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Abstract This study employs a combination of weighted least-squares extrapolation and

an autoregressive model to produce medium-term predictions of polar motion (PM)

parameters. The precisions of PM parameters extracted from earth orientation parameter

(EOP) products are applied to determine the weight matrix. This study employs the EOP

products released by the analysis center of the ‘International Global Navigation Satellite

System Service and International Earth Rotation and Reference Systems Service’ needs to

be modified to ‘International Global Navigation Satellite System Service (IGS) and

International Earth Rotation and Reference Systems Service (IERS)’ as primary data. The

polar motion parameters and their precisions are extracted from the EOP products to

predict the changes in polar motion over spans of 1–360 days. Compared with the com-

bination of least-squares and autoregressive model, this method shows considerable

improvement in the prediction of PM parameters.

Keywords Earth orientation products � Weighted least-squares � Autoregressive

model � Polar motion prediction

1 Introduction

Earth orientation parameters (EOPs) include the nutation and precession parameters, the

polar motion parameters and the length of day (LOD). EOPs contain a wealth of geody-

namics information and play a significant role in applications including the determination

of high-precision satellite orbits, spacecraft tracking, laser measurements, and deep space

exploration. These parameters are needed to achieve mutual conversion between celestial

and terrestrial reference frames. Thanks to developments in modern measurement
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techniques, such as very long baseline interferometry (VLBI), satellite laser ranging (SLR),

global navigation satellite system (GNSS), and doppler orbitography by radio-positioning

integrated on satellite (DORIS) (Dow et al. 2005), increasingly accurate observations of

EOPs promote advances in celestial dynamics.

Due to the complexity of the data processing involved, EOP products cannot be cal-

culated in real time using the data obtained by modern earth observation technologies.

Thus, the parameters are usually provided after a delay of hours to days. However, for

some practical applications, the EOPs must be acquired in advance. For example, in

satellite navigation systems, only long-term predictions of EOPs can be used to achieve

mutual conversion between the celestial and terrestrial reference frames when satellites

enter the autonomous orbit mode. Therefore, a reliable and high precision prediction model

is needed. However, EOPs are affected by many factors (Völgyesi 2006) that can be

divided into two groups, specifically the effects of (1) different levels and periodic exci-

tation sources and (2) high-frequency variations. These factors cause enormous challenges

in the precise prediction of EOPs.

To check the accuracy of different methods of predicting EOPs, the Institute of Geodesy

and Geophysics of the University of Vienna conducted two prediction competitions, the

Earth Orientation Parameters Prediction Comparison Campaign (EOP PCC) in October

2005 (http://users.cbk.waw.pl/*kalma/EOP_PCC/) and the Earth Orientation Parameters

Combination of Prediction Pilot Project (EOPCPPP) in October 2010 (http://eopcppp.cbk.

waw.pl). The purposes of these activities were to encourage scholars worldwide to utilize

different methods to predict EOPs and to assess the forecasting accuracy and applicability

of various prediction methods. The prediction methods can be divided into two categories,

specifically single models (including both linear and nonlinear models) and combinations

of multi models (Freedman et al. 1994; Schuh et al. 2002; Kosek et al. 2004, 2008; Xu

2012; Guo et al. 2013; Xu and Zhou 2015). One major conclusion that was reached as a

result of these competitions is that no single prediction technique is suitable for all EOPs

over their entire ranges of variation. The following two conclusions were also reached. (1)

Least-squares extrapolation of harmonic models and autoregressive prediction (LS ? AR),

spectral analysis and LS extrapolation, and neural networks display relatively good per-

formance in predicting PM. (2) Kalman filters, wavelet decomposition and auto-covariance

prediction, and adaptive transformation of the atmospheric angular momentum (AAM)

yield relatively high-quality results in predicting UT1-UTC and LOD (Kalarus et al.

2007, 2010).

