
ar
X

iv
:1

70
9.

07
62

8v
1

 [
m

at
h.

C
O

]
 2

2
Se

p
20

17

Navigating Between Packings of Graphic Sequences✩

Péter L. Erdősa,1, Michael Ferrarab,3, Stephen G. Hartkeb,2

aAlfréd Rényi Institute, Reáltanoda u 13-15 Budapest, 1053 Hungary

email: erdos.peter@renyi.mta.hu
bDepartment of Mathematical and Statistical Sciences, University of Colorado Denver,US

email: <michael.ferrara; stephen.hartke>@ucdenver.edu

Abstract

Let π1 = (d
(1)
1 , . . . , d

(1)
n) and π2 = (d

(2)
1 , . . . , d

(2)
n) be graphic sequences. We

say they pack if there exist edge-disjoint realizations G1 and G2 of π1 and π2,

respectively, on vertex set {v1, . . . , vn} such that for j ∈ {1, 2}, dGj
(vi) = d

(j)
i

for all i ∈ {1, . . . , n}. In this case, we say that (G1, G2) is a (π1, π2)-packing.
A clear necessary condition for graphic sequences π1 and π2 to pack is

that π1 + π2, their componentwise sum, is also graphic. It is known, how-
ever, that this condition is not sufficient, and furthermore that the general
problem of determining if two sequences pack is NP -complete. S. Kundu
proved in 1973 that if π2 is almost regular, that is each element is from
{k − 1, k}, then π1 and π2 pack if and only if π1 + π2 is graphic.

In this paper we will consider graphic sequences π with the property that
π + 1 is graphic. By Kundu’s theorem, the sequences π and 1 pack, and
there exist edge-disjoint realizations G and I, where I is a 1-factor. We call
such a (π,1) packing a Kundu realization.

Assume that π is a graphic sequence, in which each term is at most n/24,
that packs with 1. This paper contains two results. On one hand, any two
Kundu realizations of the degree sequence π+1 can be transformed into each
other through a sequence of other Kundu realizations by swap operations.
On the other hand, the same conditions ensure that any particular 1-factor
can be part of a Kundu realization of π + 1.

Keywords: graphic degree sequence, swap operation, packing graphic
sequences, Kundu’s theorem

✩The authors express their gratitude to Tamás R. Mezei (Rényi Institute, Budapest)
for his help in preparing the manuscript.

1PLE was supported in part by the National Research, Development and Innovation
Office – NKFIH grant K 116769 and SNN 116095.

2SGH was supported in part by a Collaboration Grant from the Simons Foundation
(#316262 to Stephen G. Hartke).

3MF was supported in part by Collaboration Grants from the Simons Foundation
(#206692 and #426971 to Michael Ferrara).

Preprint submitted to Elsevier August 12, 2018

http://arxiv.org/abs/1709.07628v1

1. Introduction

A nonnegative integer sequence π is graphic if it is the degree sequence
of some simple graph G on vertex set V = {v1, . . . , vn}. Unless explicitly
stated, we do not assume that the elements of π are ordered in any particular
way. In this case we say that G realizes or is a realization of π. Graphic

sequences π1 =
(

d
(1)
1 , . . . , d

(1)
n

)

and π2 =
(

d
(2)
1 , . . . , d

(2)
n

)

pack if there exist

edge-disjoint realizations G1 and G2 of π1 and π2, respectively, such that

for j ∈ {1, 2}, dGj
(vi) = d

(j)
i for all i ∈ {1, . . . , n}. In this case, we say that

(G1, G2) is a (π1, π2)-packing.
The following observation clearly holds when packing graphic sequences:

Observation 1.1. Assume that graphic sequences π1 and π2 pack. Then
their componentwise sum π = π1 + π2 is also graphic.

However it is well known that this condition is not sufficient.
Let G be a fixed but otherwise arbitrary realization of π. The decision

problem of whether G contains a subgraph G1 with degree sequence π1 is
known to be solvable efficiently—see Tutte, 1954 ([13]) and Edmonds, 1965
([4]). On the other hand, the general problem of determining if two sequence
pack is NP -complete (see Dürr, Guiñez and Matamala, 2012 [3]).

