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Abstract Traditional torque type gravity gradiometer has an important pole in gravity

gradient measurements, while it is relatively inefficient and with the precision of about 1 E

mainly caused by the static operating mode. In this paper, we develop an improved torque

type gravity gradiometer to improve the measuring efficiency, which is based on the

dynamic modulation. The dynamic modulation keeps the gradiometer rotating on a

turntable steadily, measures the deflection angle of the torsion pendulum continuously and

then obtains the gravity gradients. The result shows that after using the improved gra-

diometer, the gradients Wxz and Wyz are obtained with precisions of 0.45 E and 0.32 E

respectively in a cycle of 20 min.

Keywords Improved torque type gradiometer � Dynamic modulation � Measuring

efficiency � Gravity gradient

1 Introduction

The gravity gradient measurement can offer an efficient way for resource explorations in

earth (Zhou et al. 2015; Völgyesi 2001). The torque type gradiometer was widely applied

to the oil field exploration in the past (Bell and Hansen 1998; Szabó 2016), because the
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gravity gradient data could be used to reveal underground mass distribution. The torque

type gradiometer designed by Eötvös made a great difference on the petroleum industry in

early twentieth century (Barton 1931; DiFrancesco et al. 2009; Shaw and Lancaster-Jones

1922). The equilibrium position and torsional motion of the pendulum in this type gra-

diometer were found to be remarkably stable and relatively constant, so that the instrument

could be used not only in a well-protected laboratory, but also in a field (Shaw and

Lancaster-Jones 1922). However, the gravity gradient measurement with the Eötvös torque

type gradiometer needs a long time to record the deflection angle of the torsion pendulum.

The observation using this type gradiometer should be done in the night of stable mea-

surement environment (Szabó 2016), since it is easily affected by the external environment

variations, such as temperature fluctuation, barometric pressure change and so on. There

have been many successive improvements on the instrument structure and measuring

process, while all these relative observations with the static operating mode need a long

measurement cycle (Schweydar 1918; Rankine 1932). The gravity gradients given by the

torque type gradiometer should be determined by observing at least five different azimuth

angles (Bell and Hansen 1998), the observers must alternate the azimuth angles of the

gradiometer by a turntable with manual and later automatic operations (Völgyesi 2015),

and besides the formal observation starts after the torsion pendulum reach to the

stable state. Typically, the torsion pendulum has a period of swing exceeding twenty

minutes (Rankine 1932). These above factors result in the relatively low efficiency of this

type gradiometer. Then, for this traditional torque type gradiometer, the gravity gradients

could be obtained with a precision of 1 E after 12 h observation (Shaw and Lancaster-

Jones 1922).

In order to improve the measurement efficiency and accuracy, we develop an improved

torque type gradiometer with dynamic modulation mode to determine the gravity gradients.

The torsion pendulum is placed on a stable turntable, which rotates continuously at a

constant velocity during the observation, and then we can obtain a set of gravity gradients

from every rotating cycle. In addition, the torsion pendulum is free to twist, and the useful

signal is modulated on the measurable deflection angle (Luo et al. 2013). Therefore,

compared to the traditional Eötvös torque type gradiometer with the static operating mode,

the torsion pendulum of the improved gradiometer can observe the deflection angle of the

pendulum continuously and measure gravity gradients in a short period of the turntable.

Due to the short measurement cycle, this improved Eötvös torque type gradiometer can

avoid unnecessary noises and disturbances. In this paper, we propose the principle of the

improved gradiometer, describe the design of the relative instrument, and analyze the

influences of the thermal noise and irregularity in the rotation rate on the estimation of the

gravity gradients. Finally, we process a typical data set of the measurement of the gravity

gradients with the improved torque type gradiometer, then obtain the values and uncer-

tainties of the gravity gradients, and further make contribution to the determination of the

gravity gradients.

2 Principle of the improved torque type gradiometer with dynamic
modulation

2.1 Gravity gradient

The gravity potential W of the earth is expressed as
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W ¼ V þ U; ð1Þ

where V is the gravitational potential, U is the potential of centrifugal force. There are 9 s

order partial derivatives of W in a cartesian coordinate system, expressed as:
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where the five components Wxx, Wxy, Wxz, Wyy, and Wyz are independent, since the earth

gravity field is an irrotational field and the three diagonal components satisfy the Poisson

equation in the earth (Dehlinger 1978; Völgyesi 2015). The gravity gradients are defined as

Wij (i, j = x, y, z), which contain more detailed information of the gravity potential than

first order partial derivatives of W.

