

PRIMARY-LIKE SUBMODULES AND A SCHEME OVER THE PRIMARY-LIKE SPECTRUM OF MODULES

H. FAZAELI MOGHIMI AND F. RASHEDI

Received 25 April, 2014

Abstract. Let R be a commutative ring with identity and M be a unitary R-module. In this paper, we obtain a scheme $(\mathcal{X}(M), \mathbb{O}_{\mathcal{X}(M)})$ over the primary-like spectrum $\mathcal{X}(M)$ of M and prove that $(\mathcal{X}(M), \mathbb{O}_{\mathcal{X}(M)})$ is a Noetherian scheme when R is a Noetherian ring.

2010 Mathematics Subject Classification: 13C99; 14A15

Keywords: Zariski topology, sheaf of rings, scheme

1. INTRODUCTION

Throughout this paper, all rings are commutative with identity and all modules are unital. For a submodule N of an R-module M, (N : M) denotes the ideal $\{r \in R \mid rM \subseteq N\}$ and the annihilator of M, denoted by Ann(M), is the ideal (0: M). An R-module M is called faithful if Ann(M) = (0). A submodule P of an R-module M is said to be p-prime if $P \neq M$ and for p = (P : M), whenever $rm \in P$ (where $r \in R$ and $m \in M$) then $m \in P$ or $r \in p$ [7,11]. The collection of all prime submodules of M is denoted by Spec(M). If N is a submodule of M, then the radical of N, denoted by rad N, is the intersection of all prime submodules of M containing N, unless no such primes exist, in which case rad N = M [8].

A submodule Q of M is said to be primary-like if $Q \neq M$ and whenever $rm \in Q$ (where $r \in R$ and $m \in M$) implies $r \in (Q : M)$ or $m \in \operatorname{rad} Q$ [4]. An R-module M is said to be primeful or ψ -module if either M = (0) or $M \neq (0)$ and the map $\psi : Spec(M) \rightarrow Spec(R/Ann(M))$, defined by $\psi(P) = (P : M)/Ann(M)$ is surjective [10]. If M/N is a ψ -module over R, then $\sqrt{(N : M)} = (\operatorname{rad} N : M)$ [10, Proposition 5.3]. It is easily seen that, if Q is a primary-like submodule of M such that M/Q is a ψ -module over R, then (Q : M) is a primary ideal of R and so $p = \sqrt{(Q : M)}$ is a prime ideal of R [4, Lemma 2.1], and in this case Q is called a p-primary-like submodule of M. The primary-like submodules Q of M, where M/Q is a ψ -module.

An *R*-module *M* is said to be a ϕ -module if either M = (0) or $M \neq (0)$ and the

© 2017 Miskolc University Press

map $\phi : \mathfrak{X}(M) \to Spec(R/Ann(M))$ defined by $\phi(Q) = \sqrt{(Q:M)}/Ann(M)$ is surjective. If M is a ϕ -module and p is a prime ideal of R containing Ann(M), then there exists $Q \in \mathfrak{X}(M)$ such that $\psi(S_p(Q + pM)) = \phi(Q) = p/Ann(M)$, where $S_p(Q + pM) = \{m \in M \mid cm \in Q + pM \text{ for some } c \in R \setminus p\}$ is the saturation of Q + pM in M with respect to p. Thus every ϕ -module is a ψ -module; but the following example shows that the converse is not true.

Example 1 (cf. [10, Example 1]). Let Ω be the set of all prime integers, $M = \prod_{p \in \Omega} \frac{\mathbb{Z}}{p\mathbb{Z}}$ and $M' = \bigoplus_{p \in \Omega} \frac{\mathbb{Z}}{p\mathbb{Z}}$, where p runs through Ω . Hence M is a faithful ψ -module over \mathbb{Z} and $Spec(M) = \{M' = S_0(0)\} \cup \{pM : p \in \Omega\}$. Now if ϕ is surjective, then there exists $N \in \mathcal{X}(M)$ such that $\phi(N) = \sqrt{(N : M)} = 0$. It follows that (N : M) = 0. Since M/N is a ψ -module, we have $N \subseteq \bigcap_{p \in \Omega} pM = 0$. But 0 is not prime and so is not primary-like because rad0 = 0. Hence $N \notin \mathcal{X}(M)$, a contradiction. Thus M is not a ϕ -module.

The Zariski topology on the spectrum of prime ideals of a commutative ring is one of the main tools in algebraic geometry. Recall that the spectrum Spec(R) of a ring R consists of all prime ideals of R and is non-empty. For each ideal I of R, we set V(I) (or $V^{R}(I)$) = { $p \in Spec(R) | p \supseteq I$ }). Then the sets V(I), where I is an ideal of R, satisfy the axioms for the closed sets of a topology on Spec(R), called the Zariski topology (for example see [3]). It is well-known that for any ring R, there is a sheaf of rings on Spec(R), called the structure sheaf, denoted by $\mathcal{O}_{Spec(R)}$, defined as follows: for each prime ideal p of R, let R_p be the localization of R at p. For an open set $U \subseteq Spec(R)$ with respect to the Zariski topology, we define $\mathcal{O}_{Spec(R)}(U)$ to be the set of functions $r : U \to \coprod_{p \in U} R_p$, such that $r(p) \in R_p$, for each $p \in U$, and such that r is a quotient of elements of R locally: to be precise, we require that for each $p \in U$, there is a neighborhood V of p, contained in U, and there are elements $a, s \in R$, such that for each $p' \in V$, $s \notin p'$ and $r(p') = \frac{a}{s}$ in $R_{p'}$ (see for example [5], for definition and basic properties of the sheaf $\mathcal{O}_{Spec(R)}$).

In the literature, there are many different generalizations of the Zariski topology for modules over commutative rings. For example, Lu has introduced a Zariski topology on Spec(M) whose closed sets are $V(N) = \{P \in Spec(M) \mid (N : M) \subseteq (P : M)\}$ for any submodule N of M [9]. This topological space has been investigated from several point of views (see for example [1,2,6,12]).

As a new generalization of the Zariski topology, the Zariski topology \mathcal{T} on $\mathcal{X}(M)$ is a topology in which closed sets are of the form $\nu(N) = \{Q \in \mathcal{X}(M) \mid \sqrt{(N:M)} \subseteq \sqrt{(Q:M)}\}$ (Lemma 1). There are various generalizations of sheaves from rings to modules in which the sheaf on Spec(M) is the set of all functions $r : Spec(M) \rightarrow \bigcup_{p \in U} M_p$ with the property similar to that for Spec(R) (some of these types of sheaves have been given and studied in [6, 12]). In parallel, we introduce a sheaf $\mathcal{O}_{\mathcal{X}(M)}$ over $\mathcal{X}(M)$.