Although the complexity of the sequence packing problem was unknown
until recently, the problem has been studied in specific contexts for some
time. Let kn denote the sequence in which every term is k, which is well-
known to be graphic if the sum of the elements of the sequence is even and
k ≤ n−1. Going forward, we will suppress the subscript of n when the con-
text is clear. In 1970 Grünbaum conjectured in [6] that if π2 is the sequence
1 consisting of all 1’s, then the necessary condition in Observation 1.1 is
also sufficient. This was subsequently generalized by Rao and Rao:

Conjecture 1.2 (k-factor Conjecture, A.R. Rao and S.B. Rao, 1972
[12]). Graphic degree sequences π1 and k pack if and only if π1+k is graphic.

In 1973 S. Kundu proved a more general form of the k-factor Conjecture.

Theorem 1.3 (Kundu [9]). Let π1 and π2 be graphic, where the elements
of π2 are drawn from {k− 1, k}. Then π1 and π2 pack if and only if π1 +π2
is graphic.

In 1974 Lovász gave a shorter proof for the case π2 = 1 (see [10]). The
“book proof” for Theorem 1.3 is due to Yang-Chuan Chen (1988, [1]).

In this paper we consider graphic sequences π on the vertex set V with the
property that π + 1 is graphic (so |V | must be even). By Kundu’s theorem
the sequences π and 1 pack, and there exist edge-disjoint realizations G and
I where I is a 1-factor. We call such a realization of the degree sequence
π + 1 a Kundu realization, and we say that I is the displayed 1-factor, as

2

clearly this realization may contain many 1-factors besides I. In particular,
there are exponentially many different 1-factors in the complete graph Kn.
We are interested in which of these 1-factors can occur in Kundu realizations.
Our first result is the following:

Theorem 1.4. Let π be a graphic sequence with n terms in which each term
is at most n/24, and suppose that π packs with 1. Furthermore, let J be
a given, particular 1-factor on V . Then there exists a realization GJ of π
such that (GJ ,J) is a (π,1)-packing.

Let G and G′ be two realizations of a graphic sequence π. A classical result
of Petersen ([11]) states that it is possible to transform G into G′ through
a sequence of swap operations, wherein the edges and non-edges of an alter-
nating 4-cycle are interchanged. Our second result is the following:

Theorem 1.5. Let (G,I) and (G′,J) be Kundu realizations of π+1. Then
it is possible to transform (G,I) into (G′,J) with swap operations via Kundu
realizations where in each step the image of the displayed 1-factor is the next
displayed 1-factor.

2. Definitions and tools

In this paper all graphs are simple (no multiple edges, no loops) on the
vertex set V . As already mentioned, the degree sequences of any graphs
considered are not assumed to be ordered in any specific way.

Let G be a realization of a graphic sequence π. If a, b, c and d are vertices
of G satisfying ab, cd ∈ E and bc, ad /∈ E, then the graph G′ = (V,E′) with
E′ = E∪{bc, ad}\{ab, cd} is another realization of π. This swap operation,
denoted by ab, cd ⇒ bc, ad, was introduced by Havel ([8]) and reinvented by
Hakimi ([7]), and was essentially utilized by Petersen in [11]. It is also known
as a switch or rewiring operation.

Let G be a Kundu realization of the packing degree sequences (π1,1)
with the displayed 1-factor I. Consider a swap operation ab, cd ⇒ bc, ad. If

{ab, cd} ⊂ I or {ab, cd} ∩ I = ∅ (1)

then the “image” I ′ = I ∪ {bc, ad} \ {ab, cd} is a 1-factor again, and the
resulting graph G′ is again an (π1,1) packing with the displayed 1-factor I ′.
However, if ab ∈ I but cd 6∈ I, then I ′ will not contain a 1-factor. It is also
possible that G′ is not a (π1,1) packing at all.