2.2 Principle of the improved gradiometer with dynamic modulation

As the Fig. 1 shows, our specific torsion pendulum consists of four identical cylindrical test

masses made of aluminum (diameter: 15.50 mm, height: 13.42 mm, mass: 2.53 g), with

essentially the same mass. They are positioned on a circular aluminum pendulum tray

(diameter: 80 mm, thickness: 2.5 mm, mass: 33.93 g). The masses 1 and 4 marked as the

black circles in Fig. 1 are above the tray, the masses 2 and 3 marked as the black dashed

circles are under the tray, and the four masses form a square with the side length s. The

selection of arrangement for four test masses is beneficial for us to ensure the pendulum’s

sensitivity of the Wxz and Wyz. We define a clear relation between the lab frame (O-xyz)

and the rotating frame (O-XYZ) in order to describe the principle of the dynamic modu-

lation explicitly. Both origins O of the above two frames are at the same center-of-mass of

Fig. 1 Schematic drawing of the
pendulum tray, the four test
masses and the autocollimator
viewing from the top. The
s equals 42.23 mm. Both origins
O of the above two frames are at
the same center-of-mass of the
torsion pendulum. The x (X) and
y (Y) are axes of the lab (rotating)
frame. The X and Y are along the
direction of test masses 2 ? 1
and 1 ? 4 respectively. The
x and y are towards East and
North respectively
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the torsion pendulum which rotates with the turntable together. The X-axis and Y-axis of

the rotating frame (O-XYZ) are always along the directions of mass 2 pointing to mass 1

and mass 1 pointing to mass 4, respectively. The vertical axes z and Z coincide with the

direction along the torsion fiber marked as the black line in Fig. 2, parallel to the net force

on the pendulum. The horizontal axes of the lab frame, x and y, are parallel to North and

East respectively in geodesy. As the Fig. 2 shows, in our dynamic modulation measure-

ment, we adjust the two frames to coincide with each other when the pendulum is in the

equilibrium position, which occurs before we start to measure the gravity gradients. Then,

we keep the pendulum rotating with the turntable at a constant angular velocity x. The t is

the dynamic modulation time, and the azimuth angle xt is the rotation angle of the rotating

frame relative to the fixed lab frame in the dynamic modulation. The deflection angle

h(t) of the pendulum is measured in rotating frame by an autocollimator which rotates

together with the pendulum counterclockwise.

The inertia tensors of the pendulum, ILM (L, M = X, Y, Z) can be calculated by the

physical parameter of the pendulum in the O-XYZ, and they are constant because both of

the pendulum and the rotating frame rotate together with the turntable. In other words, the

relative position between pendulum and the rotating frame is constant.

The torque about the fiber s(t) caused by the gravity gradients on the whole pendulum is

(Völgyesi 2015)

sðtÞ ¼ ðIYY � IXXÞ �WXY þ IXZ �WYZ ; ð3Þ

where WXY, WXZ are gravity gradient components defined in the O-XYZ. The WXY and WXZ

are just intermediate physical quantities and change in the different azimuth angle. These

time-varying gravity gradient components should be converted into some gravity gradient

components which are defined in fixed lab frame O-xyz. The relation between two frames is

written as

Fig. 2 (color online) Schematic drawing of the torsion pendulum, viewing from the front. The schematic
drawing correspond to the photo of the pendulum. The torsion fiber and the two frames we defined are
shown. The torsion pendulum consists of the two same clamps denoted as the black rectangles, two
reflecting mirrors marked as the black squares, two same aluminum rods, four same test masses marked as
the rectangle frame and a pendulum tray shown as the black rectangle frame. The black full line is the
torsion fiber. The two frames are marked as the black solid and dashed lines with arrows, respectively. The
azimuth angle between the two frames is marked as the xt
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X ¼ x cosðxtÞ þ y sinðxtÞ
Y ¼ y cosðxtÞ � x sinðxtÞ
Z ¼ z

8<
: : ð4Þ

Then Eq. (3) can be rewritten as:

sðtÞ ¼ ðIYY � IXXÞ sinð2xtÞ=2 � ðWyy �WxxÞ þ ðIYY � IXXÞ cosð2xtÞ �Wxy

þ IXZðcosðxtÞ �Wyz � sinðxtÞ �WxzÞ;
ð5Þ

where Wxx, Wyy, Wxy, Wxz and Wyz are gravity gradients defined in the O-xyz. The pendulum

has a tiny deflection angle h(t) under the torque s(t), and the torque is expressed as:

sðtÞ ¼ khðtÞ; ð6Þ

where k is the torsional spring constant of the fiber (Tu et al. 2010).