Many scholars have carried out studies on methods of predicting polar motion (Zhang

2012; Sun 2013; Lei 2016). Of these methods, LS ? AR models represent a relatively

stable type of model that is used to predict PM parameters; moreover, many scholars have

made different improvements to this method (Sun and Xu 2012; Xu et al. 2012a, b; Yao

et al. 2013). Note that the high calculation precision of the PM parameters is almost

negligible compare with the prediction accuracy; thus, the effects of model error on the

predictions should be emphasized. Therefore, how to address the residuals that result from

fitting LS models to data has been examined by different scholars. Differential method

processing LS ? AR models are used mainly in short-term forecasts (Yan and Yao 2012),

whereas WLS ? AR models are employed in medium-and-long-term predictions of PM

parameters. The main principle used by previous studies to construct the weight matrix is

that relatively high weights are assigned when the predicted values lie close to the data;

although this practice effectively improves the prediction accuracy, it depends consider-

ably on the experience of the operator (Sun and Xu 2012). Therefore, in this paper, we

propose employing the calculation precision of the PM parameters extracted from EOP

248 Acta Geod Geophys (2018) 53:247–257

123

http://users.cbk.waw.pl/%7ekalma/EOP_PCC/
http://eopcppp.cbk.waw.pl
http://eopcppp.cbk.waw.pl


products as weighting factors to determine the weight matrices of the vectors of obser-

vation used in the least-squares extrapolation model. In this study, the fitting parameters of

the weighted least-squares model are first calculated; the AR model parameters are then

determined from the residuals; and finally, the extrapolated values obtained from the WLS

and AR models are combined to obtain the final predictions. Having extracted PM

parameters and their precisions from the data products published by the analysis centres of

the IGS and the IERS, which are taken to represent basic data, this study predicts medium-

term changes in PM and compares them with the results predicted by the LS ? AR model

to verify the feasibility of the method presented here.

2 Methods

2.1 Weighted least-squares model

The method is based on LS ? AR. An introduction to the construction of and the calcu-

lations performed by the model is first presented. Existing studies have shown that the

major trends of the PM contain a linear term and periodic terms, including the Chandler

wobble and the annual and semi-annual terms (Sun 2013). The fitting equation of the LS

model can be expressed as:

X tð Þ ¼ a0 þ a1 � t þ a2 � cos
2pt
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� �
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where X(t) is the PM at time t; t is the UTC time (in years); a0; a1; a2; a3; a4; a5; a6; a7 need

to be estimated; T1; T2; T3 are the periods of the semi-annual, annual and Chandler wobble

terms, respectively. In this paper, T1 ¼ 0:5a; T2 ¼ 1a and T3 ¼ 1:183a. Estimates of the

model parameters can be calculated using formula (2):
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where a is the vector of estimated parameter; A is a coefficient matrix; L is a vector of

observation; and P is the weight matrix, which is a diagonal matrix. The residuals are then

processed using an AR model.
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2.2 Determination of the weight matrix

The key feature of the WLS method is that it incorporates a weight matrix into the

estimation of parameters based on LS models. An appropriate weighting method effec-

tively improves the precision of the model parameters, thus resulting in a more stable base

sequence for the AR model. In the actual process of surveying adjustment, using the

calculated precision of the parameters as the posterior factor is a commonly weighting

method. Therefore, this paper extracts the precision of PM parameters from the EOP

products released by different analysis centers for use as a variance factor in building the

weight matrix. The weight matrix is expressed as follows:

Pw ¼

r2
0

r2
1;w

0 0 0

0
r2

0

r2
2;w

0 0

..

. ..
. . .

. ..
.

0 0 0
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0

r2
n;w

2
66666666664

3
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ð6Þ

where w denotes the polar motion (PMX, PMY); n is the length of the basic data; the unit

weight variance r2
0 is assigned a value of 1; and r2

n;w represents the variances of the

calculated PM parameters on the nth day.

2.3 AR model

An AR model describes the relationship among the variables of a random series

zt t ¼ 1; 2; . . .Nð Þ, which can be expressed as follows:

zt ¼
Xp
i¼1

uizt�i þ et ð7Þ

where u1;u2; . . .up are autoregressive coefficients obtained using the least squares

method; p is the order of the model; and e represents zero-mean white noise. In this paper,

the AR model is constructed by the fitting residuals of the WLS model.

A key step in applying AR model is determining the order p. Three main methods of

estimating the orders of AR model exist. Specifically, these rules are the final prediction

error (FPE) criterion, the akaike information criterion (AIC), and the criterion autore-

gressive transfer (CAT). In practice, these three methods are virtually equivalent to each

other. The FPE criterion is adopted to determine the order of AR model.

FPE pð Þ ¼ N þ pð Þ
N � pð ÞPp ð8Þ

where

Pp ¼
1

N � p

XN
t¼pþ1

zt �
Xp
j¼1

ujzt�j

 !2

ð9Þ
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Here p ¼ 1; 2; . . .N, and Pp is the residual mean squared deviation of the model fitting

sequence in AR(p). When FPE (p) reaches its minimum value, p is taken to represent the

order of the best model.

