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Abstract. Blends of commercial 316L steel and boron nitride (BN) were consolidated using 

Spark Plasma Sintering (SPS). The components were mixed by high energy milling (using 

attritor) before sintering. The aim was to study the effect of BN on the microstructure and the 

mechanical properties. Two composites containing 0.5 and 2 wt.% BN were produced beside a 

pure 316L specimen. It was found that bimodal grain size distribution formed during the 
production. A bcc α’-phase formed during milling beside the main fcc γ-phase. The addition of 

BN resulted in a slightly higher dislocation density and a smaller grain size in the fine grained 

parts of the samples. At the same time, the elastic modulus and the strength determined by 

bending test were reduced, most probably due to the weak bonding between the 316L and the 

BN grains, and the lower fraction of α’-phase. 

1.  Introduction 

Ceramic dispersion strengthened steels are promising structural materials in new generation nuclear 

reactors and future fusion power plants [1–4]. Since the nanoscale (~10 nm) ceramic particles are 

thermally stable, therefore it can obstruct the movement of dislocations and prevent the grain growth 

even at high temperatures, thereby hindering both recovery and recrystallization. Hence this steels have 

excellent strength at high temperatures (even under neutron radiation [5]), however the low ductility and 

fracture toughness limit their industrial applications [6]. Beside the oxide particles, other filler materials 

can also be used for the improvement of the functional properties of steels [4,6,7]. For instance, boron 

nitride (BN) additive can increase the absorption of neutrons in the steel composites [8]. 

The steel composites strengthened by particles are usually produced by powder metallurgy methods 

[1,2,9,10]. The components of the matrix and the disperse phase are blended by mechanical milling, 

which is usually followed by a high-temperature consolidation process. During milling the initially small 

grain sized particles are fragmented and a part of them can dissolve into the matrix [9]. The 

microstructure of the matrix and the disperse phase depends strongly on the circumstances of the 
production of the material, therefore they determine the mechanical properties. The components are 

often consolidated by Spark Plasma Sintering (SPS) [1]. During SPS pulses of high current density are 

used to facilitate consolidation, thus the sintering time and temperature decrease, therefore much smaller 

grain size can be achieved compared to conventional sintering methods [11]. 
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In the present study, the effect of BN additive on the microstructure and the mechanical behavior of 

316L steel was investigated. The samples were produced by powder metallurgy using high energy 

milling and SPS. The microstructure was investigated by electron backscattered diffraction (EBSD) and 

X-ray line profile analysis (XLPA). The mechanical behavior was characterized by microhardness 

measurement and three point bending test. The effect of the phase composition, the porosity, the grain 

size and the dislocation density on the mechanical properties will be discussed. 

2.  Materials and experimental procedures 

2.1. Sample preparation  

The samples were processed from a commercial 316L austenitic stainless steel powder (manufacturer: 

Höganäs) with the composition of Fe – 16.8 % Cr – 12 % Ni – 2.5 % Mo – 1.5 % Mn – 0.6 % Si – 

0.0025 % C (wt.%). The disperse phase in the composites was an ultrafine-grained (UFG) boron nitride 

(BN) powder obtained from a hexagonal boron nitride (hBN) (manufacturer: H.C. Starck). First, the 

starting 316L powder was intensively milled in a DMQ-07 attritor (manufacturer: Union Process) at 

2800 rpm for 10 hours in propanol. In this machine, a stainless steel setup with delta disk agitators were 

used. The diameters of the stainless steel grinding balls were 1 mm. After sieving in a 100 micron mesh, 

the powder was milled in a dry environment for 1 hour at 600 rpm in 01-HD/HDDM type attritor 

(manufacturer: Union Process).  

The UFG BN powder was prepared by mechanical milling. First, the commercial hBN powder was 

milled intensively in a high efficient attritor mill (01-HD/HDDM type attritor) equipped with zirconia 

agitator delta discs and zirconia grinding media (1 mm in diameter) in the presence of ethanol at 4000 

rpm for 10 h. After wet milling, a dry milling process was applied at 4000 rpm for 5 h. Finally, a UFG 

BN powder with an average grain size of ~200 nm was achieved, as can be seen in figure 1a. 