In this way, we could observe the h(t) to obtain the torque about the fiber, and then

measure the gravity gradient components defined in the O-xyz. The observed deflection

angle of the pendulum is expressed as:

hðtÞ ¼ ðIYY � IXXÞðWyy �WxxÞ sinð2xtÞ
�
ð2kÞ þ ðIYY � IXXÞWxy cosð2xtÞ

�
k

þ IXZðcosðxtÞWyz � sinðxtÞWxzÞ
�
k:

ð7Þ

Equation (7) shows that the h(t) is a sinusoidal function of the turntable rotation angle

xt. And the h(t) consisting of 1x, 2x orthogonal signals with four coefficients of the sine

signal amplitude components a1
sin, a2

sin equals -(IXZ/k)�Wxz and ((IYY - IXX)/

(2 k))�(Wyy - Wxx), respectively. The cosine signal amplitude components a1
cos, a2

cos equals

(IXZ/k)�Wyz and ((IYY - IXX)/k)�Wxy, respectively. For every cycle of rotation, we can

estimate a1
sin, a1

cos, a2
sin and a2

cos accurately via the nonlinear least-squaring fitting method.

Then, the three gravity gradient components Wxy, Wyz and Wxz, and the linear combination

of the independent components (Wyy - Wxx) are given by:

Wyy �Wxx ¼ 2k=ðIYY � IXXÞasin
2

Wxy ¼ k=ðIYY � IXXÞacos
2

Wyz ¼ ðk=IXZÞacos
1

Wxz ¼ ð�k=IXZÞasin
1

8>><
>>:

: ð8Þ

For the traditional torque type gradiometer with the static operating mode, the h is not a

consecutive sinusoidal signal but five discrete data. The discrete data obtained from the

observation of the h at five difference azimuth angles (Lancaster-Jones 1932). Typically,

this gradiometer sets the torsion pendulum at 0�, 72�, 144�, 216�, 288� azimuth angles and

then observe h for each azimuth angle (Shaw and Lancaster-Jones 1922; Völgyesi 2015).

In this way, observers could calculate the four gravity gradient components (Wyy - Wxx),

Wxy, Wyz and Wxz by the five independent equations based on Eq. (7). In this operating

process, observers alternate azimuth angles of the pendulum regularly, and then the pen-

dulum starts to swing. The torsion pendulum has a period of swing exceeding 20 min, and

after having been disturbed returns to rest in its almost equilibrium position in approxi-

mately 2 h (Shaw and Lancaster-Jones 1922). Besides, the h is recorded only after the

torsion pendulum at a almost steady state. Therefore, most of the observe time is used to

wait for the pendulum reaching to its equilibrium position, and it needs a complete observe

cycle of at least 12 h.
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For the improved gradiometer with dynamic modulation, as above mentioned, the h(t) is

modulated as a sinusoidal signal by the rotating turntable. The recorded h(t) is a real

reflection of the external torque coming from the gravity gradients, and the signal is

sampled from the deflection angle of the pendulum at uniformly-spaced azimuth angles

continuously during the experiment. That is to say, the improved gradiometer increase the

sampling rate, and then decrease the observing time. It avoids costing much time as the

traditional torque type gradiometer does. For every observed cycle, it could obtain a

periodic signal which consists of 1x and 2x sine and cosine signals just as Eq. (7) shows.

Therefore, the four gravity gradient components can also be extracted from these sampled

sinusoidal signals. The most distinct feature of the dynamic modulation measurement is

that it needs less measurement time than the static operating mode. In this way, we could

minimize the external fluctuations and improve the measurement accuracy. Besides, we

can select a suitable rotation rate to avoid 1x or 2x signals mixing with the free torsion

oscillation signal of the pendulum.