We show that the set $\mathcal{B} = \{\mathcal{X}_r : r \in R\}$, where $\mathcal{X}_r = \mathcal{X}(M) - \nu(rM)$ is a basis

for the Zariski topology over $\mathcal{X}(M)$ (Lemma 5). In particular, if M is a ϕ -module, then the elements \mathcal{X}_r of \mathcal{B} are quasi-compact (Corollary 3). This basis is used to show that $\mathcal{O}_{\mathcal{X}(M)}(\mathcal{X}_s) \cong R_s$ for each $s \in R$, where M is a faithful ϕ -module and $R_s = \{\frac{a}{s^n} : a \in R, n \in \mathbb{N}\}$ (Theorem 4). Finally we show that if M is a ϕ -module over a Noetherian ring R and $\mathcal{X}(M)$ is a T_0 -space, then $(\mathcal{X}(M), \mathcal{O}_{\mathcal{X}(M)})$ is a Noetherian scheme (Theorem 5).

2. The Zariski topology on $\mathcal{X}(M)$

We begin with a lemma to see that the sets $\nu(N) = \{Q \in \mathcal{X}(M) \mid \sqrt{(N:M)} \subseteq \sqrt{(Q:M)}\}$ satisfy the axioms of closed sets for a topology.

Lemma 1. Let M be an R-module. Then

- (1) $v(0) = \mathcal{X}(M)$ and $v(M) = \emptyset$.
- (2) $\bigcap_{i \in I} \nu(N_i) = \nu(\sum_{i \in I} (N_i : M)M), \text{ for each family } \{N_i \mid i \in I\} \text{ of submodules} of M.$
- (3) $\nu(N) \cup \nu(N') = \nu(N \cap N')$, for each pair N, N' of submodules of M.

Proof. (1) and (3) are trivial.

(2) Since M/Q is a ψ -module, $(\operatorname{rad} Q : M) = \sqrt{(Q : M)}$ [10, Proposition 5.3]. Also it is easily verified that $((\operatorname{rad} Q : M)M : M) = (\operatorname{rad} Q : M))$. Using these facts we have the following implications.

$$\begin{split} Q &\in \bigcap_{i \in I} \nu(N_i) \Rightarrow \sqrt{(Q:M)} \supseteq \sum_{i \in I} (N_i:M) \\ &\Rightarrow \sqrt{(Q:M)} M \supseteq (\sum_{i \in I} (N_i:M)) M \\ &\Rightarrow (\sqrt{(Q:M)} M : M) \supseteq ((\sum_{i \in I} (N_i:M)) M : M) \\ &\Rightarrow ((\operatorname{rad} Q:M) M : M) \supseteq ((\sum_{i \in I} (N_i:M)) M : M) \\ &\Rightarrow (\operatorname{rad} Q:M) \supseteq ((\sum_{i \in I} (N_i:M)) M : M) \\ &\Rightarrow \sqrt{(Q:M)} \supseteq \sqrt{((\sum_{i \in I} (N_i:M)) M : M)} \\ &\Rightarrow Q \in \nu((\sum_{i \in I} (N_i:M)) M). \end{split}$$

For the reverse inclusion we have

$$Q \in \nu(\sum_{i \in I} (N_i : M)M) \Rightarrow \sqrt{(Q : M)} \supseteq ((\sum_{i \in I} (N_i : M))M : M)$$

$$\Rightarrow \sqrt{(Q : M)} \supseteq ((N_i : M)M : M) \quad \forall i \in I$$

$$\Rightarrow \sqrt{(Q : M)} \supseteq (N_i : M) \quad \forall i \in I$$

$$\Rightarrow \sqrt{(Q : M)} \supseteq \sqrt{(N_i : M)} \quad \forall i \in I$$

$$\Rightarrow Q \in \bigcap_{i \in I} \nu(N_i)$$

We will use \overline{R} and $X^{\overline{R}}$ to represent R/Ann(M) and Spec(R/Ann(M)) respectively.

Proposition 1. Let M be an R-module. Then $\phi^{-1}(V^{\overline{R}}(\overline{I})) = v(IM)$, for every ideal $I \in V(Ann(M))$. Therefore the map ϕ is continuous with respect to the Zariski topology on $\mathcal{X}(M)$.

Proof. Suppose $Q \in \phi^{-1}(V^{\overline{R}}(\overline{I}))$. Then $\phi(Q) \in V^{\overline{R}}(\overline{I})$ and so $\sqrt{(Q:M)} \supseteq I$. Hence $\sqrt{(Q:M)} \supseteq \sqrt{(IM:M)}$. Thus $Q \in v(IM)$. The argument is reversible and so ϕ is continuous.

Theorem 1. Let M be a ϕ -module over a ring R. Then $\phi(v(N)) = V^{\overline{R}}(\overline{(N:M)})$ and $\phi(\mathfrak{X}(M) - v(N)) = X^{\overline{R}} - V^{\overline{R}}(\overline{(N:M)})$ for every submodule N of M, i.e., ϕ is both closed and open.

Proof. As we have seen in Proposition 1, $\phi^{-1}(V^{\overline{R}}(\overline{I})) = v(IM)$, for every ideal $I \in V(Ann(M))$. Hence for every submodule N of M, $\phi^{-1}(V^{\overline{R}}((N:M))) = v(N(N:M)M) = v(N)$. So $\phi(v(N)) = \phi \circ \phi^{-1}(V^{\overline{R}}((N:M))) = V^{\overline{R}}((N:M))$ as ϕ is surjective. Thus

$$\phi(\mathcal{X}(M) - \nu(N)) = \phi(\phi^{-1}(X^{\overline{R}}) - \phi^{-1}(V^{\overline{R}}(\overline{(N:M)}))) = X^{\overline{R}} - V^{\overline{R}}(\overline{(N:M)})$$

Corollary 1. Let M be an R-module. Then ϕ is a bijection if and only if ϕ is a homeomorphism.

Proposition 2. Let M be an R-module and $Q, Q' \in \mathcal{X}(M)$. Then the following statements are equivalent.

- (1) If v(Q) = v(Q'), then Q = Q';
- (2) For each $p \in Spec(R)$, the set $\{Q \in \mathcal{X}(M) : \sqrt{(Q:M)} = p\}$ is empty or a singleton set;
- (3) ϕ is injective.

