Parameters obtained by the least-squares method are listed in Table 4. Value

denoted as h is the mean altitude of GOCE satellite above GRS-80 reference ellipsoid in

the particular sub-region. We assume that the variance will be increasing by decreasing

altitude of GOCE orbit, and vice versa. This fact is clearly visible in Table 4. Anomalous

behavior occurs between time intervals of 07–08/2011, 09–10/2011 and 11–12/2011,

especially in the sub-regions R1 and R2. However, the estimated parameters do not change

dramatically within the particular sub-region. Disparity of variances C0 reaches a few mE2.

This could be assigned mainly to satellite orbit changes. Therefore, the correct modeling of

covariances requires consideration of different satellite altitudes above the approximation

sphere and the tangent plane, respectively. However, the interpretation of this problem is

not straightforward and further analyses would be required to formulate some clear

conclusion.

Table 4 The estimated parameters of the covariance function CF1 (Gaussian) for TZZ component

Sub-reg. Param. 01–02 03–04 05–06 07–08 09–10 11–12 Mean

R1 C0 (E2) 0.057 0.050 0.052 0.048 0.044 0.049 0.050

n (km) 220.8 207.9 203.1 208.3 207.2 208.6 209.3

h (km) 261.4 262.2 262.4 261.5 261.7 262.5 262.0

C0 (E2) 0.404 0.384 0.383 0.378 0.405 0.377 0.388

R2 n (km) 221.5 216.4 218.5 214.5 221.2 215.9 218.0

h (km) 261.2 262.2 262.7 261.3 261.9 262.7 262.0

C0 (E2) 0.023 0.021 0.021 0.022 0.023 0.022 0.022

R3 n (km) 148.6 146.9 145.6 146.7 148.6 148.2 147.4

h (km) 263.3 264.1 264.2 263.3 263.5 264.4 263.8

C0 (E2) 0.029 0.028 0.027 0.028 0.027 0.026 0.027

R4 n (km) 227.2 228.5 225.3 229.1 228.6 226.2 227.5

h (km) 262.7 264.1 264.8 262.9 263.8 264.9 263.9

Numbers in the header row represent particular months of the year 2011
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5 Experiment with the 2-dimensional local covariance functions

As stated previously, the evaluated 1-dimensional covariance function can take a different

shape for various measurement cycles, even in the same region. The main reason is that the

covariance function does not take into account the altitudes of data points above the

spherical surface R1. Therefore, such model is not very suitable for SGG data. This

disadvantage supersedes the 2-dimensional covariance function, which also enables spatial

stochastic modeling.

An analysis has been made in the same region of interest as depicted in Fig. 2. Our goal

was to examine stochastic dependencies of disturbing gravitational gradients in both the

horizontal and the vertical direction. For this purpose, we have applied SGG data from the

last measurement cycles collected from 1 June 2012 to 19 October 2013, when GOCE

satellite has been stepwise decreasing its altitude. The radius of the approximation sphere

of R1 ¼ 6595 km was chosen in such a way that all data points are situated above this

sphere (z[ 0). In this case, both the planar distances q and the corresponding sum of

altitudes zþ z0 were distributed into ten equally spaced bins. Figure 4a shows ECF of TZZ
component computed from Eq. (3) and corresponding to the sub-region R1 in two different

views. It is possible to see a clear trend of covariance decreasing with increasing of both

the planar distances q and the sum of altitudes zþ z0, as shown in Figure 4b, c. Once again,

only positive empirical covariances are displayed.

(a)

(b) (c)

Fig. 4 a Two different views of the empirical covariance function of TZZ component calculated in the sub-
region R1 (red mesh) approximated by the 2-dimensional covariance model CF6 (coloured surface), b
vertical profile at zþ z0 ¼ 7:8 km and c vertical profile at q ¼ 50 km
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Empirical covariances were fitted by two analytical covariance models CF5 and CF6

described in Table 2. Essential parameters, as variances C0 and correlation lengths n, were

estimated using the least-squares approach. Results are listed in Table 5. Italic values

indicate situations, where the least-squares estimates resulted in the improper values as the

negative variances and the unrealistic correlation lengths. The analytical covariance

function CF6 for TZZ component approximating empirical covariances is shown in Fig. 4.

