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Plasmodium falciparum parasites undergo multiple genome duplication

events during their development. Within the intraerythrocytic stages, para-

sites encounter an oxidative environment and DNA synthesis necessarily

proceeds under these circumstances. In addition to these conditions, the

extreme AT bias of the P. falciparum genome poses further constraints for

DNA synthesis. Taken together, these circumstances may allow appearance

of damaged bases in the Plasmodium DNA. Here, we focus on uracil that

may arise in DNA either via oxidative deamination or thymine-replacing

incorporation. We determine the level of uracil at the ring, trophozoite,

and schizont intraerythrocytic stages and evaluate the base-excision repair

potential of P. falciparum to deal with uracil-DNA repair. We find approx-

imately 7–10 uracil per million bases in the different parasite stages. This

level is considerably higher than found in other wild-type organisms from

bacteria to mammalian species. Based on a systematic assessment of P. fal-

ciparum genome and transcriptome databases, we conclude that uracil-

DNA repair relies on one single uracil-DNA glycosylase and proceeds

through the long-patch base-excision repair route. Although potentially

efficient, the repair route still leaves considerable level of uracils in parasite

DNA, which may contribute to mutation rates in P. falciparum.

Malaria is a major health threat affecting large

regions globally, resulting in the death of ~450 000

people annually [1]. The parasite’s capability of adap-

tation is a major hindering factor in the way of elimi-

nating the disease, mostly represented by the growing

resistance of parasites against antimalarials [1]. The

causative agents of malaria belong to the Plasmodium

genus. Among the five human parasites, Plasmodium

falciparum (P. falciparum) presents an exceptional

biomedical challenge being responsible for the most

serious infections and most of the lethal cases [2].

The life cycle of P. falciparum is intriguingly complex

(Fig. 1). The parasites undergo multiple DNA replica-

tions at several developmental stages in their vector

(Anopheles mosquito) and host (human liver and

bloodstream). The sexual phase of development occurs
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in the female Anopheles mosquito. The only meiotic

division takes place when the zygote, originating from

the fusion of microgametes and macrogametes inside

the mosquito, evolves into ookinetes. These will then

develop into multinuclear oocysts, wherein mitotic

sporogenesis results in the formation of numerous

sporozoites. After the mosquito bites a human host,

sporozoites invade the liver and undergo at least a

dozen rounds of mitosis to produce tens of thousands

of haploid merozoites [3]. These start the intraerythro-

cytic cycle by the invasion of red blood cells. The

importance of this cycle is emphasized by the fact that

about two-thirds of the genes of a murine Plasmodium

have been shown to be necessary for the blood stage

growth of parasites [4]. First, they develop into rings,

followed by trophozoites. At this stage, parasites enter

the G1 phase, and start to prepare for DNA replica-

tion. The S phase starts around 30 h after erythrocyte

invasion, when parasites are in the late trophozoite

stage. The replication in the parasite is asynchronous

and produces up to about 24n sister chromatids. Repli-

cation ends around 44 h postinvasion, after which each

genome is packed into daughter merozoites (schizont

form) [3,5]. Merozoites may exit the continuous

intraerythrocytic cycle by differentiating into male or

female gametocytes. These sexual forms, consumed by

the mosquito, evolve into micro- or macrogametocytes.

Microgametocytes undergo three mitotic cycles and

form eight exflagellated microgametes [3].

Importantly, DNA replication cycles within the

intraerythrocytic stages proceed in an environment rich

in oxidative conditions. Especially, free heme and iron

during the hemozoin formation process pose notable

oxidative stress, which may result in DNA modifica-

tions (e.g., oxidative cytosine deamination leading to

uracil and other oxidative processes). The specific com-

position of genomic DNA in Plasmodia may also

facilitate the appearance of uracil in the DNA.