After this milling process, 0.5 and 2 wt.% BN were added to the 316L powder and this powder blend 

was further milled in the 01-HD/HDDM type attritor equipped with stainless steel tank, delta disk 

agitators and  grinding media with 1 mm in diameter. The high energy milling was performed at 4000 

rpm for 3 hours in ethanol in order to achieve an efficient dispersion of the boron nitride in the 

commercial 316L powder. Finally, the milled powders were sieved in a 100 micron mesh. A reference 

316L powder was also processed without the addition of BN powder. However, this powder was 

subjected to the same milling process as the blends of 316L and BN powders. The milling process 

resulted in flat particles with the thickness of about 200 nm (see figure 1b). 

 

 
Figure 1. SEM images taken on the milled a) BN and b) 316L+2BN powder. 

 

The powders were sintered by SPS in vacuum at 900 ± 10°C for 5 minutes under a pressure of 50 

MPa. SPS-processing was carried out by an SPS-7.40MK-VII machine (manufacturer: SPS Syntex Inc.) 

installed in Istanbul Technical University using a current of 20,000 A. Disks with 50 mm in diameter 

and 5 mm in thickness were obtained after the consolidation process. In the following, the samples 

containing 0, 0.5 and 2 wt.% BN are referred to as 316L, 316L+0.5BN and 316L+2BN, respectively. 
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2.2. Microstructure investigations 

The microstructure of the samples was studied by X-ray diffraction, Scanning Electron Microscopy 

(SEM) and EBSD. The mass density of the sintered samples was measured in water using Archimedes’ 
principle. The phase composition of the samples was investigated by a Philips Xpert (λ = 0.15418 nm) 

X-ray powder diffractometer. The microstructure of the main γ-phase was studied by XLPA. The X-ray 
line profiles were measured by a high-resolution diffractometer using CoKα1 (λ = 0.1789 nm) radiation. 

For this measurement, the samples were electropolished in an A8 electrolytic solution at room 

temperature at a fixed voltage of 10 V for 30 s. Two-dimensional imaging plates detected the Debye-

Scherrer diffraction rings. The line profiles were evaluated by the Convolutional Multiple Whole Profile 

(CMWP) method. The details of the CMWP procedure can be found in Refs. [12,13]. In this method, 

the experimental pattern is fitted by the convolution of the instrumental pattern and the theoretical size 

and strain line profiles. The instrumental pattern was measured on a LaB6 line profile standard material. 

The theoretical profile functions used in this fitting procedure are calculated on the basis of a model of 

the microstructure, where the crystallites have spherical shape and log-normal size distribution, and the 

lattice strains are assumed to be caused by dislocations. As an example, the CMWP fitting for the sample 

316L+2BN in a logarithmic intensity scale is shown in figure 2. The open circles and the solid line 

represent the measured data and the fitted curve, respectively. 

 
Figure 2. CMWP fitting of the X-ray diffraction pattern taken on the sample 316L+2BN. The open 

circles and the solid line represent the measured data and the fitted curve, respectively. 

 

The EBSD analysis was performed using an FEI Quanta 3D dual beam SEM equipped with an EDAX 

type EBSD system. The surface of the sample was mechanically polished (steps: P1000, P2500, P4000, 

1μm ALOX, Mastermet2 suspension (about 30 nm SiC, manufactured by Stuers)). The grain size was 

determined from the EBSD scans using OIM software from TexSEM Laboratories. The morphology of 

the powder particles was studied by SEM (Zeiss-SMT LEO 1540 XB and Jeol JSM-25-SIII). 

2.3. Mechanical tests 

The Vickers hardness of the samples was measured on electropolished surfaces using a Zwick Roell 

ZHμ Vickers indenter with an applied load of 300 g and a dwell time of 10 s. For the bending test, 

rectangular bars with the dimensions of 4 × 4 × 50 mm3 were cut from the sintered specimens using a 

water-jet cutting process. The three-point bending strength was determined by an Instron 1112 

tensile/loading machine equipped with a data acquisition system. 