In compliance with the coefficient of determination, the analytical function CF6 accounts

better performance. The highest variances are again typical for the sub-region R2 and the

correlation lengths both for all evaluated components and the sub-regions vary between

103 and 195 km (only for CF6 model). This implies that covariance functions are highly

responsive to the area of calculation and are, of course, different for particular components

of disturbing gravitational tensor.

6 Interpolation of SGG data using least-squares collocation

The best way to demonstrate usefulness of the covariance function is to interpolate SGG

data in order to produce regular local grid of disturbing gravitational gradients. For this

purpose, the least-squares collocation (LSC) method has been used, where the covariance

function plays an essential role. More details are explained e.g. in Moritz and Sünkel

(1978), Moritz (1980).

Our experiment is restricted to the sub-region R1 and the largest component TZZ
measured from 1 September 2013 to 19 October 2013. The regular grid with the resolution

of 0:1� � 0:1� is located on the spherical surface with the radius of R1 ¼ 6595 km. LSC

enables to adjust both the trend of the disturbing gravitational gradients and the signal,

which was modeled by the 2-dimensional covariance function CF6 with the estimated

variance C0 ¼ 0:086 E2 and the correlation length n ¼ 160:1 km (see Table 5). We have

considered the constant trend related to a systematic part of disturbing gravitational gra-

dients in the tested sub-region and uncorrelated errors of observations corresponding to the

Table 5 The estimated parameters of local covariance models CF5 and CF6 (the 2-dimensional case)

Sub-reg. Param. TXX TYY TZZ TXZ

CF5 CF6 CF5 CF6 CF5 CF6 CF5 CF6

R1 C0 (E2) 0.028 0.023 0.056 0.042 0.107 0.086 0.045 0.039

n (km) 106.6 167.2 83.8 146.9 98.2 160.1 132.2 194.5

Rsq (%) 87.4 95.8 85.7 94.6 84.8 94.4 79.8 89.1

C0 (E2) 0.488 0.403 0.126 0.105 - 0.330 0.724 0.531 0.469

R2 n (km) 105.1 164.1 102.7 152.3 - 292.0 159.9 135.4 185.2

Rsq (%) 80.0 90.7 87.9 95.0 54.5 91.0 83.7 93.5

C0 (E2) 0.119 0.025 - 0.008 0.013 5.324 0.049 - 0.076 0.038

R3 n (km) 13.6 105.4 - 99.8 120.1 0.6 103.1 - 30.1 110.9

Rsq (%) 85.5 92.8 82.6 72.0 85.0 91.9 84.7 89.1

C0 (E2) 0.024 0.020 0.016 0.010 0.052 0.045 0.047 0.034

R4 n (km) 125.2 181.8 61.1 136.6 130.0 181.5 78.0 144.1

Rsq (%) 84.8 93.5 85.0 93.9 88.3 95.9 79.5 88.0
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accuracy of TZZ component given in EGG_TRF_2 products for SGG data. Figure 5a shows

directly interpolated disturbing gravitational gradients TZZ in the sub-region R1 applying

Delaunay triangulation method implemented in GMT 5 software (Wessel et al. 2013),

which was used for producing figures. Using LSC, we have obtained smoothed disturbing

gravitational gradients in Fig. 5b interpolated in the regular grid with the given resolution

and the suppressed random noise.

