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Abstract Least-squares estimates are unbiased with minimal variance if the correct

stochastic model is used. However, due to computational burden, diagonal variance

covariance matrices (VCM) are often preferred where only the elevation dependency of the

variance of GPS observations is described. This simplification that neglects correlations

between measurements leads to a less efficient least-squares solution. In this contribution,

an improved stochastic model based on a simple parametric function to model correlations

between GPS phase observations is presented. Built on an adapted and flexible Mátern

function accounting for spatiotemporal variabilities, its parameters are fixed thanks to

maximum likelihood estimation. Consecutively, fully populated VCM can be computed

that both model the correlations of one satellite with itself as well as the correlations

between one satellite and other ones. The whitening of the observations thanks to such

matrices is particularly effective, allowing a more homogeneous Fourier amplitude spec-

trum with respect to the one obtained by using diagonal VCM. Wrong Mátern parame-

ters—as for instance too long correlation or too low smoothness—are shown to skew the

least-squares solution impacting principally results of test statistics such as the apriori

cofactor matrix of the estimates or the aposteriori variance factor. The effects at the

estimates level are minimal as long as the correlation structure is not strongly wrongly

estimated. Thus, taking correlations into account in least-squares adjustment for posi-

tioning leads to a more realistic precision and better distributed test statistics such as the

overall model test and should not be neglected. Our simple proposal shows an improve-

ment in that direction with respect to often empirical used model.
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1 Introduction

Compared with the well-described functional model for GPS positioning, the stochastic

model of GPS phase observations still remains improvable. A first approach to face this

challenge and assess the unknown variance–covariance matrix (VCM) of the observations

is to use variance–covariance estimation (VCE) techniques. We cite exemplarily Teunissen

and Amiri-Simkooei (2008), Tiberius and Kenselaar (2000), Amiri-Simkooei et al.

(2009, 2016), Bona (2000), Li et al. (2008, 2016). Iterative procedures have also been

developed based on the whitening of the least-squares (LS) residuals (Wang et al. 2002;

Satirapod et al. 2003; Leandro et al. 2005; Jin et al. 2010). Besides this somehow com-

putational demanding approach, a second one is based on modelling the co-variance of

GPS phase observations or residuals. If heteroscedasticity is widely assumed (Bischoff

et al. 2005) and taken into account thanks to an elevation dependent function for the

variance -mostly cosine or exponential variance, correlations are mostly disregarded due to

a lack of knowledge of the correlation structure. The corresponding Variance Covariance

Matrices (VCM) are thus diagonal and easier to handle in processing software. The main

disadvantage of this simplification is the biased least squares solution (Koch 1999; Gra-

farend and Awange 2012). The proposals to model correlations of GPS phase observations

are often limited to an exponential function (El-Rabbany 1994; Howind et al. 1999). The

approximated correlation length is estimated by fitting the autocorrelation function of LS

residuals with least-squares which was shown to be a non-optimal method to assess an

accurate correlation structure (Stein 1999). In Radovanovic (2001), a linear combination of

VCM accounting for correlations due to multipath described with an exponential function

and a noise matrix was proposed. Correlations due to tropospheric refractivities were

treated by Schön and Brunner (2008) and Kermarrec and Schön (2014) whereas the

physical modelization of temporal correlations of GPS observations due to the ionosphere

was empirical estimated by e.g. Wild et al. (1989). The noise of high frequency, short

duration GPS observations is addressed in Moschas and Stiros (2013). From all these

studies, it becomes evident that trying to model independently all correlation factors is not

a straightforward task. Thus, a simple and understandable correlation model should be an

useful tool to popularize the use of fully populated VCM in order to impact positively the

LS solution.

In this contribution, we propose an innovative way to model elevation dependent cor-

relations of GPS phase observations thanks to only one parametric covariance function.

Using Maximum Likelihood Estimation (MLE) to determine its parameters, a wide range

of correlations can be modelled without expressing them independently. Moreover, a

spatiotemporal dependency allows an individual weighting of the covariance function for

each satellite. Consecutively, fully populated VCM can be integrated in the weighted least-

squares positioning adjustment. Besides whitening the observations, they lead to an

improvement of the precision of the LS solution which becomes more realistic. The

corresponding effects of this new stochastic model will be detailed thanks to a particular

case study of a 80 km baseline for L1 and L3 observations, the ambiguities being fixed in

advance. The conclusions will be extended to other baseline lengths.

The remainder of this papier is structured as follows: the first section provides a brief

summary of the mathematical concepts of least-squares and physical correlations,
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introducing the Mátern model. The second section describes our proposal for GPS phase

correlations. A case study concludes the contribution in a third section, giving an insight on

what can be achieved thanks to this new model.