Members of the Plasmodium genus possess the most

AT-rich genome sequenced so far, including P. falci-

parum, having namely ~80% AT content in the exonic

regions and ~90% in the intronic regions [6,7]. Com-

paring to other organisms, like the host, Homo sapiens,

where the average AT content is 58.9%, and to other

eukaryotic pathogens, namely Toxoplasma gondii and

Trypanosoma brucei, having 47.7% and 53.2% AT,

respectively, the base composition of the P. falciparum

genome is indeed extraordinary [8]. A mutation bias

has recently been pointed out in P. falciparum, show-

ing an increased occurrence of GC?AT substitutions,

which could promote the AT-rich genome structure

[8]. The AT richness of the genome may increase the

possibility of uracil content, as huge amounts of

thymidines are incorporated, giving more chance for

the polymerase to mistake thymidines with uridines as

compared to a genome with lower levels of AT con-

tent. We therefore wished to determine uracil levels in

genomic DNA of P. falciparum during the intraery-

throcytic stages.

A dot-blot-based uracil detection method has

recently been developed in our laboratory, which

provides a robust and straightforward possibility for

sensitive and quantitative detection of uracil-DNA

levels [9]. The basis of detection is an engineered cat-

alytically inactive uracil-DNA glycosylase (UNG),

which is capable of recognizing and binding to uracils

incorporated in DNA sequences. The uracil sensor

UNG-construct can be equipped with diverse tags for

ease of detection via antibodies using the dot-blot

method. The sensitivity of the method is equivalent to

that of MS-based methods, providing a limit in femto-

molar concentrations [9].

In the present work, we analyzed the uracil content of

genomic DNA from three different intraerythrocytic

Fig. 1. The life cycle of Plasmodium

falciparum. Stages within the mosquito

vector and inside the human host are on

light gray or coral background,

respectively. Developmental stages of the

intraerythrocytic cycle are represented by

graphical illustrations, and changes in

chromosome content in these stages are

also indicated on a schematic horizontal

axis.
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developmental stages of P. falciparum 3D7 parasites,

namely the ring, trophozoite, and schizont stages. The

quantification of uracil moieties was performed by the

aforementioned dot-blot-based uracil detection method

[9]. To assess the potential efficiency of uracil-DNA

repair, we compared the existing orthologues of mam-

malian base-excision repair enzymes to those present in

the parasite based on genome databases of H. sapiens

and P. falciparum. We also analyzed transcriptome data-

bases of the intraerythrocytic parasite stages with regard

to expression level of base-excision repair enzymes.

Materials and methods

Maintenance of parasite cultures

Plasmodium falciparum 3D7 parasites were obtained from

the University of Montpellier. Continuous cultures were

maintained in human 0+ erythrocytes. Parasites were grown

at 5% hematocrit (HCT) in complete RPMI medium [incom-

plete RPMI 1640 (w L-glutamine, w Hepes, w NaHCO3)]

(Lonza, Basel, Switzerland) supplemented with 50 mg�L�1

gentamicin (VWR Chemicals, Radnor, PA, USA), 37 µM

hypoxanthine (Alfa Aesar, Haverhill, MA, USA), and

1.25 g�L�1 Albumax I (Gibco from Thermo Fisher Scientific,

Waltham, MA, USA). Cultures were kept at 37 °C in a labo-

ratory incubator gassed with 5% O2, 5% CO2, and 90% N2.

Cultures were synchronized by sorbitol at the young ring

stage, and Percoll treatment at the schizont stage matured

from sorbitol-treated rings, as described elsewhere [10,11].

Trophozoites were obtained from synchronized cultures,

after parasites reached the early trophozoite stage.

Genomic DNA isolation

Synchronized parasites of different developmental stages

were collected from two biologically independent cultures

(i.e., biological replicates), and lysed as described elsewhere

[12]. Briefly, red blood cells were lysed in 5% saponin

(Sigma-Aldrich, St. Louis, MO, USA) in PBS, then incu-

bated at 37 °C for 3 h for parasite lysis in a lysis solution

(pH = 7.5) of the following composition: 40 mM Tris/HCl;

80 mM EDTA; 2% SDS; 0.1 mg�mL�1 proteinase K. After

treatment, genomic DNA was purified using the

QuickDNA Miniprep Plus kit obtained from Zymo

Research (Irvine, CA, USA).