3 Description of the gradiometer

The scheme of the experimental apparatus used to perform the measurements is shown in

Fig. 3. The main body of the torsion pendulum is suspended by an annealed tungsten fiber

(Goodfellow Cambridge Limited) with a length of 1000 mm and a diameter of 25 lm,

which hangs from a clamp which connects with an aluminum rod (long: 110 mm, diam-

eter: 6 mm, mass: 2.67 g). And the aluminum rod is through the center of the pendulum

tray, and two reflecting mirrors and two clamps are installed on its bottom and top sym-

metrically. The total mass of the torsion pendulum equals 73.35 g which is a half of the

max load of the fiber, and hence the fiber is maintained safe working status during the

experiment. The top of the tungsten fiber connects to the vacuum chamber marked as the

thick black full line in Fig. 3, which is fixed on the turntable. The turntable is driven by a

stepper motor and fixed on a supporting frame. An ion pump, which locates on the vacuum

chamber and rotates with the turntable, is used to maintain a pressure of *10-5 Pa (SP-

400) in the chamber during the experiments. Then the air damping can be negligible. An

autocollimator (ELCOMAT 3000), which also locates on the vacuum chamber and rotates

Fig. 3 A front view of the
improved gradiometer in our
measurement. The pendulum, ion
pump, autocollimator and torsion
pendulum rotate together at a
constant angular velocity x
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with the turntable, is used to measure the deflection angle h(t) of the torsion pendulum. The

inertia tensors of the pendulum are calculated in the O-XYZ, and the IXX, IYY, IXZ and IZZ are

45.404, 45.404, 4.620 and 52.822 kg mm2 respectively. This installation leads to

IXX = IYY, so we can measure Wxz, Wyz based on Eq. (8) at present.

We divide the experiment into 4 steps. For the first step, we use the rotary vane pump,

the turbo molecular pump and an ion pump to maintain a pressure of 10-5 Pa in the

chamber during the experiment. For the second step, we let the two frames coincide when

the pendulum is in the equilibrium position before formal measurement of the gravity

gradients by adjusting the fiber. For the third step, the rotation period T of the

turntable drive motor is set 1200 s, then the turntable drive motor is activated, and thus

pendulum starts to rotate around the Z axis slowly. Meanwhile, the rotating autocollimator

records the discrete data of the deflection angle h(t) at a regular interval of 1 s. Finally, we

obtain a angle-time data set {h(ti), i = 1,2,…}, where ti is the sequence of sampling time.

4 Systematic effects

Thermal noise is one of the most fundamental limits to the precision of mechanical

measurements, which is also of great importance and needs considering in the high-

sensitivity gradiometer. Besides, in the improved gradiometer, since we use the

turntable which rotates continuously at a constant velocity during the observation, we

should also consider the effect from the irregular rotation rate of the turntable on the

gravity gradients.

4.1 Thermal noise

Thermal noise originates from Brownian motion, and the power spectrum of the h(t) due to

the thermal noise could be written as:

hðxÞj j2¼ 4kB ~TIZZx0Q

ðk � IZZx2Þ2
Q2 þ I2

ZZx
2x2

0

; ð9Þ

where kB, ~T and Q are Boltzmann constant, ambient temperature and quality factor of the

torsion balance system, respectively (Saulson 1990). And the resonant frequency x0 equalsffiffiffiffiffiffiffiffiffiffiffi
k=IZZ

p
. In our experiment, the Q of the fiber approximates to 3000, the ~T approximates to

294 K, the k equals 6.2 9 10-9 Nm/rad and the corresponding x0 is about 0.0108 rad/s.

We plot the thermal noise power spectrum of the h(t) in Fig. 4.

If the measuring frequency ranges from 0 to 0.001 Hz, then thermal noise limit can be

expressed as:

dT�noise
potentialh¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 0:001Hz

0

hðf Þj j2df

s
¼ 1:18e�8 rad: ð10Þ

According to the principle of the error average distribution (Kirkup and Frenkel 2006)

dT�noiseasin
1 ¼dT�noiseacos

1 ¼ dT�noise
potentialh=

ffiffiffi
2

p
; ð11Þ

where dT-noisea1
sin and dT-noisea1

cos are the errors of the thermal noise on a1
sin and a1

cos

respectively. From Eq. (8), the errors of the thermal noise to Wxz and Wyx is given as:
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dT�noiseWxz ¼
k

IXZ
dT�noisea

sin
1

dT�noiseWyz ¼
k

IXZ
dT�noisea

cos
1

8>><
>>:

: ð12Þ

As a result, our gradiometer measurement resolution for Wxz and Wyx are both 0.01 E

based on Eqs. (10–12).