2 Mathematical concepts

2.1 Least-squares principles

When estimating a position with Global Positioning System (GPS) observations, unknown

parameters such as coordinates or integer ambiguities are computed using a linearized

weighted least-squares model. The corresponding functional model reads

l ¼ Axþ v; ð1Þ

where l corresponds to the n� 1 observation vector (i.e. Observed Minus Computed

vector), A the non-stochastic n� u design matrix with full column rank (rk Að Þ ¼ u), x the

u� 1 parameter vector to be estimated. When ambiguities are estimated, A and x are

partitioned into a coordinates and ambiguities part, i.e. A ¼ ½Ac;Aamb� and x ¼ ½xc; xamb�,
respectively. v is the n� 1 vector of the random errors. We let E vð Þ ¼ 0; E vvTð Þ ¼ r2

0W,

where W is a n� n positive definite fully populated cofactor matrix, r2
0 the apriori variance

factor and E :ð Þ denotes the mathematical expectation.

To solve for Eq. (1), the cost function vk k2
W¼ l� Axð ÞTW l� Axð Þ ¼ l� Axð Þk k2

W is

minimized (Koch 1999, Misra and Enge 2012) and under the previous assumptions, the

estimates of the unknown x̂ are obtained by:

x̂ ¼ ATW�1A
� ��1

ATW�1l ð2Þ

The apriori cofactor matrix of the estimated vector is given by

Qx̂¼ ATW�1A
� ��1 ð3Þ

Furthermore the aposteriori variance factor of the observations r̂2
0 is expressed as

r̂2
0 ¼ l� Ax̂ð ÞTW�1 l� Ax̂ð Þ

n� u
¼ vTW�1v

n� u
: ð4Þ

These estimators are unbiased when the correct weight matrix W�1 is used. Unfortu-

nately, this matrix is in most cases unknown. As a consequence, the so-called feasible

weighted least-squares (Greene 2003) is used and W is replaced by its estimates Ŵ which

we call in the following the apriori cofactor matrix of the observations.

2.2 Mathematical correlations

In order to eliminate nuisance parameters such as the receiver clock bias, the vector of

double differenced carrier phase observations between 2 stations is formed (Seeber 2003).

Thus, mathematical correlations have to be taken into account during differencing and the

final cofactor matrix of the observations reads (Santos et al. 1997)
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Ŵ ¼ MŴUDM
T ð5Þ

where M is the matrix operator of double differencing and ŴUD the undifferenced cofactor

matrix of the observations.

For two stations A and B, the global cofactor matrix reads

ŴUD¼ ŴA ŴAB

ŴBA ŴB

� �
ð6Þ

where ŴA and ŴB are the cofactor matrices of the observations corresponding to station A

and B, respectively, ŴAB and ŴBA the correlations matrices between observations of the 2

stations. Following Schön and Brunner (2008), we let in this contribution

ŴAB ¼ ŴBA ¼ 0. However, the proposed model for correlations (Sect. 3) is general

enough to allow for the computation of these two matrices.

Additionally, the ionospheric-free linear combination of the carrier phase measurements

can be formed by linear combination of the carrier phase observations of L1 and L2 (Misra

and Enge 2012). Besides the fact that L3 ambiguities are no longer integers, the noise is

increased by a factor of 3 with respect to L1 and L2 observations.

2.3 Temporal correlations

Mathematical correlations from double differencing can be easily modelled. However,

temporal correlations coming from multipath, ionospheric or tropospheric variations as

well as the receivers themselves have to be taken into account in ŴUD. For sake of

simplicity, we skip in the following the subscript UD and Ŵ designs the undifferenced

cofactor matrix of the observations which can be computed thanks to a covariance func-

tion. A necessary and sufficient condition for a family of functions to be a class of

covariance functions is the positive definiteness (Yaglom 1987). However, this condition is

not easy to check directly and for this reason, a range of standard families, positive definite

and flexible enough to be used widely have been identified. In the following, we introduce

shortly a general covariance family called the Mátern covariance function (Mátern 1960;

Stein 1999; Gelfand et al. 2010).

Empirically, the temporal correlation function C tð Þ of stationary processes decreases as

the time t increases. In addition, different applications may exhibit different degrees of

smoothness, this parameter being related to the behaviour of the correlation function at the

origin (Stein 1999). The popular Mátern family meets the requirement of flexibility and is

defined as

C tð Þ ¼ c atð ÞmKm atð Þ: ð7Þ

where c is a scalar. m is called the smoothness of the time series. The inverse of the Mátern

correlation time a indicates how the correlations decay with increasing time (Journel and

Huifbregts 1978). The modified Bessel function of order m (Abramowitz and Segun 1972)

is denoted by Km.