Dot-blot measurement and analysis

Dot-blot measurements were carried out in four indepen-

dent replicates using samples from the P. falciparum devel-

opmental stages, namely rings, trophozoites, and schizonts,

as described elsewhere [9]. Briefly, genomic DNA isolated

from CJ236 Escherichia coli strain [dut�,ung�] served as a

uracil standard, applied in 15 ng diluted into 1 lg of ultra-

pure salmon sperm DNA. The standard was diluted in a ½

dilution series. The two-third serial dilutions for P. falci-

parum samples started with 1 lg of DNA. Samples were

spotted onto a prewetted positively charged nylon mem-

brane (Amersham Hybond-Ny+; GE Healthcare, Little

Chalfont, UK) using a vacuum-driven microfiltration appa-

ratus (Bio-Dot, Bio-Rad, Hercules, CA, USA). The DNA

was immobilized, and the membrane was blocked and incu-

bated with the detector construct of UNG. After several

washing steps, first primary, then secondary antibodies

were applied. Immunoreactive bands were visualized by

enhanced chemiluminescence reagent (Western Chemilumi-

nescent HRP substrate from Merck Millipore, Burlington,

MA, USA), and images were captured by a Bio-Rad Che-

miDocTM MPImaging system. Densitometry was per-

formed using IMAGEJ 1.48p software (National Institutes of

Health, Bethesda, MD, USA). The number of deoxyuridine

nucleotides was calculated as described elsewhere [9]. Cali-

bration curve from the dilution of the standard was fitted

with a polynomial with second order that provided a fit

with R2 ≥ 0.98. The number of uracil per million bases in

the ‘unknown’ genomic DNA was determined by interpo-

lating their normalized intensities in the calibration plot

based on the amount of DNA applied.

Fig. 2. Dot-blot assays for measuring

genomic uracil levels of the different

developmental stages of Plasmodium

falciparum parasites. (A) CJ236 [dut�,

ung�] Escherichia coli genomic DNA was

used as standard for the dot-blot assay.

(B) Representative dot-blot images of the

measurement of the quantity of genomic

uracil in P. falciparum ring, trophozoite,

and schizont samples.
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Statistical analysis

Statistical analysis was carried out by ORIGINPRO 8.6 (Origi-

nLab, Northampton, MA, USA) using one-way ANOVA

test when samples passed homogeneity of variance test

(Levene’s test) and normal distribution tests (Kolmogorov–
Smirnov test). Differences were considered statistically sig-

nificant at P < 0.05.

Transcriptome analysis

Transcriptome analysis was carried out using the Transcrip-

tomics function of the Plasmodb database. The gene

expression level of each protein was estimated by RNA-Seq

data for intraerythrocytic stages [13,14]. Raw data were

plotted for four stages: ring, early and late trophozoite,

and schizont.

Table 1. Comparison of the mammalian and Plasmodium falciparum BER protein sets and their involvement in short-patch versus long-

patch BER (cf ‘x’ marks). The functionality of DNA glycosylases is defined as mono- (M) or bifunctional (B). Question mark in case of DNA

polymerase b indicates that a polymerase b-like enzyme was reported in P. falciparum, with an activity related to mammalian Pol b;

however, the respective gene is not annotated. All abbreviations are listed in the Abbreviations section of the article.

Mammalian [19]

Functionality

(for glycosylases

only) Substrates

Short-

patch

BER

Long-

patch

BER

Plasmodium

orthologue

UniProt/

PlasmoDB ID Ref.