4.2 Irregularities in the rotation rate

Suppose that the rotation of the turntable is not uniform, but it can be modulated at the

rotation frequency x and/or its higher harmonics nx. Then the actual turntable rotation

angle a is expressed as:

a ¼ xt þ
X1
n¼1

Une
inxt;

where Un are complex numbers. The deflection angle of the pendulum in the lab frame is

defined as hL(t) (Su 1992; Choi 2006). Here the external torque is zero and the damping is

ignored, and then the equation of the pendulum motion can be further written as (Su 1992):

IZZ €hL ¼ �kðhL � aÞ ¼ �k hL � xt �
X1

n¼1
Une

inxt
� �

: ð13Þ
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Fig. 4 The power spectrum of the thermal noise. The horizontal axis and vertical axis are the frequency and
the amplitude of the power spectrum of the thermal noise
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The solution of Eq. (13) is

hL ¼ xt þ
X1
n¼1

x2
0

x2
0 � n2x2

Une
inxt:

Therefore, in the rotating frame, the deflection angle h is converted into:

h ¼ hL � a ¼
X1
n¼1

n2x2

x2
0 � n2x2

Une
inxt: ð14Þ

If n equals 1, then there is a spurious 1x signal due to the irregularities in the rotation

rate. The coefficients of the sin and cosine components are given by

dturntablea
sin
1 ¼ x2

x2
0 � x2

U1; dturntablea
cos
1 ¼ x2

x2
0 � x2

U1 ð15Þ

The deviations dturntableWxz and dturntableWyz of the Wxz andWyz due to irregularities in

the rotation rate effect are expressed as:

dturntableWxz ¼
k

IXZ
dturntablea

sin
1

dturntableWyz ¼
k

IXZ
dturntablea

cos
1

8>><
>>:

; ð16Þ

It is necessary that the rotation rate of the turntable should be controlled at a single

rotation frequency x. Typically, all of the complex numbers |Un| are less 0.1 lrad, and then

the deviations of the Wxz and Wyx due to irregularities in the rotation rate are 0.03 E based

on Eqs. (15, 16).

5 Experiment result

Before the formal measurement, we consider the measuring range of the improved gra-

diometer (Völgyesi and Ultmann 2012), but we do not find a point where the gravity

gradients are big value in our lab. Since the range depends crucially on the measuring

range of the autocollimator (ELCOMAT 3000), the range, namely the maximum mea-

surable angle of the h(t), of the ELCOMAT 3000 we adopted is ±14,059.6 lrad (±290000).

According to the Eq. (8) e.g.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðacos

1 Þ2 þ ðasin
1 Þ2

q
� 14059:6 lrad, the measuring range of the

gradiometer is limited by an in equation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

xz þW2
yz

q
� 18873:4E. It concludes that the

gradiometer can measure Wxz and Wyz of a point where both of |Wxz| and |Wyz| are smaller

than 13300 E.

After about forty-four hours formal measurement with the improved gradiometer, we

obtain the angular deflection h(t) of the torsion pendulum shown in Fig. 5. We find that

h(t) is not a simple sine (or cosine) signal, and it contains other frequency signals. Then, we

plot the spectrum of the whole raw data shown in Fig. 5. We find that there are 1x, 2x and

x0 signals in the raw data. The 1x signal is the useful oscillation signal for us to obtain Wxz

and Wyz. The 2x signal is the second harmonic of the useful oscillation signal, caused by

the defective of the pendulum(the inertia tensors IXX and IYY are not equal strictly) and the
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Fig. 5 The raw data h(t) from 44 h (about 130 turntable periods) of a normal experiment. The black line is
the signal h(t). a The angular deflection h(t) of the pendulum versus time at the time from 20 to 23 h; b The
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the sampled time series, and the vertical axis is the amplitude of the h(t)
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irregularities in the rotation rate (in the Eq. (15), let n equals 2). We could use a very

symmetrical pendulum and keep rotation rate steady to suppress the 2x signal if we need

the improved gradiometer to obtain a higher measurement precision. The x0 signal is the

free torsion oscillation signal caused by the physical characteristic of the torsion fiber.

As the Fig. 6 show, we could use the frequency estimation method (Quinn 1994) to

extract the period of the free torsional oscillation signal T0. And then, we estimate the Wxz

and Wyz by the following 5 steps of the data processing.