The corresponding spectral density is given by

S xð Þ ¼
2m�1c C mþ d=2

� �
a2m

pd=2 x2 þ a2
� �mþd=2 ð8Þ
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where x2 ¼ x2
1 þ x2

2 þ � � � þ x2
d is the angular frequency, C the Gamma function

(Abramowitz and Segun 1972). The dimension of the field d is 1 in case of time series of

observations.

From Eq. (8), the behaviour of S xð Þ by letting x ! 0 is both influenced by the

smoothness m and the correlation parameter a. For high frequencies, i.e. x ! 1, the role

of m is more important. Figure 1 shows for different parameter sets a; m½ � the corresponding

covariance function (top) and its realization (bottom). The time series are simulated thanks

to an eigenvalue decomposition of the Toeplitz covariance matrix built using Eq. (7).

Smooth time series are corresponding to high m (Fig. 1 left). A visual determination of the

smoothness of the corresponding time series is difficult to assess from the correlation

function itself. On the other hand, a is related to the correlation length as highlighted in

Fig. 1 (right), i.e. as a increases, the correlation length decreases.

The Mátern parameters can be estimated from the data via Maximum Likelihood

Estimation (Handcock and Wallis 1994), or fixed aprori (Stein 1999) which was implicitly

done by Howind et al. (1999), El-Rabbany (1994) when using an exponential function to

model carrier phase correlations of GPS observations. Indeed, particular cases corre-

sponding to a smoothness of 1=2; 1;1 are known in geodesy as the exponential covariance

function, the first order Markov or the Gaussian model respectively (Whittle 1954; Gra-

farend and Awange 2012; Meier 1981). Other parametrizations of the Mátern covariance

function presented in Eq. (7) exist as well as covariance functions that model hole effects

or small negative correlations based on exponentially damped cosine functions (Zastavnyi

1993). Such functions will not be used here as the correlation length and smoothness are

Fig. 1 Example of Mátern covariance functions by varying the parameter set a; m½ �. Top: correlation
function for a ¼ 0:1 by varying m (left) and correlation function for m ¼ 1 by varying a (right). Bottom:
corresponding time series
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more important parameters than trying to take small cosine variations in consideration that

may not be physically plausible. A simple, realistic and easy to use modelling of the

correlations is our goal, the corresponding covariance matrices being further processed in

weighted least-squares adjustments.

3 A model for correlations of GPS phase observations

3.1 Introduction

The proposed function is based on the Mátern covariance family and is directly inspired

from Wheelon (2001) and Kermarrec and Schön (2014) who derived a function for cor-

relations between satellite measurements due to turbulent fluctuations of the index of

refractivity. It can be seen as an extension of this model to other kind of elevation

dependent correlation factors. We note moreover that Luo (2012) showed that the corre-

lation structure of pre-processed residuals from GPS positioning adjustment can be

modelled thanks to AR or ARIMA processes. Although not exactly corresponding (Ras-

mussen and Williams 2006), the underlying differential equations of ARIMA and Mátern

processes exhibits similarities as the spectral densities are for both cases rational and

polynomial. Exemplarily, the AR(2) model can be expressed with a Mátern covariance

function.

3.2 Proposal for modelling phase correlations

The proposed covariance function C between 2 observations of satellites i and j at time t

and t þ s reads:

C
jtþs
it ¼ qd

sin Eli tð Þð Þ sin Elj t þ sð Þ
� � asð ÞmKm asð Þ ð9Þ

where Eli and Elj are the elevations of the satellite i and j respectively. d is a scaling

parameter so that the variance equals 1 for satellites at 90� elevation using small argument

approximations (Schön and Brunner 2008). q is a weighting factor which models the

covariance between different satellites. We take here q ¼ 1 for i = j and q ¼ 0:1 else, see

Kermarrec and Schön 2014, 2017 for more details. A possible effect of underestimating q
for i = j in LS adjustments was shown to be a smaller aposteriori variance factor with

respect to the apriori value.