DNA

N-glycosylase

UNG1/2 M U, 5-FU, U:A, U:G x x Uracil-DNA

glycosylase

Q8ILU6/PF14_0148 [21]

TDG M U:G>T:G x x Not found

SMUG1 M U:G>U:A, 5-FU,

5-hmU

x x Not found

MBD4 M U:G, T:G x x Not found

NTHL1 B Tg, FapyG,

5-hC, 5-hU

x x Endonuclease

III homologue

C6KSY9/PFF0715c [6]

OGG1 M/B 8-oxoG:C, FapyG x x N-glycosylase/

DNA lyase

Q8I2Y2/PFI0835c [6]

MUTYH M A opposite 8-oxoG x x A/G-specific

adenine

glycosylase

Q8II68/PF11_0306 [6]

MPG M 3meA, 7meG,

3meG, Hx

x x DNA-3-

methyladenine

glycosylase

Q8IKG6/PF14_0639 [6]

NEIL1 B Tg, FapyG, FapyA,

8-oxoG, 5-hU, DHU

x x Not found

NEIL2 B Tg, FapyG, FapyA,

8-oxoG, 5-hU, DHU

x x Not found

NEIL3 M/B FapyA, FapyG x x Not found

AP

endonuclease

APE1 x x Apurinic/apyrimidinic

endonuclease Apn1

Q8IE02/PF13_0176 [22]

AP lyase x x

Polymerase Pol b x x ? ? [23]

Pol d – x DNA polymerase d Q7KQL4/PF10_0165 [21,24]

Pol e – x DNA polymerase e C6KTD8/PFF1470c [6,25]

Flap

endonuclease

FEN1 – x flap endonuclease 1 Q7K734/PFD0420c [26]

DNA ligase LIG1 x x DNA ligase I Q8IES4/MAL13P1.22 [27]

LIG3 x – not found

Factors PNKP x – polynucleotide

kinase/phosphatase

Q8ID74/PF13_0334 [28]

XRCC1 x – not found

PCNA – x proliferating cell

nuclear antigen

P61074/PF13_0328 [29,30]

proliferating cell

nuclear antigen 2

Q7KQJ9/PFL1285c [30–32]

RFC – x P-loop containing

nucleoside

triphosphate

hydrolase

PFA0545c [33,34]

Enzymes written in bold designate the mammalian enzymes with Plasmodium orthologs.
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Results and Discussion

We measured the amount of uracil moieties/million

bases of DNA samples extracted from the three

intraerythrocytic developmental stages of the

P. falciparum parasites using a recently developed dot-

blot-based detection method [9]. Parasite cultures were

synchronized, and cultures of ring, trophozoite, and

schizont were collected for the isolation of genomic

DNA. Two representative dot-blot images are shown

in Fig. 2. The measured amount of uracil moieties in

our samples could be fitted to the linear range of the

standard dilution series (Fig. 2).

The uracil content of ring, trophozoite, and schizont

stage parasites were determined to be 9.6 � 2.8,

6.7 � 2.4, and 7.6 � 3.8 uracil per million bases,

respectively. One-way ANOVA statistical analysis

revealed that the uracil contents of the measured ery-

throcytic stages under these experimental conditions

do not differ significantly from each other (P = 0.618).

It is of interest to note that these uracil-DNA levels

are significantly higher than those observed in other

samples from different wild-type organisms. The level

of uracil moieties in genomic DNA has been assessed

by various methods in numerous organisms so far

[9,15,16] The general conclusion from these studies

agrees that wild-type organisms from bacteria to mam-

mals, as well as normal cell lines, show low levels of

uracil in DNA in the range of 0.1–1 uracil per million

bases, or even lower [16,17]. An interesting exception

was found in Drosophila S2 cells, where the uracil-

DNA content was reported to be around 15–16 uracil

per million bases [9]. This considerable high genomic

uracil level is, however, probably directly related to

the lack of the most efficient uracil-DNA glycosylase

enzyme (UNG protein) from the Drosophila genome

[18]. Organisms under genotoxic stress or engineered

to lack uracil-DNA glycosylases also present increased

genomic uracil levels [9,15–17]. To discuss our results,

it was therefore of immediate interest to investigate

whether the approx. 7–10 uracil per million bases

levels in the P. falciparum genomic DNA samples may

be related to a limited set of repair enzymes in the par-

asite.

The DNA repair route to remove uracil from DNA

relies on the base-excision repair (BER) pathway [19].