Proof. (1) \Rightarrow (2) Let $Q, Q' \in \mathcal{X}(M)$ and $\sqrt{(Q:M)} = \sqrt{(Q':M)} = p$. Then v(Q) = v(Q'). Thus Q = Q' by (1). (2) \Rightarrow (3) Suppose $Q, Q' \in \mathcal{X}(M)$ and $\phi(Q) = \phi(Q')$. Hence $\sqrt{(Q:M)} =$ $\sqrt{(Q':M)} = p$. Thus Q = Q' by (2). $(3) \Rightarrow (1)$ is clear.

Let \mathcal{Y} be a subset of $\mathcal{X}(M)$ for a module M. We will denote the closure of \mathcal{Y} in $\mathfrak{X}(M)$ by $\overline{\mathcal{Y}}$.

Proposition 3. Let M be an R-module and let $\mathcal{Y} = \{Q_1, Q_2, ..., Q_n\}$ be a finite subset of $\mathcal{X}(M)$. Then $\overline{\mathcal{Y}} = v(Q_1) \cup ... \cup v(Q_n)$.

Proof. Clearly, $\mathcal{Y} \subseteq \nu(Q_1) \cup ... \cup \nu(Q_n)$. Assume that \mathcal{F} is any closed subset of $\mathcal{X}(M)$ such that $\mathcal{Y} \subseteq \mathcal{F}$. Hence $\mathcal{F} = \nu(N)$ for the submodule N of M. Let $Q \in \nu(Q_1) \cup ... \cup \nu(Q_n)$. Then there exists $i \ (1 \le i \le n)$ such that $Q \in \nu(Q_i)$ and so $\sqrt{(Q_i:M)} \subseteq \sqrt{(Q:M)}$. Since $Q_i \in \mathcal{F}$, $\sqrt{(N:M)} \subseteq \sqrt{(Q_i:M)} \subseteq \sqrt{(Q_i:M)}$ and hence $Q \in \mathcal{F}$. Hence $\nu(Q_1) \cup ... \cup \nu(Q_n) \subseteq \mathcal{F}$. Thus $\overline{\mathcal{Y}} = \nu(Q_1) \cup ... \cup \nu(Q_n)$.

The above proposition immediately yields that the following result.

Corollary 2. Let M be an R-module. Then (1) Q = v(Q) for every $Q \in \mathcal{X}(M)$. (2) $Q' \in \overline{Q}$ if and only if $\sqrt{(Q':M)} \supseteq \sqrt{(Q:M)}$ if and only if $\nu(Q') \subseteq \nu(Q)$.

Proof. By Proposition 3 is clear.

A topological space X is a T_0 -space if and only if for any two distinct points in X there exists an open subset of X which contains one of the points but not the other. We know that, for any ring R, Spec(R) is always a T_0 -space for the usual Zariski topology. In [9, P. 429], it has been shown that if M is a vector space, then (Spec(M))is not a T₀-space. This example can be used again to show that $(\mathcal{X}(M), \mathcal{T})$ is not also a T_0 -space. In fact $\nu(N) = \mathcal{X}(M)$ for every proper vector subspace N of M so that the Zariski topology on $\mathcal{X}(M)$ is the trivial topology even when $|\mathcal{X}(M)| > 1$.

Theorem 2. Let M be an R-module. Then $\mathcal{X}(M)$ is a T₀-space if and only if one of the statements (1) - (3) in Proposition 2 holds.

Proof. First suppose $\mathcal{X}(M)$ is a T_0 -space. We prove the item(1) of proposition 2. For this assume $\nu(Q) = \nu(Q')$ and $Q \neq Q'$. Since $\mathcal{X}(M)$ is a T_0 -space, $\overline{Q} \neq \overline{Q'}$. Thus by Corollary 2 we have $\nu(Q) \neq \nu(Q')$, a contradiction. Conversely, suppose that $Q \neq Q' \in \mathfrak{X}(M)$ and $\nu(Q) \neq \nu(Q')$. Therefore by Corollary 2, $\overline{Q} \neq \overline{Q'}$. Thus $\mathcal{X}(M)$ is a T_0 -space. \square

For each $r \in R$, we set $\mathcal{X}_r = \mathcal{X}(M) - \nu(rM)$ and $D_{\overline{r}} = X^{\overline{R}} - V(\overline{R}\overline{r})$. It is easily seen that $\mathcal{X}_{0_R} = \emptyset$, $\mathcal{X}_{1_R} = \mathcal{X}(M)$.

Lemma 2. Let M be an R-module. Then $\phi(\mathfrak{X}_r) \subseteq D_{\overline{r}}$; the equality holds if M is a ϕ -module.

Proof. By Proposition 1, $\phi^{-1}(D_{\overline{r}}) = \phi^{-1}(X^{\overline{R}} - V(\overline{R}\overline{r})) = \mathcal{X}(M) - v(rM) = \mathcal{X}_r$. The equality follows form Theorem 1.

Lemma 3. Let $r, s \in R$. Then the following hold.

- (1) $\mathcal{X}_{rs} = \mathcal{X}_r \cap \mathcal{X}_s$.
- (2) $\mathcal{X}_{r^n} = \mathcal{X}_r$ for all $n \in \mathbb{N}$.
- (3) If r is nilpotent, then $X_r = \emptyset$.

Proof. (1) By Proposition 1, $\mathcal{X}_{rs} = \phi^{-1}(D_{\overline{rs}})$. Hence $\mathcal{X}_{rs} = \phi^{-1}(D_{\overline{r}}) \cap \phi^{-1}(D_{\overline{s}}) = \mathcal{X}_r \cap \mathcal{X}_s$.

(2) follows from (1).

(3) Since *r* is nilpotent, $r^n = 0$ for some $n \in \mathbb{N}$. Hence by (2), $\mathcal{X}_r = \mathcal{X}_{r^n} = \mathcal{X}_0 = \emptyset$.

Lemma 4. Let $r, s \in R$ and M be a faithful ϕ -module over R. If $X_s \subseteq X_r$, then $s \in \sqrt{Rr}$.