This covariance function is derived from a spectral density function and remains

therefore positive definite as long as the elevation is not 0�.
The variance of our model is based on the commonly used 1

�
sin2 Elð Þ function. In order

to account for non-stationarity of the covariance (i.e. spatiotemporal dependency), a

weighting factor 1
�
sin Eli tð Þð Þ sin Elj t þ sð Þ

� �
is used to compute inter-satellites correla-

tions. This factor is derived from GPS path signals through the atmosphere (Wheelon

2001).
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3.3 Building fully populated VCM

Apriori fully populated covariance matrices accounting for correlations of one satellite

with itself or with other one at one station can be built thanks to Eq. (9). The resulting

cofactor matrix for station A as defined in Eq. (5) is given by:

ŴA ¼

C1;1
A C1;2

A C1;3
A � � � C1;s

A

C2;2
A C2;3

A C2;s
A

� � � C3;3
A

Cs;s
A

2

6664

3

7775
ð10Þ

where the subscript A stays for station A and the matrices Ci;j
A are computed thanks to

Eq. (9).

For a better visualization, Fig. 2 (left) presents an example of the obtained structure of

the resulting fully populated covariance matrices sorted per PRN. It corresponds to a

standard GPS constellation (Fig. 2 right) with 10 satellites, one batch having 100 obser-

vations and a data rate of 30 s. Depending on the processing strategy of the observations,

double differenced matrices should be formed following Eq. (5).

3.4 Estimating the parameters of the covariance function
from the observations

Usually, the parameters a; m½ � are estimated by Maximum Likelihood (Stein 1999). Due to

the complexity of the fully populated VCM for GPS observations, we propose two ways of

estimating a; m½ �

• Estimation of one set of parameters a; m½ � for each satellite by MLE for a batch of 1 h of

observations. This set is kept and has an estimated validity of 4–6 h depending on the

variations of atmospheric conditions and satellite geometry.

Fig. 2 An example of a fully populated covariance matrix computed with the proposed model (left). The
matrix is composed of different non Toeplitz block matrices sorted per satellites. The block diagonal VCM
corresponds to the temporal correlations for one satellite with itself whereas the submatrices describe the
correlations between one satellite and all other ones. For this example we used a; m½ � ¼ 0:01; 1½ �. The last
block matrix is corresponding to the VCM of the reference satellite PRN5. The corresponding sky
distribution is presented on the right
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• An alternative and less computation demanding procedure is only based on the

computation of the Mátern parameters by MLE for the satellite of reference. The

corresponding values found were shown to be closer to a diagonal model (i.e. lower

correlation length) than the previous solution and thus a can be decreased by 0.005 s-1

to account for this effect.

As we empirically found that values of m[ 2 may lead to some computational problems,

we propose not to allow the estimated smoothness parameter to be greater than 3/2. Due to

the non-orthogonality of the Mátern parameters, this is similar to taking a smaller a, i.e. a

longer correlation length.

For medium and long baselines, the double differenced observations may contain

unmodelled effects. Thus, instead of computing the correlation structure based on the

observations at one station, we suggest to directly estimate a; m½ � from the double differ-

enced observations.

In order to account for additive noise, a more general form of the covariance matrix for

a station A can be used, i.e. Ŵ
0 ¼ anoiseŴA þ 1 � anoiseð ÞŴnoise; with anoise having to be

estimated with a; m½ � by MLE. For elevation dependent noise, Ŵnoise ¼ ŴELEV;A (called the

ELEV matrix) represents the elevation dependent diagonal covariance matrix corre-

sponding to a 1
�
sin2 Elð Þ variance model. Depending on the noise structure that one wish to

model Ŵnoise can also be replaced by the identity matrix. Intuitively, adding noise matrices

will act on stabilizing the fully populated covariance matrices, similarly to a Tikhonov

regularization (Tikhonov et al. 1995). It also impact the least-squares results, i.e. they

become closer to the one given if only the corresponding diagonal VCM would have been

used (Kermarrec and Schön 2017). Due to the non-orthogonality of the Mátern parameters

(Gelfand et al. 2010), estimating a noise matrix will moreover lead in a shift of the

corresponding set. Thus, if noise is wrongly taken into account, it will result in a smaller

correlation length with noise matrix by same smoothness.

3.5 Comments on the proposed model

Our model is flexible and accounts for many factors (non-stationarity, elevation depen-

dency, smoothness, correlation length), modelling implicitly many causes of correlations

without expressing them individually. However, as every model, it remains a simplification

of the correct but unknown correlation structure. It may be pointed out that also with LS-

VCE procedures, simplifications are often necessary to have positive definite VCM by

assuming for instance Toeplitz covariance matrices. In order to assess how the Mátern

parameters influence the least-squares results, interested readers can consult the results of a

sensitivity analysis based on simulations and two case studies for long and short baselines

in Kermarrec and Schön (2017).