2.4 Prediction error estimates

The mean absolute error (MAE) is an indicator of prediction accuracy. It is calculated as:

MAEi ¼
1

n

Xn
j¼1

Sij � Oi
j

��� ��� ð10Þ

where i is the prediction interval; Sij;O
i
j are the predicted and released values, respectively,

on day j; and n is the number of predictions used to calculate the statistics.

3 Examples and analysis

The products released by IGS and IERS contain the values and precision of PM param-

eters, and the time interval used in the products is 1 day. However, the EOP products

released by the IGS Analysis Centre are determined using GNSS technology, whereas

those of the IERS Analysis Centre are calculated using multiple technologies (such as

GNSS, VLBI, SLR, and DORIS); the precisions of the PM parameters are not the same. In

this study, the EOP products released by IGS and IERS are used as basic experimental data

to predict the medium-term PM and to verify the effectiveness of the method proposed. As

recent studies have shown (Sun et al. 2015), the highest accuracies are obtained in pre-

dictions using of the LS ? AR models when an input sequence of 10 years is used.

Therefore, this thesis takes 10 years as an elementary sequence to predict PM using an

interval of 1 day and a span of 1–360 days.

3.1 Experiments based on products released by IGS

The values and the precisions derived from the PM parameters products issued by IGS

(ftp://cddis.gsfc.nasa.gov/pub/gps/products/), which extend from January 1, 2002 to

December 31, 2011, are employed to construct the prediction model and build the weight

matrix. For each prediction (1–360 days), 600 and 1000 experiments are performed using

the LS ? AR and WLS ? AR methods. The predictions extend from January 1, 2012 to

August 18, 2014 and January 1, 2012 to September 22, 2015, and the sampling interval is 1

day. Tables 1 and 2 list the MAE values for the different prediction intervals, and these

values are shown graphically in Figs. 1 and 2.
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Table 1 Statistical accuracy results in 600 IGS forecasts

MAE PMX (mas) PMY (mas)

Prediction
day

LS ? AR WLS ? AR Accuracy
improvement (%)

LS ? AR WLS ? AR Accuracy
improvement (%)

1 0.216 0.215 0.074 0.106 0.106 0

5 1.484 1.480 0.23 0.665 0.660 0.739

10 2.831 2.793 1.353 1.244 1.226 1.51

30 8.210 8.024 2.26 3.875 3.613 6.765

60 15.886 15.106 4.907 8.114 7.022 13.467

100 23.285 20.704 11.083 14.159 10.262 27.525

120 27.145 22.273 17.95 16.218 11.193 30.986

150 31.700 24.281 23.405 17.826 12.486 29.957

200 33.499 25.094 25.092 15.553 11.851 23.803

250 30.509 23.914 21.616 13.475 9.726 27.819

300 30.179 25.690 14.874 15.579 10.894 30.069

360 36.631 25.753 29.697 18.685 13.376 28.413

Table 2 Statistical of accuracy results in 1000 IGS forecasts

MAE PMX (mas) PMY (mas)

Prediction
day

LS ? AR WLS ? AR Accuracy
improvement (%)

LS ? AR WLS ? AR Accuracy
improvement (%)

1 0.212 0.211 0.308 0.175 0.174 0.06

5 1.482 1.457 1.695 1.092 1.081 0.978

10 2.831 2.720 3.913 2.056 2.024 1.567

30 8.380 7.818 6.709 6.255 5.875 6.072

60 16.666 14.619 12.279 13.667 11.713 14.295

100 25.904 20.023 22.702 24.593 18.373 25.289

120 29.763 21.616 27.372 28.483 20.576 27.758

150 33.988 23.419 31.097 32.161 22.873 28.88

200 35.434 23.472 33.759 30.309 21.760 28.208

250 34.594 23.404 32.347 28.380 20.871 26.459

300 35.652 27.121 23.928 33.023 24.328 26.33

360 41.881 29.845 28.739 39.246 28.954 26.224
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Fig. 1 MAE values calculated for 600 IGS forecasts over different intervals

Fig. 2 MAE values calculated for 1000 IGS forecasts over different intervals
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3.2 Experiments based on products released by IERS

As another example, this study chooses the values and the precision of PM parameters

issued by IERS 08 C04 EOP product (ftp://ftp.iers.org/products/eop/long-term/c04_08/

iau2000/), which extends from January 1, 2002 to December 31, 2011. These data are

used to construct the prediction model and build the weight matrix. 600 and 1000

experiments are performed using the LS ? AR and WLS ? AR methods for each pre-

diction (1–360 days), and the sampling interval is uniformly 1 day. The prediction dates

are the same as the previous two experiments. The results are presented in Tables 3, 4

and Figs. 3, 4.