Proof. Suppose $\mathcal{X}_s \subseteq \mathcal{X}_r$. Hence $\phi(\mathcal{X}_s) \subseteq \phi(\mathcal{X}_r)$. Since M is a ϕ -module, $D_{\overline{s}} \subseteq D_{\overline{r}}$ by Lemma 2. Now since M is faithful, $D_s \subseteq D_r$. Thus we have $s \in \sqrt{Rr}$. \Box

Lemma 5. Let M be an R-module. Then the set $\mathcal{B} = \{\mathcal{X}_r : r \in R\}$ forms a basis for the Zariski topology on $\mathcal{X}(M)$.

Proof. If $\mathcal{X}(M) = \emptyset$, then $\mathcal{B} = \emptyset$ and the proposition is trivially true. Hence we assume that $\mathcal{X}(M) \neq \emptyset$ and let \mathcal{U} be any open set in $\mathcal{X}(M)$. Hence $\mathcal{U} = \mathcal{X}(M) - \nu(IM)$ for some ideal I of R. Note that $\nu(IM) = \nu(\sum_{a_i \in I} a_i M) = \nu(\sum_{a_i \in I} (a_i M : M)M) = \bigcap_{a_i \in I} \nu(a_i M)$. Hence $\mathcal{U} = \mathcal{X}(M) - \bigcap_{a_i \in I} \nu(a_i M) = \bigcup_{a_i \in I} \mathcal{X}_{a_i}$. This proves that \mathcal{B} is a basis for the Zariski topology on $\mathcal{X}(M)$. \Box

Theorem 3. Let M be a ϕ -module over a ring R. Then \mathfrak{X}_r and $\mathfrak{X}_{r_1} \cap \ldots \cap \mathfrak{X}_{r_n}$ are quasi-compact subsets of $\mathfrak{X}(M)$.

Proof. For any open covering of \mathcal{X}_r , there is a family $\{r_{\lambda} \in R : \lambda \in \Lambda\}$ of elements of R such that $\mathcal{X}_r \subseteq \bigcup_{\lambda \in \Lambda} \mathcal{X}_{r_{\lambda}}$ by Lemma 5. $D_{\overline{r}} = \phi(\mathcal{X}_r) \subseteq \bigcup_{\lambda \in \Lambda} \phi(\mathcal{X}_{r_{\lambda}}) =$ $\bigcup_{\lambda \in \Lambda} D_{\overline{r}_{\lambda}}$ by Proposition 2. It follows that there exists a finite subset Λ' of Λ such that $D_{\overline{r}} \subseteq \bigcup_{\lambda \in \Lambda} D_{\overline{r}_{\lambda}}$ as $D_{\overline{r}}$ is quasi-compact, whence by Proposition 2, $\mathcal{X}_r =$ $\phi^{-1}(D_{\overline{r}}) \subseteq \bigcup_{\lambda \in \Lambda'} \mathcal{X}_{r_{\lambda}}$. Thus \mathcal{X}_r is quasi-compact. For the other part, it suffices to show that the intersection $\mathcal{X}_{r_1} \cap \mathcal{X}_{r_2}$ is a quasi-compact set. Let Ω be any open covering of $\mathcal{X}_{r_1} \cap \mathcal{X}_{r_2}$. Then Ω also covers each \mathcal{X}_{r_i} (i = 1, 2) which is quasi-compact. Hence each \mathcal{X}_{r_i} has a finite subcover and so $\mathcal{X}_{r_1} \cap \mathcal{X}_{r_2}$ has a finite subcover. \Box

Corollary 3. Let M be a ϕ -module over a ring R. Then $\mathcal{X}(M)$ is quasi-compact and has a basis of quasi-compact open subsets.

3. Sheaf, locally ringed space and scheme

Let *M* be an *R*-module. For every open subset \mathcal{U} of $\mathcal{X}(M)$ we define $\mathbb{O}_{\mathcal{X}(M)}(\mathcal{U})$ to be a subring of $\prod \{R_p \mid p = \sqrt{(Q:M)}, Q \in \mathcal{U}\}$, the ring of functions $r: \mathcal{U} \to \prod \{R_p \mid p = \sqrt{(Q:M)}, Q \in \mathcal{U}\}$, where $r(Q) \in R_p$, for each $Q \in \mathcal{U}$ and $p = \sqrt{(Q:M)}$ such that for each $Q \in \mathcal{U}$, there is a neighborhood \mathcal{V} of Q, contained in \mathcal{U} , and elements $s, t \in R$, such that for each $Q' \in \mathcal{V}, t \notin p' = \sqrt{(Q':M)}$, and $r(Q') = \frac{s}{t}$ in $R_{p'}$. It is easy to check that $\mathbb{O}_{\mathcal{X}(M)}(\mathcal{U})$ is a commutative ring with identity. Furthermore, for open sets $\mathcal{V} \subseteq \mathcal{U}$ we define $\vartheta_{\mathcal{U},\mathcal{V}} : \mathbb{O}_{\mathcal{X}(M)}(\mathcal{U}) \to \mathbb{O}_{\mathcal{X}(M)}(\mathcal{V})$ given by $\{r_p\}_{Q\in\mathcal{U}} \mapsto \{r'_{p'}\}_{Q'\in\mathcal{V}}$, where $p = \sqrt{(Q:M)}$ and $p' = \sqrt{(Q':M)}$. It is easy to check that $\mathbb{O}_{\mathcal{X}(M)}$ is a sheaf of rings.

For any sheaf \mathbb{O} on a topological space \mathbb{X} and for any $x \in \mathbb{X}$, the stalk of \mathbb{O} at x, denoted by \mathbb{O}_x , is $\mathbb{O}_x = \{m \mid \text{there exists a neighborhood } \mathbb{U} \text{ of } x \text{ and } r \in \mathbb{O}_{\mathbb{X}}(\mathbb{U})$ such that m is the germ of r at the point $x\}$. We say that m is the germ of r at the point x if there exists a neighborhood \mathbb{V} containing x such that $\mathbb{V} \subseteq \mathbb{U}$ and $\vartheta_{\mathcal{U},\mathcal{V}}(r) = m$. Two such pairs $< \mathbb{U}, r > \text{ and } < \mathbb{V}, s >$ define the same element for m of \mathbb{O}_x if and only if there is an open neighborhood \mathbb{W} of x with $\mathbb{W} \subseteq \mathbb{U} \cap \mathbb{V}$ such that $x \in \mathbb{W}$ $r|_{\mathbb{W}} = s|_{\mathbb{W}}$.

Lemma 6. Let M be an R-module. Then for each $Q \in \mathcal{X}(M)$, the stalk \mathbb{O}_Q of the sheaf $\mathbb{O}_{\mathcal{X}(M)}$ is isomorphic to R_p , where $p = \sqrt{(Q:M)}$.