In this paper we always will apply swap operations which conform to
property (1). Such a swap operation is a Kundu-restricted swap operation
or a K-swap for short.

Next we recall some important facts about (general) swap sequences from
the paper of Erdős, Király and Miklós ([5]). Let G and G′ be two realizations

3

of a given (but not necessarily Kundu) degree sequence π. The symmetric
difference ∇ = E(G)△E(G′) of their edges has a natural 2-coloring: an edge
in ∇ is red if it belongs to G and blue if it belongs to G′.

Theorem 2.1. (i) Every vertex in ∇ has an equal number of red and blue
adjacent edges. Moreover, the symmetric difference ∇ can be decom-
posed into alternating (with respect to the coloring) closed walks of even
length.

(ii) When the degree sequence is bipartite, then the decomposition can be
made into cycles, where no cycle contains any vertex twice.

Theorem 2.2. (i) If ∇ consists of only a single alternating cycle C, then
there exists a sequence of consecutive swap operations transforming a
realization G into a realization G′ such that every swap in the process
is applied to vertex pairs i.e. (chords) contained completely within
V (C).

(ii) The process never uses a chord uv from C if the distance between u
and v is even when traversing C from u to v in both directions. Any
chord not satisfying this condition is called eligible.

3. Proofs

Going forward, we consider a graphic sequence π = (d1, . . . , dn) such
that χ := π + 1 is also graphic and ∆ := max(π) ≤ n

24 . Our proofs rely on
several lemmas. We start with the following seemingly simple situation:

Lemma 3.1. Let (G,I) and (G,J) be two Kundu realizations of χ where
I and J are edge disjoint. Then there exists a K-swap sequence between the
two realizations such that G does not change at any step of the process.

Proof: To begin, color the edges of G, I and J with green, red and blue, re-
spectively. Consider the symmetric difference ∇ = I△J . Since I and J are
edge-disjoint 1-factors, ∇ is a union of pairwise vertex-disjoint alternating
red-blue cycles.

Our strategy is to transform (G,I) with K-swaps into a realization
(G,I ′), never using green edges, such that ∇′ = I ′△J has no green eli-
gible chords. If, by chance, none of these alternating cycles contains a green
eligible chord, then the direct application of Theorem 2.2 (ii) provides the
required K-swap sequence.

In every step we select a longest alternating cycle C from ∇ and work to
decrease the length of that cycle. As we proceed, we will use three different
processes. The first two processes can be used to decrease the length of
C. The third will be used when there are many 4-cycles in ∇. While this
third process may further decrease the length of C, its main purpose is to

4

decrease the number of the eligible green chords. As would be expected,
throughout the application of these processes we may change the red edges
in our realization as we transform I into J .

Let L denote the length of C, and let e and f be red edges in C that are
not consecutive along C. This implies that the length of C is at least 6, as
an alternating 4-cycle cannot have any eligible chords. Assume that some
pair of non-crossing chords α and β between the corresponding endpoints
of e and f are not (green) edges of G. (See Figure 1.) Then the K-swap
e, f ⇒ α, β splits C into two shorter cycles Γ and Σ, increasing the number
of cycles in ∇. We call this operation Process ♣.

e

f

C

α

β

⇒

e

f

Γ

Σ

Figure 1: Process ♣: One cycle K-swapped into two.

Proposition 3.2. If L > 4∆ + 6, then we can apply Process ♣ to C.

Proof. Suppose that there is no pair of red edges e and f that permit Process
♣. Then every pair of non-consecutive red edges in C must have an eligible
green edge between them. Notice that the eligible chords between non-
consecutive red pairs are distinct, so there must be at least as many edges
of G that are eligible chords of C as there are pairs of non-consecutive red
edges in C.