3.  Results and discussion 

3.1. Phase composition and porosity 
In all specimens, the main phase was an fcc Fe-based alloy (denoted as γ-phase) but in addition bcc Fe-

based alloy (denoted as α’-phase), Fe3O4 and Cr23C6 phases were also identified. As an example, figure 
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3a shows a part of the X-ray diffraction pattern obtained for the 316L+0.5BN sample. It should be noted 

that BN was not detected, most probably due to the fragmentation of the BN particles during high-energy 

milling as well as the very small amount of this phase. 

 
Figure 3. (a) X-ray diffractogram for the sample 316L+0.5BN. (b) A part of the X-ray diffractogram 

obtained for the sample 316L+2BN before and after consolidation. 

 
In order to reveal the influence of the additives on the phase composition, the fractions of the 

integrated intensities for the different phases in the X-ray diffractograms were determined and listed 

Table 1 for all samples. In all milled powders (irrespectively of the additives), the fractions of γ-phase 

and α’-phase were 0.73 and 0.27, respectively (see Table 1). It is noted that the intensity fractions of the 

phases are not equivalent with their volume fractions. The addition of BN to 316L steel resulted in a 

slight increase of the fraction of γ-phase while the amount of the secondary α’-phase decreased. The 

α’-phase was formed during milling due to deformation induced martensitic transformation. However, 

at the high temperature of SPS the γ-phase is more stable, therefore there is an α’ to γ reverse phase 

transformation as it can be seen in figure 3b. In the milled powder, beside the γ-phase only a secondary 

α’-phase was detected. At the same time, after consolidation the fraction of α’-phase decreased and 

Fe3O4 and Cr23C6 peaks appeared on the diffractogram. It seems that the addition of BN promotes the α’ 

to γ transformation. A reasonable explanation of this effect may be that the BN grains serve as nuclei in 

the phase transformation during sintering. 

 
Table 1. The fractions of the integrated intensities for the different phases and the porosity of the 

consolidated samples. 

Sample γ-phase α’-phase Fe3O4 Cr23C6 Porosity [%] 

Milled powders 0.73 ± 0.02 0.27 ± 0.02 - - - 

316L 0.81 ± 0.05 0.14 ± 0.02 0.04 ± 0.01 0.01 ± 0.01 5.4 ± 0.3 

316L+0.5BN 0.93 ± 0.03 0.03 ± 0.01 0.03 ± 0.01 0.01 ± 0.01 4.4 ± 0.3 

316L+2BN 0.88 ± 0.05 0.07 ± 0.02 0.03 ± 0.01 0.01 ± 0.01 5.3 ± 0.3 

The porosity was calculated from the difference between the measured and calculated densities. In 

the case of the composite specimens, the calculated density was obtained as an average of the theoretical 

densities of 316L iron (7.99 g/cm3) and BN (3.45 g/cm3) weighted by their mass fractions. Table 1 shows 

that BN have no significant effect on the porosity of the consolidated samples. 

3.2. Microstructure 

3.2.1 EBSD investigation. The SEM investigations on the polished surfaces revealed that all samples 

exhibit bimodal grain structures as can be seen in Fig 4b, e and h. In the matrix, the light and dark regions 

correspond to coarse-grained (CG) and fine-grained (FG) regions, respectively. Coarse particles were 
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also observed in the initial 316L powder. The EBSD images in figure 4 show that both regions are 

fragmented into grains. The grain sizes were evaluated from these images and listed in Table 2. It can 
be seen that the grain size is much higher in the CG regions for all samples. The BN additive resulted in 

a lower grain size as the BN grains hinder the recovery and recrystallization of the microstructure during 

sintering. 

 
Figure 4. EBSD and SEM images showing the morphology of the grains in the CG and FG regions for 

the sample (a-c) 316L, (d-f) 316L+0.5BN and (g-i) 316L+2BN. The color code of the standard 

stereographic triangle inset in (a) illustrates the grain orientations in the gamma-phase. The black 

regions in Fig. 4c are occupied by α'-phase. 

 

Table 2. The grain size values in the fine-grained (dFG) and the coarse-grained (dCG) regions 

determined by EBSD. The dislocation density (ρUFG) in the ultrafine grained (UFG) regions of γ-phase 

as obtained by XLPA, and the intensity fraction of the UFG parts of the microstructures (fUFG). The 

total dislocation density (ρtotal) in the γ-phase was determined as the product of ρFG and fFG. 