Proof. Assume $Q \in \mathcal{X}(M)$ and $m \in \mathbb{O}_Q$. Therefore there exists a neighborhood \mathcal{U} of Q and $r \in \mathbb{O}_{\mathcal{X}(M)}(\mathcal{U})$ such that m is the germ of r at the point Q. For $p = \mathcal{U}$ $\sqrt{(Q:M)}$ we define $\mu: \mathbb{O}_Q \to R_p$ given by $m \mapsto r(Q)$. It is easy to check that μ is a well-defined homomorphism. Suppose V is another neighborhood of Q and $s \in \mathcal{O}_{\mathcal{X}(M)}(\mathcal{V})$ such that m is the germ of s at the point Q. Hence there is an open neighborhood \mathcal{W} of Q with $\mathcal{W} \subseteq \mathcal{U} \cap \mathcal{V}$ such that $r|_{\mathcal{W}} = s|_{\mathcal{W}}$. Since $Q \in \mathcal{W}$, then r(Q) = s(Q). The map μ is surjective, because any element of R_p can be represented as a quotient $\frac{a}{s}$ with $a \in R$ and $s \in R \setminus p$. Now we define $r(Q') = \frac{a}{s}$ in $R_{p'}$, where $p' = \sqrt{(Q':M)}$ for all $Q' \in \mathcal{X}_s$. Then $r \in \mathbb{O}(\mathcal{X}_s)$. If m is the equivalent class of r in \mathbb{O}_Q , then $\mu(m) = \frac{a}{s}$. To show that μ is injective, let \mathcal{U} be a neighborhood of Q, and let $r, r' \in \mathcal{O}_{\mathcal{X}(M)}(\mathcal{U})$ be elements having the same value r(Q) = r'(Q) at Q. By the definition of our sheaf, we may assume that $r = \frac{a}{s}$ and $r' = \frac{a'}{s'}$, where $a, a' \in R$ and $s, s' \in R \setminus p$. Since $\frac{a}{s}$ and $\frac{a'}{s'}$ have the same image in R_p , it follows from the definition of localization that there is an $s'' \in R \setminus p$ such that s''(s'a - sa') = 0 in *R*. Therefore $\frac{a}{s} = \frac{a'}{s'}$ in every local ring $R_{p'}$ such that $s, s', s'' \in R \setminus p'$. But the set of such Q', where $p' = \sqrt{(Q':M)}$ is the open set $\mathcal{X}_s \cap \mathcal{X}_{s'} \cap \mathcal{X}_{s''}$, which contains Q. Hence r = r' in a whole neighborhood of Q, so they have the same stalk at Q.

A locally ringed space (X, O_X) is a pair consisting of a topological space X and a sheaf of rings O_X all of whose stalks are local rings.

Corollary 4. Let M be an R-module. Then $(\mathcal{X}(M), \mathbb{O}_{\mathcal{X}(M)})$ is a locally ringed space.

Proof. Use Lemma 6.

Let (X, \mathbb{O}_X) be a locally ringed space. The stalk $\mathbb{O}_{X,x}$ of X at x is said to be the local ring of X at x. A morphism of ringed spaces $(f, f^{\sharp}) : (X, \mathbb{O}_X) \to (Y, \mathbb{O}_Y)$ is given by a continuous map $f : X \to Y$ and an f-map of sheaves of rings $f^{\sharp} : \mathbb{O}_Y \to \mathbb{O}_X$. You can think of f^{\sharp} as a map $\mathbb{O}_Y \to f_*\mathbb{O}_X$, where $f_*\mathbb{O}_X$ is a sheaf over X defined by $f_*\mathbb{O}_X(\mathbb{V}) = \mathbb{O}_X(f^{-1}(\mathbb{V}))$ for any open subset $\mathbb{V} \subseteq \mathbb{Y}$. Moreover the restriction map on an inclusion of open sets of Y is defined naturally. A morphism of locally ringed spaces $(f, f^{\sharp}) : (X, \mathbb{O}_X) \to (\mathbb{Y}, \mathbb{O}_Y)$ is a morphism of ringed spaces such that for all $x \in X$ the induced ring map $\mathbb{O}_{Y, f(x)} \to \mathbb{O}_{X,x}$ is a local ring map.

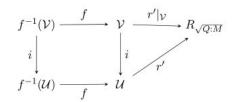
Proposition 4. Let M and M' be R-modules and $\pi : M \to M'$ be an isomorphism of modules. Then π induces a morphism of locally ringed spaces $(f, f^{\sharp}) : (\mathcal{X}(M'), \mathbb{O}_{\mathcal{X}(M')}) \to (\mathcal{X}(M), \mathbb{O}_{\mathcal{X}(M)}).$

Proof. We define $f(Q') = \pi^{-1}(Q')$ For any $Q' \in \mathcal{X}(M')$. It is easily seen that f is well-defined. In the following it is shown that $f^{-1}(\nu(N)) = \nu((N : M)M')$ for any closed set $\nu(N)$ of $\mathcal{X}(M)$ and so f is continuous.

$$\begin{split} Q' &\in f^{-1}(v(N)) \Leftrightarrow f(Q') \in v(N) \\ &\Leftrightarrow \sqrt{(f(Q'):M)} \supseteq \sqrt{(N:M)} \\ &\Leftrightarrow \sqrt{(f(Q'):M)} \supseteq \sqrt{((N:M)M:M)} \\ &\Leftrightarrow \sqrt{(\pi^{-1}(Q'):M)} \supseteq \sqrt{((N:M)M:M)} \\ &\Leftrightarrow (rad(\pi^{-1}(Q')):M)M \supseteq (N:M)M \\ &\Leftrightarrow \pi^{-1}(radQ') \supseteq (N:M)M \\ &\Leftrightarrow radQ' \supseteq (N:M)M' \\ &\Leftrightarrow Q' \in v((N:M)M'). \end{split}$$