Note that the number of red edges in C is L/2. Thus, the number of
pairs of non-consecutive red edges in C is

(

L/2

2

)

−
L

2
=

L2

8
−

3L

4
. (2)

However, by the maximum degree condition, there are at most L∆
2 edges of

G that are eligible chords of C. Thus if no Process ♣ applies, then

(

L/2

2

)

− L/2 =
L2

8
−

3L

4
≤

L∆

2
, (3)

which simplifies to L ≤ 4∆ + 6, a contradiction.

As we proceed, we assume that for every longest cycle C, Process ♣
cannot be applied.

5

Now assume that there is some cycle D from ∇ with |D| ≥ 6. Let a, b
and c be red edges in C with endpoints a1, a2, b1, b2, c1, c2 in cyclic order,
and let α, β and γ be red edges in D with endpoints α1, α2, β1, β2, γ1, γ2 in
cyclic order. Furthermore, assume that there are no green edges between
C and D with endpoints in these triples of edges. Performing the K-swap
a1a2, α1α2 ⇒ a1α1, a2α2 as well as the similar K-swaps operations for the
other two edge pairs provides a new realization G′. When performing the
three swaps, no green and no blue edges change. In the new symmetric
difference ∇′ with J , the cycles C and D are substituted with the three
red-blue cycles Γ,Σ and Λ as depicted in Figures 2 and 3. We call this
operation Process ♦.

a1

c2

c1

b2

b1

a2

C D

α1

γ2γ1

β2

β1

α2

⇒

a1

c2

c1

b2

b1

a2

α1

γ2γ1

β2

β1

α2

Figure 2: Process ♦: Two cycles K-swapped into three.

c1

b2

b1

a2

Σ

Λ

γ1

β2

β1

α2

a1

c2

Γ

α1

γ2

Figure 3: Process ♦: The three new cycles

Assume now that we cannot execute Process ♦ for cycles C and D. Then
every set of three red edges in C must be connected with a green edge to
every set of three red edges in D. How many green edges are necessary to
achieve that? Instead of answering this question in full generality, we will
use a relatively easy lower bound of the number of required green edges.

Assume now that there is exactly one green edge between C and D
with endpoints in these triples of edges. Then maybe the Process ♦ cannot
execute on those edges as we described above. Without loss of generality,
we may assume that this green edge is b1β1. But then consider the other
possible 1-factor between end points b1, b2 and β1, β2. If we consider the
opposite orientation of the edges of cycle D, then Process ♦ goes through
without the slightest problem. So we need at least two green edges between

6

those three red edges in cycle C and the other three edges in cycle D to
deny this process.

So assume that our cycle C has maximum length L = 2a and D = 2b ≥ 6.

Proposition 3.3. Assume that Process ♦ cannot be applied for cycles C
and D. Then there are at least N = (a − 1)b/3 green edges between the
cycles.

Proof. Partition the red edges of D into as many triplets as possible. De-
pending on the remainder of b modulo 3, we distinguish three cases.

(0) In this case N is well defined, and the statement follows from the rea-
soning above.

(1) Fix a triplet T and consider the edge e in D that does not belong to any
triplet. We know that there are at least a−1 green edges between T and
C. Fix a set S of a− 1 edges from these green edges. By the pigeonhole
principle, there are two edges from T , say ε and ϕ, that together they
are connected to C with no more than 2(a − 1)/3 green edges from S.
Therefore there are at last a− 2(a− 1)/3 red edges in C which are not
connected at all to any of e, ε, ϕ. This explains why we need (a − 1)/3
extra green edges from this triplet to C.

(2) In this case, let e and f be the edges that are not contained in any
triplet. Now in our fixed triplet T there is an edge ε with not more than
(a−1)/3 green edges to C (from S). Considering the other a−(a−1)/)3
red edges from C and the triplet e, f, ε, we need a− (a− 1)/3− 2 more
green edges connecting them to C.

So if Process ♦ does not apply for C and D, we have at least (L/2−1)(|D|/2)
3

green edges between them. Denote

Z :=
∑

{|D| : D is a cycle in (∇ \ C), |D| ≥ 6} . (4)

If Process ♦ cannot be applied for C and for any other long cycle (cycles
of length at least 6) then at least

(L/2− 1)(Z/2)

3
(5)

green edges are within C and between C and the other long cycles.