Sample dFG [μm] dCG [μm] ρUFG [1014 m-2] fUFG ρtotal [1014 m-2] 

316L 0.44 3.66 6.3 ± 0.7 0.68 ± 0.05 4.3 ± 0.8 

316L+0.5BN 0.23 0.93 5.0 ± 0.6 0.65 ± 0.05 3.3 ± 0.7 

316L+2BN 0.28 1.71 7.5 ± 0.9 1 7.5 ± 0.9 
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3.2.2. X-ray line profile analysis. The dislocation density was determined for the γ-phase and listed in 

Table 2. It should be noted that for the pure 316L and 316L+0.5BN specimens, the intensity distribution 

along the Debye–Scherrer (DS) rings was inhomogeneous and numerous sharp intensity spots were 

visible as it can be seen in figure 5b. These sharp peaks were as narrow as the instrumental broadening 
(Δ(2θ)=0.03°); therefore they were not evaluated for the microstructure. These sharp intensity spots are 

related to regions in which the crystallite size is larger and the dislocation density is lower than the 

detection limits of XLPA for the present experimental setup (800 nm and 1013 m−2, respectively). 

 

 
Figure 5. Debye–Scherrer diffraction rings of reflection 200 for the samples (a) 316L+2BN and (b) 

316L+0.5BN. (c) Intensity distribution in direction x in figure (b) after subtracting the background. 

The red zone corresponds to the homogeneous and broad ring segments in (b) scattered from the UFG 

region. 

 

Due to the spotty diffraction rings for the pure 316L and the 316L+0.5%BN samples, only the 

broader and more homogeneous parts between the large intensity spots were evaluated by XLPA. As a 

consequence, the results obtained for these two samples characterize only the ultrafine grained (UFG) 

part of the samples. It should be noted that the UFG region may be located in either the CG or the FG 

area. The total dislocation densities in the whole materials can be calculated by considering the UFG 

fractions in the samples. This quantity can be estimated as the fraction of the intensities of the 
homogeneous parts in the entire DS ring. The intensity was summed in direction 2ϑ (see figure 5b), and 

these intensity values were plotted as a function of the coordinate x, as shown in figure 5c for reflection 

200 of the sample 316L+0.5BN. Thereafter, a spline was fitted to the parts of the intensity distribution 

which are free of sharp intensity peaks (see figure 5c). The area under this spline corresponds to the 

intensity scattered from the UFG parts of the sample. The fractions of the UFG parts for the pure 316L 

and the 316L+0.5BN samples are listed in Table 2. For the 316L+2BN sample, the DS rings were 

homogeneous (see figure 5a) therefore for this specimen the microstructural parameters determined by 

XLPA characterize the whole specimens (i.e., the fraction of the UFG parts is 1). Then, the total 

dislocation density was calculated as the product of the dislocation density in the UFG regions and their 

intensity fraction. Table 2 shows that the addition of 0.5 wt.% BN did not yield a considerable change 

in the total dislocation density. At the same time, 2 wt.% BN resulted in a higher dislocation density 

than in the addition-free 316L steel due to the pinning effect of BN particles. 

It should be noted that there is an apparent discrepancy. It can be seen in Table 2, that the grain size 

measured by EBSD is higher for the sample 316L+2BN than in the specimen 316+0.5BN, while the DS 

rings are homogeneous in the sample 316L+2BN and spotty in the specimen 316L+0.5BN. This can be 

explained by the fact that the grains in EBSD investigation were defined as the regions bounded by high 

angle grain boundaries with misorientation angles higher than 15°. In the case of XLPA, the crystallites 
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are the domains which scatter X-rays coherently. As the coherency of X-rays breaks even if they are 

scattered from volumes having quite small misorientations (1–2°), the crystallites correspond rather to 

the subgrains in the microstructures [14]. Therefore, most probably the subgrain structure is finer in the 

316L+2BN sample, which can not be evaluated by EBSD. 