Assume \mathcal{U} is an open subset of $\mathcal{X}(M)$ and $r \in \mathcal{O}_{\mathcal{X}(M)}(\mathcal{U})$. Let $Q \in f^{-1}(\mathcal{U})$. Then $f(Q) = \pi^{-1}(Q) \in \mathcal{U}$. Assume that \mathcal{W} is an open neighborhood of $\pi^{-1}(Q)$ with $\mathcal{W} \subseteq \mathcal{U}$ and $a, s \in R$ such that for each $Q' \in \mathcal{W}$, $s \notin p' = \sqrt{(Q':M)}$ and $r(Q') = \frac{a}{s}$ in $R_{p'}$. Since $\pi^{-1}(Q) \in \mathcal{W}$, then $Q \in f^{-1}(\mathcal{W})$. Since f is continuous, $f^{-1}(\mathcal{W})$ is an open subset of $\mathcal{X}(M')$. We show that for each $Q'' \in f^{-1}(\mathcal{W})$ we have $s \notin \sqrt{(Q'':M')}$. Suppose, on the contrary, $s \in \sqrt{(Q'':M')}$ for some $Q'' \in f^{-1}(\mathcal{W})$. So $\pi^{-1}(Q'') = f(Q'') \in \mathcal{W}$. Since π is an epimorphism, $\sqrt{(Q'':M')} = \sqrt{(\pi^{-1}(Q''):M)}$. Hence $s \in \sqrt{(\pi^{-1}(Q''):M)}$, a contradiction. Therefore, we can

define $f^{\sharp}(\mathcal{U}) : \mathbb{O}_{\mathcal{X}(M)}(\mathcal{U}) \to \mathbb{O}_{\mathcal{X}(M')}(f^{-1}(\mathcal{U}) \text{ given by } f^{\sharp}(\mathcal{U})(r) = r \circ f$. Suppose $\mathcal{V} \subseteq \mathcal{U}$ and $Q \in f^{-1}(\mathcal{V})$. According to the commutativity of the following diagram:



We have $(r' \circ f)|_{f^{-1}(\mathcal{V})}(Q) = r'|_{\mathcal{V}} \circ f(Q)$. Now, we show that the following diagram commutes.

$$\begin{array}{c|c} \mathbb{O}_{\mathcal{X}(M)}(\mathcal{U}) & \xrightarrow{f^{\sharp}(\mathcal{U})} & \mathbb{O}_{\mathcal{X}(M')}(f^{-1}(\mathcal{U})) \\ \\ \rho_{\mathcal{U},\mathcal{V}} & & & \downarrow \rho'_{f^{-1}(\mathcal{U}),f^{-1}(\mathcal{V})} \\ \mathbb{O}_{\mathcal{X}(M)}(\mathcal{V}) & \xrightarrow{f^{\sharp}(\mathcal{V})} & \mathbb{O}_{\mathcal{X}(M')}(f^{-1}(\mathcal{V})) \end{array}$$

Suppose that $r' \in \mathcal{O}_{\mathcal{X}(M)}(\mathcal{U})$. For each $Q \in \mathcal{U}$, we have

$$\rho'_{f^{-1}(\mathcal{U}),f^{-1}(\mathcal{V})}f^{\sharp}(\mathcal{U})(r')(Q) = \rho'_{f^{-1}(\mathcal{U}),f^{-1}(\mathcal{V})}(r'\circ f)(Q) = (r'\circ f)|_{f^{-1}(\mathcal{V})}(Q) = r'|_{\mathcal{V}}\circ f(Q) = \rho_{\mathcal{U},\mathcal{V}}(r')\circ f(Q) = f^{\sharp}(\mathcal{V})\rho_{\mathcal{U},\mathcal{V}}(r')(Q).$$

It follows that $f^{\sharp} : \mathbb{O}_{\mathcal{X}(M)} \to f_* \mathbb{O}_{\mathcal{X}(M')}$ is a morphism of sheaves. By Lemma 6, the map $f_Q^{\sharp} : \mathbb{O}_{\mathcal{X}(M), f(Q)} \to \mathbb{O}_{\mathcal{X}(M'), Q}$ on stalks is clearly the map of local rings $R_{\sqrt{(f(Q):M)}} \to R_{\sqrt{(Q:M')}}$. Thus the proof is completed.

Proposition 5. Let $g : R \to R'$ be a ring homomorphism, M' be an R'-module and M be a ϕ -module over R such that $\mathcal{X}(M)$ is a T_0 -space and $Ann_R(M) \subseteq$ $Ann_R(M')$. Then g induces a morphism of locally ringed spaces $(f, f^{\sharp}): (\mathcal{X}(M'), \mathbb{O}_{\mathcal{X}(M')}) \to (\mathcal{X}(M), \mathbb{O}_{\mathcal{X}(M)}).$

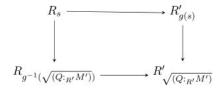
Proof. Since $Ann_R(M) \subseteq Ann_R(M')$, then $\overline{g} : \overline{R} \to \overline{R'}$ is induced by g. It is well known $h : Spec(R') \to Spec(R)$ given by $p \mapsto g^{-1}(p)$ and $\overline{h} : X^{\overline{R'}} \to X^{\overline{R}}$ given by $\overline{p} \mapsto \overline{g}^{-1}(\overline{p})$ are continuous maps. Also by Proposition 1, $\phi_{M'} : \mathfrak{X}(M') \to X^{\overline{R'}}$ is a continuous map and by Corollary 1 and Theorem 2, $\phi_M : \mathfrak{X}(M) \to X^{\overline{R}}$ is a homeomorphism. Therefore the map $f : \mathfrak{X}(M') \to \mathfrak{X}(M)$ given by $Q \mapsto \phi_M^{-1} \circ \overline{h} \circ \phi_{M'}(Q)$ is continuous. For each $Q \in \mathfrak{X}(M')$, we get a local homeomorphism H. FAZAELI MOGHIMI AND F. RASHEDI

$$g_{\sqrt{(Q:_{R'}M')}}: R_{h(\sqrt{(Q:_{R'}M')})} \to R'_{\sqrt{(Q:_{R'}M')}}$$

given by $\frac{r}{s} \mapsto \frac{g(r)}{g(s)}$. This map is well-defined, because if $s \notin h(\sqrt{(Q:_{R'}M')}) = g^{-1}(\sqrt{(Q:_{R'}M')})$, then $g(s) \notin \sqrt{(Q:_{R'}M')}$. Let $\mathcal{U} \subseteq \mathcal{X}(M)$ be an open subset and $r \in \mathcal{O}_{\mathcal{X}(M)}(\mathcal{U})$. Suppose $Q \in f^{-1}(\mathcal{U})$. Then $f(Q) \in \mathcal{U}$ and there exists a neighborhood \mathcal{W} of f(Q) with $\mathcal{W} \subseteq \mathcal{U}$ and elements $a, s \in R$ such that for each $Q' \in \mathcal{W}$, we have $s \notin \sqrt{(Q':_RM)}$ and $r(Q') = \frac{a}{s} \in R_{\sqrt{(Q':_RM)}}$. Hence $s \notin \sqrt{(f(Q):_RM)}$. By definition of f, we have