Firstly, we use a torsional filter (Su 1992) to process the raw data in order to eliminate

the x0 signal. The torsional filter is to add two data points separated by p of torsional

phase, expressed as

hfilteredðtÞ ¼
1

2
h t � T0

4

� �
þ h t þ T0

4

� �� 	
;

where T0 is the period of the free torsional oscillation signal and equals 579.9 s in our

experiment. Then, the filtered signal hfiltered(t) equals {hfiltered(ti)}. In this way, the torsional

oscillation signal will be significantly minimized in raw data. Meanwhile, the useful

amplitude of the 1x signal has also be attenuated by a factor R(x) = cos(xT0/4) (Su

1992), and in our experiment, the R(x) of the 1x signal is about 0.72. This attenuation

needs to be corrected for the 1x signal in result. The power spectral density of the

amplitude of the filter data shows in Fig. 7. We find that the x0 signal is decreased by

about two orders, and the filtered 2x signal is reduced to about the 1/25 of the raw 2x
signal at the same time. The amplitude attenuation of the useful 1x signal can be corrected

to real amplitude in result. The data, which is usually two day long, has a irregular drift in
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Fig. 7 (color online) Power spectral density of the raw signal h and the filtered signal hfiltered. The blue, red
and black lines denote the power spectral densities of the raw signal, filtered signal and thermal noise,
respectively. The peaks 1, 2 and 3 marks 1x, 2x and x0 signal, respectively. The horizontal axis is the
frequency, and the vertical axis is the amplitude. The details of the PSD between peak 2 and 3 are encircled
by a black rectangle frame which shown in Fig. 6
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temperature. Although this drift is small, its effect can be reduced by cutting the entire data

into smaller segments and fitting each separately.

Secondly, each segment contains 3 periods of turntable, and then the filtered data is

divided into 43 segments in the experiment. For the jth segment, the filtered data is

fh j
filteredðtiÞg





i¼1;2;���;3T

j¼1;2;...;43
, then the cut angular deflection signal hc

j (t) in the jth segment could

be express as

h j
cutðtÞ ¼ fh j

filteredðtiÞg




i¼1;2;...;3600

j¼1;2;...;43
:

Because each segment consists of an integer number of cycles, the harmonic terms in fit

function are orthogonal to each other. The reason that we do not use shorter cuts is to

ensure the harmonic terms approximately orthogonal to the drift terms and to have enough

data points for a reliable fit (Choi 2006).

Thirdly, for every segment, we use the nonlinear least-squaring fitting method to fit the

filtered signal points to extract the sine and cosine amplitude components of the mx signal

in the jth segment. A similar nonlinear fitting method has been used in testing the

equivalence principle by Gundlach et al. (1997). Base on the signal component of the

experimental data, the goal fitted function could be written:

ĥ j
cðtÞ ¼ bj þ cjt þ

Xh
m¼1

ðacos
m;j cosðmxtÞ þ asin

m;j sinðmxtÞÞ;

where bj is constant term, cj is liner drift coefficient, m denotes the m order harmonic of the

useful signal and the highest item h is set 9, and (asin
m;j, a

cos
m;j) is the (sine, cosine) amplitude
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Fig. 8 The blank points are fitting value of the 1x signal component coefficient in every segment. The
asterisk and its error bar denote the final value and uncertainty of the corrected amplitude, respectively. a

The ~asin
1;j is the sine amplitude component of the 1x signal in jth cut data. b The ~acos

1;j is the cosine amplitude

component of the 1x signal in jth cut data
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components of the mx signal in the jth segment (j = 1, 2,…, 43), respectively. We use this

function because the filtered data has not significant drift or has only linear drift which is

removed by the torsional filter.

Later, we use the Chi Square to test our fitting result:

v2
j ¼

1

r2
i

X3600

i¼1

½ðh j
cutðtiÞ � ĥ j

cutðtiÞ�
2;

where h j
cutðtiÞ is the jth segment of the filtered data, ĥ j

cutðtiÞ is our fitting result for jth

segment filtered data. The ri
2 is every point standard deviation in the jth segment filtered

data and we let ri equals 0.5 lrad in our data process, the freedoms of the jth segment

filtered data m equals 3580. If vj
2[ 1, then we consider that the ĥ j

cutðtiÞ is not fit h j
cutðtiÞ and it

should be eliminated. In our experimental data that all 43 segments have been fitted eligible.

For the jth segment, the estimated value of the amplitude components, (asin
1;j ,a

cos
1;j ) are

given by the above fitting accurately. These fitted amplitude components, {(asin
1;j ,a

cos
1;j ),

j = 1, 2, …, 43} should be corrected to the real amplitude components, {(~asin
1;j ,~a

cos
1;j ), j = 1,

2, …, 43} base on Eq. (17).