Assume that neither Process ♣ nor ♦ apply for cycle C. Then, by inequality
(2), denying ♣ requires L2/8 − 3L/4 well-placed eligible green edges in C.
Each of these edges is adjacent with two vertices from C. Therefore it uses
L2/4− 3L/2 degrees from C.

7

Putting together this with the bound in (5): if we cannot increase the
number of cycles in ∇ by applying Processes ♣ or ♦ for C then we have:

(L/2− 1)(Z/2)

3
+

L2

4
−

3L

2
≤ L∆, so

(L− 2)Z ≤ L(12∆ − 3L+ 18). (6)

For convenience we will use a slightly weaker upper bound pair on Z.

Z ≤

{

16∆ − 4L+ 24 < 16∆ if L ≥ 8

18∆ if L = 6.
(7)

As we proceed, we will use the 4-cycles in ∇ to define a third process that
has two possible purposes. This process may decrease the number of eligible
green chords for the case L = 6. Further, if the maximum cycle length L ≥ 8
then it will decrease the number of cycles in ∇ of (maximal) size L by 1.

Let e and f be red edges on C, and let ϕ and ε be the red edges on the
4-cycle D. Either K-swap on the pair f, ϕ with the corresponding non-edges
(one such pair is shown by grey edges in Figure 4(b)) will combine C and
D into one cycle, which we will call C ′. Let e = aa′ and ε = bb′ and assume
without loss of generality that a, a′, b′, b appear in that order when traversing
C from a to b. Performing the K-swap on e and ε with the non-edges a′b′

and ab then results in two alternating cycles. We call the execution of these
two K-swaps Process ♠.

We then have the following.

Proposition 3.4. Let D be a 4-cycle in ∇.

(i) Assume that L = 6 and let g be a green eligible chord in C, further-
more assume there is no green edge between C and D. Process ♠ then
transforms I into I ′ such that the new ∇′ has one less green eligible
chord.

(ii) Assume that L ≥ 8, and there are two nonconsecutive red edges e, f
on C with no green edges from those to D. Then applying process ♠
decreases the number of cycles of length L in ∇. (Then the number of
eligible green edges even may increase.)

Proof. To establish (i), we choose e and f to be red edges on opposite sides
of an eligible green chord g, as depicted in Figure 4(b). Part (ii) is an
immediate consequence of the Process as defined, although we note that in
this case we may not reduce the number of eligible chords.

8

e

f

g
ϕ

ε

(a) There are 2 disjoint R/B
cycles

e

f

g
ϕ

ε

(b) After the first K-swap all
R/B edges belong to one cycle

Figure 4: Process ♠: Decreasing the number of green eligible chords.

e

f

g
ϕ

ε
e

f

g
ϕ

ε

Figure 5: Process ♠: The new R/B cycles in ∇′. Edge g is not eligible anymore.

Suppose that L ≥ 8, and that part (ii) of Proposition 3.4 does not apply
to C and some 4-cycle D in ∇, and also assume that some red edge e in C
is not connected to D by any green edge. Then all red edges in C, except
at most one of the two neighboring red edges of e, must be connected to D.
Both red edges cannot be exempt, because then these two edges would be
nonconsecutive on C. Therefore, at least L/2− 2 red edges on C must have
a green edge to D. The number of the 4-cycles in ∇ is F = (n− Z − L)/4.
If none of them is suitable Process ♠, then at least

n− Z − L

4
(L/2− 2)

green edges must go from C to 4-cycles. If we further maintain that Process
♦ does not hold for C, from (5) we obtain an additional (L/2−1)(Z/2)

3 green
edges incident to C. We therefor have that

n− Z − L

4
(L/2− 2) +

(L/2− 1)(Z/2)

3
≤ L∆

3(n − Z − L)(L/2− 2) + 2(L/2 − 1)Z ≤ 12∆

Z(−L/2 + 4) + 3(n − L)(L/2− 2) ≤ 12L∆. (8)

When L = 8 then we have
n ≤ 12∆ + 8,

which, due to our assumption on ∆, does not hold.