$$\begin{split} f(Q) &= (\phi_M^{-1} \circ \bar{h} \circ \phi_{M'}^{-1})(Q) = (\phi_M^{-1} \circ \bar{h})(\sqrt{(Q:_{R'}M')}) \\ &= \phi_M^{-1}(\bar{g}^{-1}(\overline{(\sqrt{(Q:_{R'}M')})}) = \phi_M^{-1}(\overline{g^{-1}(\sqrt{(Q:_{R'}M')})}) \\ &= K, \end{split}$$

for some $K \in \mathfrak{X}(M)$. Now since M is a ϕ -module, $\overline{\sqrt{(K:_R M)}} = \phi_M(K) = \overline{g^{-1}(\sqrt{(Q:_{R'} M')})}$ and hence $\sqrt{(f(Q):_R M)} = \sqrt{(K:_R M)} = g^{-1}(\sqrt{(Q:_{R'} M')})$. Therefore $s \notin \sqrt{(f(Q):_R M)}$ follows that $g(s) \notin \sqrt{(Q:_{R'} M')}$. Thus $g_{\sqrt{(Q:_{R'} M')}}(\frac{a}{s})$ define a section on $\mathbb{O}_{\mathfrak{X}(M')}(f^{-1}(W))$. Since



is a commutative diagram of natural maps, we define

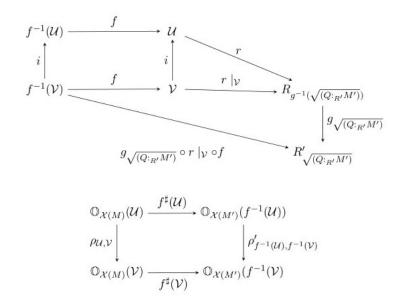
$$f^{\sharp}(\mathcal{U}): \mathbb{O}_{\mathcal{X}(M)}(\mathcal{U}) \to f_* \mathbb{O}_{\mathcal{X}(M')}(\mathcal{U}) = \mathbb{O}_{\mathcal{X}(M')}(f^{-1}(\mathcal{U}))$$

which is given by $f^{\sharp}(\mathcal{U})(r)(Q) = g_{\sqrt{(Q:_{R'}M')}}(r(f(Q)))$ for each $r \in \mathcal{O}_{\mathcal{X}(M)}(\mathcal{U})$ and $Q \in f^{-1}(\mathcal{U})$. Suppose $\mathcal{V} \subseteq \mathcal{U}$ and $Q \in f^{-1}(\mathcal{V})$. According to the following commutative diagram

We have $g_{\sqrt{(Q:_{R'}M')}} \circ r |_{\mathcal{V}} \circ f(Q) = (g_{\sqrt{(Q:_{R'}M')}} \circ r \circ f)|_{f^{-1}(\mathcal{V})}(Q)$. Considering the diagram

It is easy to check that

$$\begin{aligned} \rho'_{f^{-1}(\mathcal{U}),f^{-1}(\mathcal{V})} f^{\sharp}(\mathcal{U})(r)(Q) &= \rho'_{f^{-1}(\mathcal{U}),f^{-1}(\mathcal{V})} g_{\sqrt{(\mathcal{Q}:_{R'}M')}} r \circ f(Q) = \\ (g_{\sqrt{(\mathcal{Q}:_{R'}M')}} r \circ f)|_{f^{-1}(\mathcal{V})}(Q) &= g_{\sqrt{(\mathcal{Q}:_{R'}M')}} r|_{\mathcal{V}} \circ f(Q) = f^{\sharp}(\mathcal{V})(r|_{\mathcal{V}})(Q) = \\ f^{\sharp}(\mathcal{V})\rho_{\mathcal{U},\mathcal{V}}(r)(Q). \end{aligned}$$



Thus the diagram is commutative and it follows that $f^{\sharp} : \mathbb{O}_{\mathcal{X}(M)} \to f_* \mathbb{O}_{\mathcal{X}(M')}$ is a morphism of sheaves. By Lemma 6, the map $f_Q^{\sharp} : \mathbb{O}_{\mathcal{X}(M), f(Q)} \to \mathbb{O}_{\mathcal{X}(M'), Q}$ on stalks is clearly $R_{h(\sqrt{(Q:_{R'}M')})} \to R'_{\sqrt{(Q:_{R'}M')}}$. Thus the proof is completed. \Box

Theorem 4. Let $s \in R$ and M be a faithful ϕ -module over a ring R. Then $\mathbb{O}_{\mathcal{X}(M)}(\mathcal{X}_s) \cong R_s$.

Proof. Suppose $\mu : R_s \to \mathbb{O}_{\mathcal{X}(M)}(\mathcal{X}_s)$ given by $\frac{a}{s^n} \mapsto (r : Q \mapsto \frac{a}{s^n} \in R_{\sqrt{(Q:M)}})$. Indeed μ sends that $\frac{a}{s^n}$ to the section $r \in \mathbb{O}_{\mathcal{X}(M)}(\mathcal{X}_s)$ which assigns to each Q the image of $\frac{a}{s^n} \in R_{\sqrt{(Q:M)}}$. It is clear that $\mu(\frac{a}{s^n})$ is unique, since the range of r is $\frac{a}{s^n}$. Therefore to show that μ is well-defined, it suffices to verify that $s^n \notin \sqrt{(Q:M)}$. Since $Q \in \mathcal{X}_s = \mathcal{X}(M) - \nu(sM)$, we have $\sqrt{(sM:M)} \not\subseteq \sqrt{(Q:M)}$. Now if $s^n \in \sqrt{(Q:M)}$ (or equivalently $s \in \sqrt{(Q:M)}$), we have

$$r \in \sqrt{(sM:M)} \Rightarrow r^n M \subseteq sM \subseteq \sqrt{(Q:M)}M \text{ for some } n > 0$$