~asin
1;j ¼ asin

1;j=RðxÞ; ~acos
1;j ¼ acos

1;j =RðxÞ: ð17Þ

Then, the corrected amplitude of the components is plotted in Fig. 8.

The average values, (�asin
1 ,�acos

1 ) and error bars, (r�asin
1 ,r�acos

1 ) of the 1x signal component

coefficient could be obtained by statistical and average for the {(~asin
1;j ,~a

cos
1;j ), j = 1, 2, …,

43}:

�asin
1 ¼ 1

43

X43

j¼1

~asin
1;j ; r�asin

1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

43ð43 � 1Þ
X43

j¼1

ð~asin
1;j � �asin

1 Þ2

vuut ; ð18Þ

�acos
1 ¼ 1

43

X43

j¼1

~acos
1;j ; r�acos

1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

43ð43 � 1Þ
X43

j¼1

ð~acos
1;j � �acos

1 Þ2

vuut : ð19Þ

Base on Eqs. (18) and (19), the result of the average value and the error bars could be

written:

asin
1 ¼ ð326:89 � 0:03Þlrad

acos
1 ¼ ð64:52 � 0:02Þlrad

(
:

The measurement results of the each segment are coincide within the error bar.

According to Eq. (8), the measurement result of the Wxz and Wyz could be shown:

Wxz ¼ ð�438:68 � 0:04ÞE
Wyz ¼ ð86:58 � 0:03ÞE

(
:

For the whole experiment, the measurement accuracy rWxz and rWyz of the Wxz and Wyz

are 0.04 E and 0.03 E respectively. We usually use a period of the turntable to complete a

single measurement, and then the single measurement accuracy r1Wxz and r1Wyz of Wxz

and Wyz could be show in Eq. (20)
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r1Wxz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � 43

p
rWxz

r1Wyz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � 43

p
rWyz

(
; ð20Þ

where 3 9 43 is the number of the periods for the whole experiment.

The single measurement accuracy r1Wxz and r1Wyz of the improved gradiometer will

extend to 0.45 E and 0.32 E respectively based on Eq. (20).

6 Comparative measurement

In order to the practical justification of the theoretical considerations, we develop an

independent comparative measurement (Völgyesi and Ultmann 2012; Völgyesi 2015)

before the formal measurement. As the Fig. 9 shows, we structure a calculable and

knowable gravity gradient field GGb by installing two lead blocks around the pendulum,

and then test the responses (sensitivity) of the improved gradiometer to the artificial field

GGb. According to Eq. (5), we could only consider the deflection angle h(t) of the pen-

dulum at the frequency 1x. In this way, we perform the comparative measurement by three

steps. Step 1: we spend 15 h measuring the h(t) of the torsion pendulum in the field GG0

without setting the blocks, and the gravity gradient field is uniform and even. Step 2: we

measure the h(t) of the torsion pendulum in the field with setting the blocks about 9 h, and

this field is marked as GG0 ? GGb. Step 3, we remove the lead blocks and remeasure

h(t) in the gravity gradient field GG0.

Torsion pendulum

#1 Lead block

#2 Lead block

a

b
w

h

x

y

z

O H

R

Fig. 9 (color online) Schematic drawing of the lead blocks and the pendulum. The #1 and #2 lead block are
essentially the same blocks. The two blocks are symmetric about the origin of the lab frame (O-xyz). The
cross-section of the block is isosceles trapezoid. The upper and lower side length a, b and the height of the
trapezoid w are equal to 9.39(5), 11.89(5) and 7.9(1)cm, respectively. The height of the block equals
26.0(1)cm. The bottoms of the #1 and #2 block are parallel with the plane O-xy. The distance H between the
bottom of the #1 block with O-xy equals 18.3(5)cm, and the distance R from the inside plane of the #1 block
to O-xz equals 29.6(1)cm. The torsion pendulum is set in the dashed rectangle
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We measure the h(t) of the torsion pendulum in the fields GG0, GG0 ? GGb and GG0

orderly. As the Fig. 10 shows, we obtained Wxz and Wyz of the field GG0 with the same

method we adopt in formal measurement. Then we use the spherical function expansion

(Su 1992; Landau 2013) to calculate out the standardized 21th order multipole field