Table 3 Statistical of accuracy results in 600 IERS forecasts

MAE PMX (mas) PMY (mas)

Prediction
day

LS ? AR WLS ? AR Accuracy
improvement (%)

LS ? AR WLS ? AR Accuracy
improvement (%)

1 0.224 0.223 0.23 0.108 0.108 0

5 1.492 1.479 0.88 0.662 0.654 1.182

10 2.895 2.836 2.018 1.237 1.213 1.974

30 8.785 8.190 6.77 3.873 3.540 8.587

60 17.603 15.323 12.95 8.143 6.996 14.091

100 25.168 20.725 17.653 14.207 11.114 21.774

120 28.619 21.680 24.246 16.265 12.706 21.879

150 33.230 24.343 26.744 17.840 13.974 21.673

200 36.156 24.995 30.869 15.459 12.271 20.623

250 33.790 24.508 27.468 13.287 9.564 28.018

300 32.471 25.898 20.242 15.427 11.918 22.747

360 37.064 26.997 27.161 18.691 15.557 16.765

Table 4 Statistical of accuracy results for 1000 IERS forecasts

MAE PMX (mas) PMY (mas)

Prediction
day

LS ? AR WLS ? AR Accuracy
improvement (%)

LS ? AR WLS ? AR Accuracy
improvement (%)

1 0.224 0.223 0.526 0.183 0.183 0.024

5 1.484 1.459 1.712 1.100 1.089 1.001

10 2.842 2.738 3.659 2.054 2.027 1.299

30 8.716 8.032 7.851 6.254 5.955 4.782

60 17.459 15.250 12.652 13.656 12.518 8.329

100 26.305 20.661 21.455 24.278 21.065 13.237

120 29.746 22.268 25.141 28.008 24.067 14.068

150 33.524 25.122 25.062 31.456 26.488 15.793

200 34.771 25.490 26.691 30.076 25.681 14.611

250 33.630 25.745 23.446 27.763 24.092 13.22

300 36.098 30.768 14.765 31.855 28.775 9.67

360 41.769 33.951 18.717 39.216 35.485 9.514

254 Acta Geod Geophys (2018) 53:247–257

123

ftp://ftp.iers.org/products/eop/long-term/c04_08/iau2000/
ftp://ftp.iers.org/products/eop/long-term/c04_08/iau2000/


Fig. 3 MAE values calculated in 600 IERS forecasts

Fig. 4 MAE values calculated for 1000 IERS forecasts
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The above results indicate that the prediction accuracy of the WLS ? AR model shows

improvement at different levels in both the PMX and PMY directions. The improvements

in the forecasting accuracy for short-term predictions (1–30 days in the future) are not

obvious; the maximum improvement in the polar motion parameters in the PMX direction

is less than 8.19%, whereas that in the PMY direction is within 8.587%. However, when

the prediction span exceeds 30 days, the accuracy of the prediction displays clear

improvements. For the group of 600 experiments, the prediction accuracy in the PMX

direction calculated using the IGS and IERS data increases by an average of 16.09 and

21.43%, whereas that in the PMY direction using the IGS and IERS data increases by

23.64 and 19.19%, respectively. In the group of 1000 experiments, the prediction accuracy

in the PMX direction calculated using the IGS and IERS data increases by an average of

24.14 and 19.04%, whereas that in the PMY direction using the IGS and IERS data

increases by 22.94 and 11.07%, respectively. Compared with the LS ? AR model, the

WLS ? AR model generally better in predicting polar motion parameters and yields more

accurate medium-term forecasts.

4 Conclusion

This paper proposes a method of producing medium-term predictions of polar motion

parameters using a WLS ? AR model. In this method, the calculation precision of the PM

parameters is employed to produce weighting factors to build the weight matrix of the

vector of observations in the least-squares extrapolation model. More accurate parameters

and extrapolated values of the LS model while and more stable residuals to form and

calculate the AR model can be obtained using this method. The EOP products released by

the analysis center of IGS and IERS are used as the basic data to predict the polar motion

parameters in groups of 600 and 1000 experiments with a 1-day prediction interval and a

span of 360 days. The results of the experiments show that, compared with the LS ? AR

model, the WLS ? AR model proposed in this paper effectively improves the accuracy

with which polar motion parameters can be predicted.
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