We therefore systematically compared the relevant set

of proteins encoded in mammalian species vs P. falci-

parum. For the initial search of the related P. falci-

parum BER enzyme set, the KEGG pathway database

[20] was used with manual curation and verification of

the hits. In each case, we also performed a sequence

alignment to decide whether the orthologues are truly

relevant and include the functionally important resi-

dues. Whenever available, published studies on the

specific proteins were also consulted. Results are

shown in Table 1 and identify two interesting limita-

tions of the BER protein set in P. falciparum.

These two limitations relate to, on the one hand, the

set of enzymes capable of recognizing and cleaving

uracil from DNA, and on the other hand, to the set of

proteins required for the short-patch versus long-patch

BER routes. Uracil-DNA glycosylases in diverse

organisms include at least four enzyme families (UNG,

TDG, SMUG, MBD4) [35,36]. The diversity in these

enzymes defines their specific roles and different sub-

strate specificities and underlies the high significance of

uracil removal from DNA. In P. falciparum, however,

only one uracil-DNA glycosylase gene is present: It

encodes the archetypical UNG enzyme.

With regard to the second limitation, concerning

short-patch vs long-patch BER pathways, it has been

argued earlier that P. falciparum predominantly

Fig. 3. A possible uracil-DNA repair mechanism of

Plasmodium falciparum via long-patch BER, based on the analysis

of BER enzyme sets.
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employs the long-patch pathway [37]. In agreement

with this study, several proteins involved in short-

patch BER was not identified in P. falciparum (e.g.,

polymerase b, ligase 3) (cf Table 1). It has to be men-

tioned that although a protein with polymerase b-like
enzyme activity has been reported in P. falciparum

[23], its role in short-patch BER in P. falciparum has

not been confirmed. As it is responsible for the synthe-

sis of 3- to 5-bp oligonucleotides, it may be involved

in long-patch repair [23]. Also, this ‘polymerase b-like’
protein may have another role in an alternative end-

joining pathway in the parasite [38]. No orthologues

of the LIG3 and its stabilizing scaffold protein,

XRCC1, have been found so far. LIG3 and XRCC1

are responsible for the ligation process in short-patch

BER [19]. In summary, the protein set encoded in

P. falciparum is deficient on short-patch BER, but all

protein orthologues necessary for the long-patch BER

pathway have been clearly identified in the parasite.

Based on these data, a possible route of P. falciparum

long-patch BER-based uracil-DNA repair mechanism is

shown in Fig. 3. The recognition and excision of uracil in

the DNA of the parasites are performed by UNG. The

next step is DNA strand cleavage by Apn1, which results

in the formation of a nick in the DNA backbone. DNA

polymerase d (or e) binds to the DNA by the help of pro-

liferating cell nuclear antigen (PCNA) and the replication

factor C (RFC) orthologue to start the synthesis of ~10
new nucleotides, while removing the downstream 50

DNA end. The replaced section forms a so-called flap

structure that is still connected to the DNA. It is removed

by flap endonuclease 1 (FEN1). The leftover nick is

ligated by DNA ligase I [39].

It was also of interest to look into the expression

profiles of the key enzymes involved in uracil-DNA

repair in the parasite, in relation to the uracil-DNA

levels during the intraerythrocytic stages. In this analy-

sis, we also considered the dUTPase enzyme, which is

responsible for cleaving dUTP to prevent uracil incor-

poration into DNA [36]. Based on the analysis of

BER enzyme transcriptome levels of the different

P. falciparum developmental stages, the pathway is

Fig. 4. Uracil-DNA and repair enzymes expression levels in intraerythrocytic Plasmodium falciparum stages. (A) Changes in chromosome

content in the different stages. (B) The uracil-DNA levels in the ring, trophozoite, and schizont stage parasites are shown with error bars. (C)

Analysis of transcriptomes of the long-patch BER enzyme set in P. falciparum intraerythrocytic developmental stages. FPKM is the

transcript levels of fragments per kilobase of exon model per million mapped reads.
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initiated in the late trophozoite stage (Fig. 4). This is

in good agreement with the DNA metabolism of the

parasites, as DNA synthesis starts in the late tropho-

zoite stage followed by DNA packaging into mero-

zoites at the end of the intraerythrocytic cycle. In case

of UNG and Pold, the expression level drops again in

schizont stage. Apn1, FEN1, and DNA ligase I remain

present after late trophozoite stage as well (Fig. 4C).