Qb
21¼ ½156ð1Þ � i73ð3Þ� � 10�9=s2 of the GGb, and further the theoretical Wb

xz and Wb
yz duo

to the field GGb. And the relation between the Qb
21 and the Wb

xz,W
b
yz is (Landau 2013):
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Fig. 10 (color online) The blank points are the fitting values of the Wxz and Wyz in every segment. The red
asterisk and its error bar denote the final value and uncertainty of the corrected value, respectively. The
number (1), (2) and (3) are labeled as the fields GG0, GG0 ? GGb and GG0, separately. There are 15, 9 and
16 sets of (Wxz, Wyz) in the fields GG0, GG0 ? GGlb and GG0, respectively. a: The Wxz in the jth cut data. b:
The Wyz in the jth cut data

Table 1 The result of the independent comparative measurement and its corresponding theoretical value

Gravity gradient field Wxz (theoretical) Wyz (theoretical) Wxz (measured) Wyz(measured)

Step 1 GG0 – – -4.61 (6) -0.84 (5)

Step 2 GG0 ? GGb – – 59.12 (4) -30.73 (1)

Step 3 GG0 – – -4.56 (4) -0.91 (3)

GGb 63.69 (5) -29.83 (4) 63.70 (8) -29.85 (6)
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Qb
21 ¼ 1ffiffiffi

6
p Wb

xz þ iWb
yz

� �
: ð21Þ

With the same way we use in formal measurement, the result of the independent

comparative measurement could be summarized in Table 1.

As the Table 1 shows, on the one hand the single measurement accuracies of the Steps

1–3 and the formal measurement are in good agreement. On the other hand, the mea-

surement results of the Steps 1 and 3 are still in good agreement. That is to say, the

measurement accuracy of the improved gradiometer is consistent. We can calculate the

measured Wxz and Wyz of the field GGb from the results of the Steps 1–3, and the measured

Wxz and Wyz are agree with the theoretical value. It is mean that the gradiometer could

response the artificial field GGb correctly. Therefore, the independent comparative mea-

surement indicate that the measurement of the improved gradiometer is stable and

effective.

7 Conclusions

In the measurement of the gravity gradients with the traditional torque type gradiometer, it

is of inefficiency and with relatively low accuracy due to the static operating mode. To

improve the efficiency and accuracy, we develop an improved torque type gradiometer by

using dynamic modulation mode. In the dynamic modulation mode, the torsion pendulum

is mounted on a continuously rotating turntable with a constant rate, and the gravity

gradients are extracted from the deflection angle signal that is modulated by the turntable.

This improvement shortens the measurement cycle largely and improves the accuracy of

the obtained gravity gradients effectively. The experimental results show that at the same

accuracy of 1 E, the measurement cycle of the improved torque type gradiometer is only

about one thirty-sixth of the traditional gradiometer. In the measurement of the gravity

gradient by the improved torque type gradiometer with dynamic modulation, the uncer-

tainties of the obtained gravity gradient components Wxz and Wyz are 0.45 E and 0.32 E

respectively, which are more precise than those obtained by the traditional torque type

gradiometer. The results of independent comparative measurement show that the mea-

surement of the improved gradiometer is stable and effective. The errors of the thermal

noise on the gravity gradient components Wxz and Wyz are 0.01 E. The errors of the

irregularities in the rotation rate on the gravity gradient components Wxz and Wyz are 0.03

E. The improved torque type gradiometer with dynamic modulation is highly efficient and

accurate. Because of the short measurement cycle, the observation can avoid many noises

and disturbances from external environment, and hence this improved torque type gra-

diometer may have a wide potential in practical applications. Besides, due to the config-

uration of our instrument and the particular positions of the four test mass, the preliminary

experiment of the gravity gradient with our improved gradiometer determines two com-

ponents Wxz and Wyz of the gravity gradient. As long as we alter the positions of the four

test mass, our improved gradiometer can also obtain the four components of the gravity

gradient like the traditional gradiometer. It is instructive and significant to improve the

torque type gradiometer measuring the gravity gradient. Since the gradiometer is a field

device that must operate in the field condition and the carrying and working conditions in

field are relative unsettled, we would adopt a relative stable but insensitive metallic leaf to

replace the fiber. That is to say, we must find a balance between sensitivity and stability. If
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some more improvement can be performed, our improved gradiometer can be used to

engineering application promisingly. Since the configuration of the instrument and the

position of test mass are not fully understood, there are still many works needed per-

forming in the future.
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