In the next section, we will focus on the effect of this new model both at the obser-

vations level and on some least-squares quantities such as the cofactor matrix of the

estimates (Eq. 3) corresponding to the error ellipsoid, the aposteriori variance factor

(Eq. 4) and the estimates (Eq. 2). A real positioning scenario is studied, the true covariance

matrix of the observations being from now unknown.
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4 Using the correlation model in a least-squares adjustment: a case study

4.1 Description of the data set

GPS L1 data from the European Permanent Network EPN (Bruyninx et al. 2012) from two

stations KRAW and ZYWI are chosen as example for a medium baseline (80 km) posi-

tioning scenario. The observations have a 30 s rate, a cutoff of 3� was applied. The North

East Up (NEU) coordinates are computed with double differences for 20 consecutive

batches starting at GPS day DOY220, GPS-SOD 6000 s. Each batch represents 100 epochs

(i.e. 3000 s). This number of epochs was chosen for two reasons. Firstly, it ensures that the

correlation reaches the 0-value inside the batch so that the inversion of the VCM is

accurate. Secondly, the correlation structure of small batches of observations is more

difficult to assess and the values found may vary more strongly from batch to batch.

The ambiguities are solved in advance thanks to the Lambda method. The results of the

case study are not impacted by the integer fixing method. Please note that they are not

comparable with those found in Kermarrec and Schön (2017) for the same baseline, the

methodology being different (i.e. same design matrix, different days).

The reference values for the station coordinates are the long term values from the EPN

solution. The ionosphere-free linear combination L3 was additionally computed. The data

were not sophistically filtered (i.e. for instance against multipath effects) in order to keep

low frequencies variations in the measurements to study the whitening potential of our

fully populated VCM. Because the batch length is shorter than 1 h, no tropospheric

parameter was estimated. Nevertheless, estimating this parameter additionally was shown

not to influence strongly the conclusions of our case study.

A realistic apriori variance factor r0 for double differenced observations of 4 mm was

taken into account. A critical value of 4.7 mm corresponding to the Central F-distribution

with p = 0.1 was chosen for the overall model test (Teunissen 2000). We assume that the

GPS phase observations are normally distributed (Luo et al. 2011).

The correct covariance structure of the observations is unknown and computed fol-

lowing the methodology presented in Sect. 3. The results from three stochastic models are

compared: the ID model corresponding to an identity VCM, the ELEV model where

correlations are disregarded and the variance corresponds to a 1
�
sin2 Elð Þ variance model

and the proposed correlation model with different parameter sets a; m½ �. This strategy aims

to study the impact of a misspecification of the stochastic model.

The following quantities are analysed: E r̂0ð Þ, i.e. the mean of the aposteriori variance of

unit weight over all m batches, the mean of the 3Drms of the estimates defined for one

batch as 3Drms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace x̂Tx̂ð Þ

3

q
. The behaviour of Qx̂c and r̂0Qx̂c are added exemplarily for

one batch.

As the variations of a; m½ � for the 20 batches of interest were below � 0:005; 0:1½ � leading

to negligible variations of the estimated parameters following Kermarrec and Schön

(2017), the correlation structure estimated by MLE was fixed to a; m½ �0¼ 0:012; 1:1½ � for the

entire time span. The noise factor was set to 0, making use of the non-orthogonality of the

Mátern parameters (Gelfand et al. 2010).
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4.2 Impact on the observations

When taking correlation into account in the least-squares adjustment, the effect on the

whitening of the residuals is an important criterion (Wang et al. 2002).

The fully populated matrices obtained with our model can be shown to be able to whiten

the double differenced GPS observations better than the corresponding diagonal matrices,

particularly in the low frequency domain. We define a whitened time series lwhite as

lwhite¼ Ŵ
�1=2

l where l is the original time series. Ŵ is the estimated double differenced

VCM corresponding to the ID, ELEV or correlation models.

In order to have an insight on how VCM act on correlated observations, the amplitude

Fourier spectra of two whitened Double Differenced time series are presented in Fig. 3.

The case study from the last section (Fig. 2) is carried out. Figure 3 (left) corresponds to

double differences using a low elevation satellite (10� elevation) whereas Fig. 3 (right) is

using a satellite at 50� elevation. Both were observed during 200 epochs which corresponds

to approximately 2 h of observations. Due to the elevation dependency of our model, the

whitened double differenced time series are studentized (Luo 2012) allowing comparisons

between ELEV and correlation models. Thus, the decomposition of the original—non

studentized-time series is only given exemplarily. An exact explanation of why particular

frequencies are present or not (i.e. multipath, site specific effects) is here on purpose not

proposed.