The expression level of dUTPase, responsible for pre-

venting uracil incorporation, is highly elevated in late

trophozoite stage in parallel with the BER enzymes.

However, transcriptome analysis data should be evalu-

ated with caution as they may not reflect the efficiency

of the enzymes participating in uracil repair.

Conclusions

We have determined uracil-DNA levels in different

intraerythrocytic stages of P. falciparum genomic

DNA and found that approx. 7–10 uracil per million

bases can be detected. To account for this level, which

is significantly higher as compared to other normal

wild-type organisms, the balance between processes

leading to uracil presence in DNA and its removal

needs to be considered.

There are two mechanisms by which uracil can arise

in DNA, as shown in Fig. 5. On the one hand, if cellu-

lar dUTP levels are high as compared to dTTP levels,

polymerases can readily incorporate dUMP moieties

into DNA. The enzyme family of dUTPases are

responsible for keeping dUTP levels at a low value to

prevent thymine-replacing incorporations. The signifi-

cance of this DNA repair function of P. falciparum

dUTPase is underlined by numerous studies that focus

on plasmodial dUTPase inhibition as an important

chemotherapeutic strategy against malaria [40–42].
Thymine-replacing uracil incorporation into P. falci-

parum genomic DNA may be enhanced by the excep-

tionally high AT content of the parasite genome. Also,

the level of dUTPase expression as suggested by tran-

scriptomic analysis is increased only in the late tropho-

zoite stages, potentially allowing uracil incorporation

at earlier stages where DNA replication is initiated.

This pathway of uracil incorporation does not result

in a stable mutation, but is considered dangerous

because high levels of uracil in the DNA can lead to

Fig. 5. Pathways leading to uracil

appearance in DNA. Steps directly

resulting in uracil appearance are marked

by dark green. Pathways present in

mammals but not in Plasmodia are marked

by light gray.
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the hyperactivity of the uracil-repair mechanism,

resulting in thymine-less cell death [36].

Another possibility for uracil to appear in DNA is

the oxidative deamination of cytosine, resulting in a

G:U pair instead of G:C [36,43]. In the next round of

replication, DNA polymerases will incorporate adeno-

sine opposite of U. Without repair, this will lead to

the formation of an AT pair, aka a GC?AT substitu-

tion. The deamination of cytosine is considered one of

the most frequent DNA mutations, with a rate of 100

to 500 U�cell�1�day�1 [44]. In case of P. falciparum,

the detoxifying process resulting in the formation of

hemozoin crystals gives rise to the formation of oxida-

tive agents. The presence of such reactive oxygen and

nitrogen species in the parasitized erythrocytic environ-

ment can cause the deamination of cytidine in

increased frequency, possibly contributing to the GC?
AT substitutions [8].

Uracil removal from DNA requires the base-exci-

sion repair process. In mammalian cells, both short-

and long-patch BER pathways are present for the

repair of base excisions, but the parasites rely only on

the long-patch repair. Moreover, from the different

families of uracil-DNA glycosylases, P. falciparum

contains only the single UNG protein, further limiting

the capacity of parasites to remove uracil from the

DNA.

It has been discussed that genomic architecture of

P. falciparum, containing low complexity regions and

repetitive sequences as a consequence of the AT rich-

ness, allows high indel mutation rates in coding and

noncoding regions. Indel mutations occur 10-fold more

frequently compared to base-pair substitutions, and

this is probably the result of DNA polymerase slip-

pages and unequal crossing over events [8]. Possible

advantages of high mutation rates include an effect on

gene regulation, an extended antigenic variance, a role

in drug resistance, and an evolutionary benefit. The

mutation of noncoding genes can have an effect on the

gene expression, as these regions often have enhancer

or repressor roles [8,45]. Probably, the high mutation

rates combined with low complexity regions can facili-

tate adaptive evolution in P. falciparum parasites [8].

The presence of uracil moieties in the parasite genome

may also contribute to mutation rates.
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