Proving the reliability of the local grid obtained by LSC, we have made the comparison

with the corresponding set of grids produced by the Earth’s global gravity field models. We

have used three recent models: TIM R5 up to d/o 200 (Brockmann et al. 2014), EIGEN-

6C4 up to d/o 200 and 300 (Förste et al. 2014), and EGM2008 up to d/o 200 and 300

(Pavlis et al. 2012). TIM R5 is purely determined from the GOCE observations and is

based on the time-wise approach. EIGEN-6C4 is a combined gravity field model using

different satellite (LAGEOS, GRACE, and GOCE) and terrestrial data sets. EGM2008 was

formed by combination of satellite, terrestrial, altimetry and airborne gravity data. Grids

from these models were generated in ‘GrafLab’ software (Bucha and Janák 2013) in the

altitude corresponding to the radial distance R1 ¼ 6595 km and with the same resolution as

the produced LSC grid.

The basic summary statistics from the Earth’s global gravity field models are listed in

Table 6 (upper part). For completeness, the residuals between model grids and the inter-

polated LSC grid are presented. Residuals vary between � 0:043 E and 0.030 E with the

mean close to zero, see the lower part of Table 6. The best fit is obtained by applying

EIGEN-6C4 model (d/o 300) with the standard deviation of 0.0047 E. It might indicate

that there is still some useful signal in our solution corresponding to frequencies above

d/o 200, and certain part of discrepancies is due to the omission error and noise. We recall

that EIGEN-6C4 also includes GOCE data. The lowest agreement is evident for EGM2008

(d/o 200). However, discrepancies between compared models are negligible in most cases.

Let us look at the comparison with EIGEN-6C4 model (d/o 300) having the best fit

more closely. Disturbing gravitational gradients obtained from this model are shown in

Fig. 6a and corresponding residuals in Fig. 6b. It is clearly visible that anomalous residuals

mostly occur close to the limits of the sub-region R1. This effect is caused by missing

information about the gravity field outside the sub-region, which has an influence on the

covariance function construction and the interpolation procedure. Almost 99% of residuals

(a) (b)

Fig. 5 Disturbing gravitational gradients TZZ : a directly interpolated from ‘measured’ gradients using
Delaunay triangulation method, b interpolated in the regular grid of 0:1� � 0:1� applying LSC
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does not exceed the value of 0.01 E, what also confirms the centered histogram of residuals

in Fig. 6c. If we calculate the summary statistics of residuals from the restricted sub-region

R1, which is reduced to / 2 32�N; 38�Nh i and k 2 12�E; 18�Eh i, we will get more opti-

mistic values: MEAN ¼ �0:0006 E, MIN ¼ �0:0125 E, MAX ¼ 0:0102 E, and

STD ¼ 0:0037 E. In comparison with Table 6, improvement of the standard deviation is

more than 20%. This implies that a local grid should be created using a covariance function

derived from an extended area, where more information about the surrounding Earth’s

gravity field is included.

Table 6 The basic statistics of the Earth’s global gravity field models (upper part) and their comparison
with LSC grid (lower part) in the sub-region R1 for TZZ component

Grid/model MEAN (E) MIN (E) MAX (E) STD (E)

LSC 0.0586 - 0.8506 0.7087 0.2788

TIM R5 (d/o 200) 0.0579 - 0.8447 0.7058 0.2792

EIGEN-6C4 (d/o 200) 0.0580 - 0.8447 0.7046 0.2791

EIGEN-6C4 (d/o 300) 0.0580 - 0.8483 0.7080 0.2792

EGM2008 (d/o 200) 0.0580 - 0.8436 0.7071 0.2794

EGM2008 (d/o 300) 0.0579 - 0.8474 0.7103 0.2794

TIM R5 (d/o 200) - LSC - 0.0007 - 0.0395 0.0266 0.0049

EIGEN-6C4 (d/o 200) - LSC - 0.0006 - 0.0395 0.0272 0.0050

EIGEN-6C4 (d/o 300) - LSC - 0.0006 - 0.0397 0.0292 0.0047

EGM2008 (d/o 200) - LSC - 0.0007 - 0.0422 0.0279 0.0060

EGM2008 (d/o 300) - LSC - 0.0007 - 0.0425 0.0296 0.0058

(a) (b) (c)