4.2.1 Impact of the smoothness m

From Fig. 3, the impact of the smoothness factor m on the whitening can be seen, i.e. the

noise at high frequencies is strongly increased with fully populated VCM with respect to

the ELEV model (pink line). A VCM with a smoothness of � corresponding to an

exponential correlation model with an elevation dependent variance is less able to whiten

the time series than when a smoothness of 1 is considered (blue versus red lines). This

result is coherent with the values found by MLE (Sect. 4.1) and particularly visible for the

low elevation satellite (Fig. 3 left). Indeed, for the same a ¼ 0:005, a more efficient

Fig. 3 Fourier decompositions of different whitened double differenced observations versus log-frequency
(Hz). (Left) corresponds to a satellite starting at 10� elevation and (right) at 50� elevation. The amplitude is
given as log scale. Different correlation lengths and smoothnesses were used to compute the VCM. The
decomposition obtained with the diagonal VCM ELEV as well as the one of the original time series are
given additionally. The length of the time series used is 200 epochs a 30 s
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filtering of the low frequencies is obtained with m ¼ 1 (red line) than with m ¼ 1=2 (blue

line).

4.2.2 Impact of the correlation parameter a

Following Eq. (8), the parameter a plays a more important role at low frequencies. This

becomes evident in Fig. 3 (right) by comparing the two red lines (a ¼ 0:005 and a ¼ 0:01)

corresponding to a common smoothness of 1. However, the smoothness still impacts the

frequency content of the whitened time series at low frequencies [see Fig. 3 (left), blue and

red lines].

Compared with the whitening obtained with the ELEV model, it can be concluded that

the fully populated VCM act both on filtering the low frequencies and increasing the high

frequencies content. A lower smoothness of � is suboptimal for both cases. Adding a noise

matrix to the VCM (not shown) would have given a higher amplitude for the low fre-

quencies part of the spectrum, following the results given with the ELEV model.

This case study is an example. However, other batches of observations with different

lengths and geometries were computed without changing the previous conclusions on the

effect of a; m½ �. An exact white noise time series should not be expected and will never be

obtained as the apriori VCM are not corresponding exactly to the true VCM of the

observations.

4.3 Impact on the least-squares results

4.3.1 Cofactor matrix of the estimates

In this section, the impact of the fully populated covariance matrices of the observations on

the cofactor matrix of the estimates is considered. One batch corresponding to a standard

geometry is taken as example. In Fig. 4 (left), the 3D apriori error ellipsoids are plotted for

different covariance matrices. The corresponding volumes are given in Fig. 4 (right) for Qx̂

and r̂2Qx̂.

Fig. 4 Impact of varying the VCM on the Point error ellipsoid of the estimate (left) and (right) on the
volume of the corresponding apriori and aposteriori ellipsoids
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From Fig. 4 (right) and (left) the well-known underestimation of the apriori precision

using diagonal VCM is highlighted, the volume of the ellipsoid being up to 40 times

smaller than for the fully populated case with a; m½ �0. Using a low a ¼ 0:005 leads to an

overestimation of the precision with a volume 100 times higher than for a; m½ �0. This effect

is related to the inverse of the covariance matrices and can be easily proven if an AR(1)

process is considered (Appendix, see also Rao and Toutenburg 1999). It is thus important

when using apriori VCM to control the validity of the solution by using exemplarily an

overall model test.

We note that the volume of the apriori ellipsoid can be artificially decreased by adding a

noise matrix [Fig. 4 (left) right bottom] by a factor two compared with a; m½ � ¼ ½0:005; 1�,
no noise. Thus the non-unicity of the parameters is highlighted as different sets may lead to

the same results for this quantity. This effect does not mean that one set should not be

preferred as mentioned in Sect. 4.2, the whitening of the observations being strongly

impacted by a; m½ � as well as the noise factor. The orientations in space of all the ellipsoids

are similar by\ 1� as long as the same cosine variance model is used. Taking an identity

model changes the orientation of the axis. However, the volume of the error ellipsoid is

underestimated by more than a factor 1000 in both apriori and aposteriori case.

From Fig. 4 (right), the aposteriori ellipsoid with the ELEV model seems to be a better

estimation of the precision and nearly corresponding to the reference value of 44.38.

However, this higher volume has to be linked with a higher r̂ (Sect. 4.4) and the corre-

sponding solution should be excluded with an overall model test. Thus the least-squares

results should always be critically considered to avoid a model misspecification and

generally if correlations are present, they should not be neglected for coherence and

reliability of the solution.