9

When L > 8 the coefficient of Z is negative, so substitute Z with an
upper bound decreases the LHS of (8). From that the next inequality follows:

3(n− L)(L/2 − 2) ≤ (20L− 64)∆ < 20(L− 3)∆

3

2
(n − L) < 20

L− 3

L− 4
∆ ≤

70

3
∆.

In the last line we used that (L − 3)/(L − 4) is monotone decreasing as L
is increasing. Now assume that Process ♣ does not apply for C, therefore
L ≤ 4∆ + 6 by Proposition 3.2. Since on the LHS the coefficient of L is
negative, therefore substituting L its its upper bound decreasing the LHS:

3

2
(n− 4∆− 6) ≤

70

6

n− 6 ≤
176

9
∆. (9)

Since by our assumption ∆ ≤ n/24 this does not hold. Therefore as long as
L ≥ 8 we always can apply at least one of Processes ♣,♦ and ♠.

Now we consider the L = 6 case in the light of Process ♠. In this case before
the Process we have a length 6 and a length 4 cycle, and this will not be
changed by the Process. Here we should use the Process to decrease the
number of the eligible green chords.

If in C there is a not-green eligible chord, then the canonical swap se-
quence, started with this non-green chord works. So we may assume that all
three eligible chords in C are green. As we saw in Proposition 3.3 between
C and any other long (that is length 6) cycle D there are at least 2 green
edges to deny Process ♠. We have Z/6 cycles to play the role of D there-
fore it requires Z/3 green edges between C and the long cycles, furthermore
3 green eligible chords in C. (However we discard this 6 edges from our
calculation.) We have

n− Z − 6

4
+

Z

3
≤ 6∆

n+
Z

3
≤ 24∆, (10)

which contradict to our assumption ∆ ≤ n/24. So Process ♠ (i) eliminates
all eligible green edges from the cycles of length 6, which finishes the proof
of Lemma 3.1.

Lemma 3.5. Let (G,I) and (G,J) be two Kundu realizations of χ. Then
there exists a K-swap sequence between the two realizations such that G does
not change at any step of the process.

Proof. This statement is a direct consequence of Lemma 3.1. If I and J
are not overlapping, then Lemma 3.1 applies. If this is not the case, then

10

consider the complement of K = G ∪ I ∪ J . In K, all vertex degrees are
more than 24−1

24 n − 2, which is at least n/2 when n ≥ 4. Therefore by
Dirac’s theorem ([2]) there exists a Hamiltonian cycle H in K. Taking
every other edge in H forms a 1-factor I ′, which is disjoint from G, I and
J . Now Lemma 3.1 clearly applies for G, I and I ′, providing a K-swap
sequence that changing I into I ′ without changing G. A second application
of Lemma 3.1 transforms (G,I ′) into (G,J).

Lemma 3.6. Let (G1,I) and (G2,J) two Kundu realizations. Then there
is a K-swap sequence transforming the first one into the second one.

Proof. First we will transform (G1,I) into a Kundu realization (G2,I
′).

Then application of Lemma 3.5 to (G2,I
′) to obtain (G2,J) finishes the

proof.
Consider a swap sequence which transforms G1 into G2. This sequence

is not necessarily a K-swap sequence. Consider the swap operation S =
e, f ⇒ ε, ϕ transforming G′ into G′′. The edges e and f belong to the graph
G′. If both edges ε, ϕ are outside of I ′, or both belong to I ′, then the swap
is automatically a K-swap. We face a problem, if, say, ε is in I ′ but ϕ is
not.