3.3. Mechanical properties 

Table 3 shows the average hardness measured for the FG and CG regions for all samples. In addition, 

the Young’s modulus and the three-point bending strength are also listed in Table 3. Generally, the 

hardness is higher in the FG parts of the samples due to the lower grain size. It can be seen that the 

addition of 0.5% BN has no significant effect on the mechanical properties of 316L steel. At the same 

time, 2% BN resulted in a reduction of the Young’s modulus and the bending strength. This can be 
explained by the lower fraction of α’-phase and the weak bonding between the BN and the 316L grains, 

which can promote crack formation and propagation during the bending test. 
 

Table 3. The mechanical properties of 316L samples sintered with and without BN additive. 

Sample 
Young’s 

modulus [GPa] 

Three-point bending 

strength [MPa] 

HV [GPa] Coarse-

grained 

HV [GPa] 

Fine-grained 

316L 183 ± 5 1324 ± 28 2.55 ± 0.13 3.80 ± 0.10 

316L+0.5BN 174 ± 2 1265 ± 58 2.65 ± 0.14 3.41 ± 0.15 

316L+2BN 166 ± 2 1066 ± 45 2.36 ± 0.12 3.30 ± 0.15 

It is worth to note that despite the very different microstructures in the studied samples, the hardness 

values only slightly vary with increasing the BN content. There are four main microstructure features 
which can influence considerably the mechanical properties: (1) the phase composition (the α’-phase 

content in our case), (2) the dislocation density in the main γ-phase, (3) the grain size and (4) the 

porosity. Table 4 shows the relative contributions of the different microstructural features to the 

hardness. 

 

Table 4. The relative hardening effects of the microstructural features in the samples. The more ‘+’ 

icons indicate a stronger hardening effect as compared to the other samples. 

Hardening effects 316L 316L+0.5BN 316L+2BN 

α’-phase fraction +++ + ++ 

Relative density + ++ + 

Dislocation density ++ + +++ 

Grain size + +++ ++ 

It can be seen that for the sample 316L+0.5BN, the porosity, the total dislocation density in the 
γ-phase and the grain size were only slightly lower than in the pure 316L sample. Therefore, the smaller 

hardness in the FG region can be attributed to the higher γ to α’-phase ratio. It is well known that the 

γ-phase is softer than the α’-phase in 316L steel. For the sample 316L+2BN, the porosity is the same as 

for the pure 316L steel but the dislocation density is higher and the grain size is lower due to the addition 

of BN. Despite the much higher dislocation density, the hardness of the specimen 316L+2BN is slightly 
lower than for the sample 316L which indicates that the softening effect of the larger γ-phase fraction 

overwhelms the hardening effect of the higher dislocation density and the lower grain size. Comparing 

the two composites, for the sample 316L+2BN the hardening effects of the dislocation density and the 
α’-phase content were higher, while the contributions of the grain size and the porosity to the hardness 

were lower than for the specimen 316L+0.5BN, which can explain their similar hardness values. 

4.  Summary 

The effect of BN addition on the microstructure and the mechanical properties of commercial 316L 

stainless steel was studied. Samples containing 0, 0.5 and 2 wt.% BN were produced using high energy 

milling and SPS method. The following results were obtained: 
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1) A high fraction (27-28 %) of α’-phase formed beside the major γ-phase phase during the milling 

process. During sintering at high temperature, the fraction of the α’-phase decreased due to a reverse 

martensitic phase transformation. It seems that the BN additive promotes this transformation since the 
fraction of α’-phase is considerably lower in the composites. Fe3O4 and Cr23C6 phases were also formed 

during the consolidation process. 

2) All samples show inhomogeneous grain structure. Large particles can be seen in the fine grained 

matrix. The larger particles are fragmented into smaller grains. The addition of 0.5% BN decreased the 

grain size in both regions, but further BN addition did not result in a finer grain structure. The 

microhardness of the fine grained part was higher (irrespectively of the BN content) duo to the much 

lower grain size. 

3) The addition of 0.5% BN did not result in a significant change in the dislocation density. The 

increase of the BN content from 0.5 to 2% yielded a higher dislocation density due to the hindering 

effect of BN particles on the annihilation of dislocations during sintering. The microhardness, the 

bending strength and the elastic modulus slightly decreased with increasing the BN content. This effect 
can be attributed mainly to the lower α’-phase fraction and the weak bonding between the 316L and the 

BN grains. 
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