4.3.2 Impact on the aposteriori variance factor and the estimates

A poorly estimated apriori VCM leads to a biased least-squares solution. The biases of the

aposteriori variance factor and the estimates can be expressed literally, see Xu (2013) and

Kutterer (1999). However, these formulas necessitate the knowledge of the true VCM and

are essentially useful for simulations purpose (Kermarrec and Schön 2017). In real case,

the global validity of the solution can be checked thanks to the overall model test. In our

case moreover, the true coordinates are known. Thus, we consider that the more accurate

solution corresponds to the smallest 3Drms.

Following the methodology of 3.3.1., Table 1 presents the results obtained by using

different Mátern parameter sets.

The first line of Table 1 highlights the effect of a small a (i.e. a too long correlation

length). It can be seen that both the 3Drms and the aposteriori variance factor will be

impacted by such a misspecification. For instance, the 3Drms increases from 35% with

a; m½ � ¼ ½0:001; 1� compared with the reference set. At the same time, E r̂
Ŵ

� 	
is over the

apriori value decreasing the number of batches available for computing the solution. Thus,

we point out the importance of avoiding an underestimation of the parameter a as men-

tioned in 3.3.1. The effect of increasing a is not presented for sake of shortness. It leads

however to a solution which becomes closer to the one given with the ELEV model.

In the second line of Table 1, the smoothness is decreased to � corresponding to an

exponential model. A negligible increase of the 3Drms can be seen when a ¼ a0 by at the

same time an increase of E r̂
Ŵ

� 	
by 0.35 mm (10%). When a ¼ 0:005, the results are
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similar with the one of a; m½ �0, pointing out the non-unicity of the best solution. Thus, the

effect of taking a smoothness of � can be compensated by decreasing a. We highlight

however that the whitening of the observations will not be similar, particularly at high

frequencies (Sect. 4.1).

If the correlations are disregarded, we note a strong increase of E r̂
Ŵ

� 	
to 9.5 mm with

the ELEV model and 22 mm using the ID model. Thus without adapting the apriori

variance factor, no solution could be computed. However, if we increase artificially r0 to

reach the E r̂
Ŵ

� 	
, the 3Drms with the ELEV model gets similar to the value found with

fully populated VCM. This solution remains statistically incorrect and fully populated

models should be preferred due to the realistic E r̂
Ŵ

� 	
. For the ID model, a model

misspecification can be guessed as E r̂
Ŵ

� 	
reaches 22 mm and the 3Drms is 27 mm over

the ELEV value.

4.4 L3 dataset and short baselines

In order to assess to which extend fully populated VCM would impact observations from

the ionosphere-free linear combination, the Fourier amplitude spectrum of the double

differenced time series with a satellite at 25� elevation is analysed in Fig. 5. L1 mea-

surements exhibit stronger low frequency between 0.0005 and 0.004 Hz than L3 obser-

vations (i.e. between 2 and 10 times higher for L1 than for L3) due to the remaining

unmodelled ionospheric effects. The high frequencies content is however similar for L1

and L3.

Consecutively, the impact of fully populated VCM on the whitening of L3 observations

will be less important as a ML estimation of a; m½ � � 0:028; 1½ � highlights. Due to the low

correlation level, the effect on the least-squares results will not be as important as for L1

observations. Indeed, using the same data set and methodology as previously, the apos-

teriori variance factor was found to be 2.8 mm for the fully populated case and 3.3 mm for

the ELEV case. Correspondingly, the 3Drms showed an improvement at the submm level:

from 2.17 mm with the diagonal to 2.15 mm with the correlation model.

Table 1 E r̂
Ŵ

� 	
and the mean of the 3Drms are computed with VCM corresponding to different parameter

sets a; m½ �. The results obtained for diagonal VCM (ELEV and ID) are given additionally. An overall model
test was applied

a; m½ �0¼ 0:012; 1:1½ � a; m½ � ¼ ½0:005; 1� a; m½ � ¼ ½0:001; 1�

E 3Drmsð Þ [mm] 55.95 63.42 75.00

E r̂
Ŵ

� 	
[mm] 3.43 3.91 4.52

a; m½ � ¼ ½0:01; 1=2� a; m½ � ¼ ½0:005; 1=2� ELEV ID

E 3Drmsð Þ [mm] 56.07 55.90 57.07 (adapted r0) 82.71 (adapted r0)

E r̂
Ŵ

� 	
[mm] 3.79 3.38 9.73 22.79

Bold corresponds to the Matern parameter set found by MLE whereas italic means that anadapted r0 was
used to compute the solution
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These variations can be considered as negligible. Thus, the filtering effect of fully

populated VCM is less important than for the corresponding L1 observations. Results with

short baselines are similar, the frequency content being, expect in extreme cases when for

instance multipath is present, homogeneous and close to a white noise. However, this does

not mean that correlations should be neglected. In case of multipath, the more realistic

aposteriori variance factor obtained with fully populated VCM can influence positively the

3Drms when the overall model test is applied, particularly when batches of less than 1 h

are computed.