Before we execute the swap S we will “swap out” edge ε from the 1-
factor. To do that we need another edge σ from I ′ such that there is no
green edge (edge from G′) between ε and the newly chosen red edge σ. This
can be done easily since the joint neighborhood of the two end vertices of
edge ε has no more than 2∆ ≤ n/12 vertices. That many vertices cannot
cover more than n/6 red edges from I ′. Picking up edge σ which is not
covered by these vertices provides the swapping out operation. After that
we can proceed with S, which is now a K-swap.

This lemma is just a rewording of Theorem 1.5 what is now proved.
It is worth noting that the “swap out” option also can be used in the

proof of Lemma 3.5 instead of Dirac’s theorem.

We are ready now to prove Theorem 1.4: Let (G,I) be a Kundu realization
of π + 1. Furthermore let J be a given 1-factor. If J is disjoint from G,
then we are done.

So assume that edge e ∈ J is a green edge of G. Then we will swap out
that green edge from G. This is actually the same procedure that was used
in the proof of Lemma 3.6. We have to find another green edge f in G \ J
such that there is no red edges from I or J between these e and f . Since no
(other) edge from J touches edge e, therefore f should not belong to J and
must avoid red edges from I which also incident with e. But for that end
the same enumeration applies. This finishes the proof of Theorem 1.4.

It did not escape our attention that if degree sequences π1 and π2 pack -
where the maximum degree in π2 is small (say π2 ≤ 4) - then the majority

11

of the operations and reasoning can be applied quite easily to the degree
sequence π1 + π2. However there may be some problem to handle the alter-
nating cycle decomposition of the symmetric difference of two edge-disjoint
realizations of π2. However we believe that for packing a degree sequence
with a relatively small second sequence similar results apply.

References

References

[1] Yang-Chuan Chen: A short proof of Kundu’s k-factor theorem, Discrete

Math. 71 (1988), 177–179. DOI:10.1016/0012-365X(88)90070-2

[2] G.A. Dirac: Some theorems on abstract graphs, Proc. London Math.

Soc., 3rd Ser. 2 (1952), 69–81, DOI:10.1112/plms/s3-2.1.69

[3] C. Dürr, F. Guiñez and C. Matamala: Reconstructing 3-colored grids
from horizontal and vertical projections is NP-hard, SIAM J. Discrete

Math., 26 (2012), 330–352. DOI:10.1007/978-3-642-04128-0 69

[4] J. Edmonds: Paths, trees, and flowers, Can. J. Math. 17 (1965), 449–
467. DOI:10.4153/CJM-1965-045-4

[5] P.L. Erdős, Z. Király and I. Miklós: On the swap-distances of different
realizations of a graphical degree sequence,Comb. Prob. Comp. 22 (3)
(2013), 366–383. DOI:10.1017/S0963548313000096

[6] B. Grünbaum, Problem 2., Proc. Internl. Conf. on Combinatorial Struc-

ture and Their Applications, Calgary (1969) Gordon and Breach, New
York, (1970), p. 492.

[7] S.L. Hakimi: On the realizability of a set of integers as degrees of
the vertices of a graph, SIAM J. Appl. Math. 10 (1962), 496–506.
DOI:10.1137/0110037

[8] V. Havel: A remark on the existence of finite graphs (in Czech), C̆asopis
Pĕst. Mat. 80 (1955), 477–480.

[9] S. Kundu: The k-factor conjecture is true, Discrete Math. 6 (1973),
367–376. DOI:10.1016/0012-365X(73)90068-X

[10] L. Lovász: Valencies of graphs with l-factors, Periodica Math. Hung. 5

(1974), 149–151. DOI:10.1007/BF02020548

[11] J. Petersen: Die Theorie der regulären Graphs, Acta Math. 15 (1891),
193–220.

12

[12] A.R. Rao and S.B. Rao: On factorable degree sequences, J. Comb.

Theory (B) 13 (1972), 185–191. DOI:10.1016/0095-8956(72)90055-X

[13] W.T. Tutte: A short proof of the factors theorem for finite graphs,
Canad. J. Math. 6 (1954), 347–352. DOI:10.4153/CJM-1954-033-3

13

	1 Introduction
	2 Definitions and tools
	3 Proofs