Fig. 6 Disturbing gravitational gradients TZZ : a from the Earth’s global gravity field model EIGEN-6C4 (up
to d/o 300), b residuals between EIGEN-6C4 model (up to d/o 300) and LSC grid, and c the histogram of
residuals
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7 Conclusions

An analysis of local covariance functions of disturbing gravitational gradients derived from

EGG_TRF_2 products was carried out in this study. Only covariance functions in the

planar approximation were considered. Firstly, we have investigated four different types of

the 1-dimensional covariance functions. In this situation, we assumed all data points are

located on the approximation sphere, which is not exactly fulfilled for SGG data. The first

numerical experiment reveals that the most appropriate from analytical covariance func-

tions is the Gaussian function CF1 showing the best performance in all sub-regions. The

parameters of the covariance function differ from region to region significantly. In our case

of four adjacent sub-regions and TZZ component, the variance vary from 0.024 E2 to

0.412 E2 and the correlation length from 137 to 214 km. The lower correlation length

indicates that the function is in average relatively more dissected. In addition, a time

stability of essential parameters was studied. A sensitivity of estimated parameters to the

changes of GOCE satellite orbit during various measurement cycles was showed. It

appears that a correct modeling of stochastic dependencies between the observed gravity

gradients requires evaluation of essential parameters directly from the region of interest. In

general, the local covariance models with longer correlation length are more suitable for

satellite gravity gradiometry data due to the smoothness of Earth’s gravity field.

Problem with the altitude variation of GOCE orbit can be treated by using the 2-di-

mensional covariance function. Moreover, this enables us to perform the downward con-

tinuation and the interpolation of measurements in one step. Presented procedure takes into

account different altitudes of data points above the approximation sphere. We have studied

two types of the 2-dimensional analytical functions. For all tested sub-regions, the

covariance function CF6 shows better performance and numerical stability. Analysis

showed again that estimated parameters are highly responsive to the input data in particular

sub-region. The highest variances are typical for the sub-region R2 with the maximum

signal amplitudes.

The 2-dimensional covariance model CF6 was applied to the interpolation of disturbing

gravitational gradients TZZ into the regular grid using the least-squares collocation method.

The local grid at the altitude corresponding to the radial distance of R1 ¼ 6595 km was

compared to values obtained from the recent Earth’s global gravity field models. We have

used three recent models: TIM R5 up to d/o 200, EIGEN-6C4 up to d/o 200 and 300, and

EGM2008 up to d/o 200 and 300. The best fit was achieved by applying EIGEN-6C4

model (d/o 300) with the mean of � 0:0006 E and the standard deviation of 0.0047 E. A

cause of this may be the fact that this model also includes GOCE data. Disagreement of the

interpolated grid with the model values mostly occurs near the limits of the sub-region,

from which the covariance function was constructed. Omitting the 2� stripes around the

limits of the sub-region brings improvement of the standard deviation of residuals more

than 20%. The obtained results show practicability of the local covariance functions in

planar approximation, ignoring the Earth’s sphericity, for solving the detail problems

related to modeling of Earth’s gravity field using satellite gravity gradiometry data.

However, we must underline the fact that local grids computed following this approach are

mostly intended for geophysical research and local applications.

Acknowledgements We gratefully acknowledge the reviewers comments and suggestions, which improved
the paper essentially. This study is based on research carried out within the Slovak National Project
VEGA 1/0954/15: Analysis of Global Data Sources and Possibilities of Their Application in the Refinement
and Testing of Earth Gravity Field Models. Thanks also to the HPC center at the Slovak University of

Acta Geod Geophys (2018) 53:125–138 137

123



Technology in Bratislava, which is a part of the Slovak Infrastructure of High Performance Computing
(SIVVP project, ITMS code 26230120002, funded by the European region development funds, ERDF), for
the computational time and resources made available.

References

Bouman J, Ebbing J, Fuchs M, Sebera J, Lieb V, Szwillus W, Haagmans R, Novak P (2016) Satellite gravity
gradient grids for geophysics. Nat Sci Rep. doi:10.1038/srep21050
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