5 Conclusions: on taking correlations into account

Because it remains easier to use diagonal covariance matrices in a least-squares adjustment

for relative positioning, correlations of GPS phase observations are generally neglected. In

this contribution, an innovative model based on the flexible and easy to use Mátern

covariance family adapted to GPS observations was presented. Both the smoothness and

the correlation length are allowed to vary in a physically plausible range. These parameters

are determined by MLE either for all satellites independently or only for the reference

satellite. Fully populated variance covariance matrices can be built and integrated in the

least-squares adjustment.

Thanks to a particular case study corresponding to a 80 km long baseline, the model

was shown to give a better whitening of the observations. If the smoothness impacts more

strongly the high frequency content, the correlation parameter allows a down weighting of

the low frequencies that come from unmodelled effects. Moreover, a more realistic pre-

cision together with reliable results from test statistics such as the overall model test could

be obtained, the impact at the estimates level being negligible compared with results found

with the cosine variance model that disregards correlations. The risks of underestimating

the correlation parameter were pointed out as leading to a higher aposteriori variance factor

and voluminous error ellipsoid, whereas a low smoothness gave results close to the

diagonal model.

Thanks to the parametric formulation, the proposed model can be adapted to various

datasets without having to use LS-VCE procedures which are computational demanding.

Although in our experience a smoothness of 1 is preferable, the 3Drms under an

Fig. 5 Fourier amplitude
spectrum for L1 and L3 double
differenced observations. A
satellite at 25� elevation was
chosen
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exponential model is comparable as long as the correlation parameter is decreased

accordingly by approximately 0.005. In that case, the VCM becomes invertible thanks to a

close formula. As a consequence, the equivalent diagonal model proposed by Kermarrec

and Schön (2016) can be easily use, allowing more reliable least-squares results by less

computational burden.
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Appendix: On the inverse of the covariance matrix

Studying the inverse of the fully populated covariance matrix is interesting to gain a better

insight on the way correlations act on the previous results, particularly on the apriori

cofactor matrix of the estimates and by extension of the ambiguities.

However, except in particular cases, VCM based on Mátern model do not have an

explicit formulation of their inverse. We will therefore first present the particular case of an

AR(1) process and in a second step take an example of the matrices used in this article.

AR(1) and Mátern matrices

In this case, the inverse of the covariance matrix reads

W�1
ARð1Þ ¼

1

1 � q2

1 �q 0 . . . 0 0

�q 1 þ q2 �q . .
.

0 0

0 �q 1 þ q2 . .
.

0 0

..

. . .
. . .

. . .
. . .

.
0

0 0 0 . .
.

1 þ q2 �q
0 0 0 . . . �q 1

2

6666666664

3

7777777775

where q is the autocorrelation function.

Thus, from a fully populated WARð1Þ, only a sparse matrix remains which lines have 2

different values (1) the diagonal elements and (2) a negative value on the off-diagonal. A

scaling factor 1
1�q2 depending on the correlation length can be further identified. This

structure can be extended for Mátern covariance matrices, i.e. a factor depending on the

Mátern parameter set chosen is mainly responsible for the scaling of apriori cofactor

matrices of the estimates as shown in Sect. 4. The error ellipsoid may thus be artificially

too voluminous if a wrong correlation structure is taken into account.

Taking noise matrix into account

In order to see how noise matrices are impacting the inverse of the covariance matrices, a

particular case is chosen to compute the covariance function as defined in Eq. (9) corre-

sponding to a satellite at 45� elevation. Only the first 100 epochs of the block diagonal

matrix are analysed.
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Fig. 6 (left) shows the corresponding line of the covariance matrix for different cor-

relation structures. For a; m½ � ¼ ½0:0025; 1� and due to the smoothness of 1, the first values

of the covariance decreases slowly with time

The corresponding line of the inverse of the covariance matrix for the different cases are

depicted in Fig. 6 (right). The signature of the inverse of a fully populated VCM is clearly

seen when no noise matrix is taken in consideration, i.e. small oscillations around the 0–

value. The amplitude of the variations increases as a decreases. If a noise matrix is added

only the first oscillation remains, the other ones being replaced by a ramp, thus damping

the effect of the correlations. This was highlighted by studying the whitening of the

residuals and this is the reason why the results given with or without noise matrix are

similar up to a given value of a and m where the equivalence between the smoothed and the

original curve is getting too high.
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