$$\Rightarrow r^n \in (\sqrt{(Q:M)}M:M) = ((\operatorname{rad}(Q):M)M:M)$$

$$\Rightarrow r^n \in (\operatorname{rad}(Q):M) = \sqrt{(Q:M)}$$

$$\Rightarrow r \in \sqrt{(Q:M)}$$

which gives the contradiction $\sqrt{(sM:M)} \subseteq \sqrt{(Q:M)}$. Moreover μ is a homomorphism, since $\mathbb{O}_{\mathcal{X}(M)}(\mathcal{X}_s)$ is a ring with the operations $(r_1 + r_2)(Q) = r_1(Q) + r_2(Q)$ and $(r_1r_2)(Q) = r_1(Q)r_2(Q)$. Now we are going to show that μ is injective. Let $\mu(\frac{a}{s^n}) = \mu(\frac{a'}{s^m})$, then for every $Q \in \mathcal{X}_s$, $\frac{a}{s^n}$ and $\frac{a'}{s^m}$ have the same image in R_p , where $p = \sqrt{(Q:M)}$. Thus there exists $t \in R \setminus p$ such that $t(s^m a - s^n a') = 0$. Let $I = Ann(s^m a - s^n a')$. Then $t \in I$ and $t \notin p$, so $I \notin p$. This happens for any $Q \in \mathcal{X}_s$. Hence we conclude that $V(I) \cap \{\sqrt{(Q:M)} \mid Q \in \mathcal{X}_s\} = \emptyset$ and so $\{\sqrt{(Q:M)} \mid Q \in \mathcal{X}_f\} \subseteq Spec(R) - V(I)$. Since M is a ϕ -module, by Lemma 2 we have

$$D_s = \{\sqrt{(Q:M)} \mid Q \in \mathcal{X}_s\} \subseteq D(I).$$

Therefore $s \in \sqrt{I}$ and so $s^l \in I$ for some positive integer l. Now we have $s^l(s^m a - s^n a') = 0$ which shows that $\frac{a}{s^n} = \frac{a'}{s^m}$ in R_p . Thus μ is injective. Now we show that μ surjective. Assume $r \in \mathcal{O}_{\mathcal{X}(M)}(\mathcal{X}_s)$. Then we can cover \mathcal{X}_s with open subset \mathcal{V}_i , on which s is represented by $\frac{a_i}{b_i}$, with $b_i \notin \sqrt{(Q:M)}$ for all $Q \in \mathcal{V}_i$ and so $\mathcal{V}_i \subseteq \mathcal{X}_{b_i}$. By Lemma 5, the open sets of the form \mathcal{X}_k form a basis for the Zariski topology. So, we may assume that $\mathcal{V}_i = \mathcal{X}_{k_i}$ for some $k_i \in R$. Since $\mathcal{X}_{k_i} \subseteq \mathcal{X}_{b_i}$, by Lemma 4, $k_i \in \sqrt{Rb_i}$. Thus $k_i^n \in Rb_i$ for some $n \in \mathbb{N}$. So $k_i^n = cb_i$ and $\frac{a_i}{b_i} = \frac{ca_i}{cb_i} = \frac{ca_i}{k_i^n}$. We see that r is represented by $\frac{a'_i}{h_i}$, $(a'_i = ca_i, h_i = k_i^n)$ on \mathcal{X}_{h_i} and (since $\mathcal{X}_{k_i} = \mathcal{X}_{k_i^n}$) the \mathcal{X}_{h_i} cover \mathcal{X}_s . The open cover $\mathcal{X}_s = \cup \mathcal{X}_{h_i}$ has a finite subcover by Theorem 3. Assume $\mathcal{X}_s \subseteq \mathcal{X}_{h_1} \cup \cdots \cup \mathcal{X}_{h_n}$. For $1 \leq i, j \leq n$, $\frac{a'_i}{h_i}$ and $\frac{a'_j}{h_j}$ both represent r on $\mathcal{X}_{h_i} \cap \mathcal{X}_{h_j}$. By Lemma 3 $\mathcal{X}_{h_i} \cap \mathcal{X}_{h_j} = \mathcal{X}_{h_i h_j}$ and by injectivity of μ , we get $\frac{a'_i}{h_i} = \frac{a'_j}{h_j}$ in $R_{h_i h_j}$. Hence for some n_{ij} , we have $(h_i h_j)^{n_{ij}} (h_j a'_i - h_i a'_j) = 0$. Let $m = max\{n_{ij} \mid 1 \leq i, j \leq n\}$. Then

$$h_j^{m+1}(h_i a_i') - h_i^{m+1}(h_j a_j') = 0.$$

By replacing each h_i by h_i^{m+1} , and a'_i by $h_i a'_i$, we still see that r is represented on \mathcal{X}_{h_i} by $\frac{a'_i}{h_i}$, and furthermore, we have $h_j a'_i = h_i a'_j$ for all i, j. Since $\mathcal{X}_s \subseteq \mathcal{X}_{h_1} \cup \cdots \cup \mathcal{X}_{h_n}$, by Lemma 2 we have

$$D_s = \phi(\mathcal{X}_s) \subseteq \bigcup_{i=1}^n \phi(\mathcal{X}_{h_i}) = \bigcup_{i=1}^n D_{h_i}$$

Hence there are $c_1, \dots, c_n \in R$ and $n' \in \mathbb{N}$, such that $s^{n'} = \sum_i c_i h_i$. Let $a = \sum_i c_i a'_i$. Then for each j we have

$$h_j a = \sum_i c_i a'_i h_j = \sum_i c_i h_i a'_j = a'_j s^{n'}.$$

It follows that $\frac{a}{s^{n'}} = \frac{a'_j}{h_j}$ on \mathcal{X}_{h_j} . So $\mu(\frac{a}{s^{n'}}) = r$ everywhere, which shows that μ is surjective.

Corollary 5. Let *M* be a faithful ϕ -module over a ring *R*. Then $\mathbb{O}_{\mathcal{X}(M)}(\mathcal{X}(M)) \cong R$.

Proof. Use Theorem 4.

An affine scheme is a locally ringed space isomorphic as a locally ringed space to Spec(R) for some ring R. A scheme is a locally ringed space with the property that every point has an open neighborhood which is an affine scheme. A scheme is locally Noetherian if it can be covered by open affine subsets $Spec(R_i)$, where each R_i is a Noetherian ring. A scheme is Noetherian if it is locally Noetherian and quasi-compact [5].

Theorem 5. Let M be a ϕ -module over a ring R such that $\mathfrak{X}(M)$ is a T_0 -space. Then $(\mathfrak{X}(M), \mathbb{O}_{\mathfrak{X}(M)})$ is a scheme. Moreover, if R is Noetherian, then $(\mathfrak{X}(M), \mathbb{O}_{\mathfrak{X}(M)})$ is a Noetherian scheme.

Proof. Suppose $r \in R$. Therefore by Proposition 1, $\phi|_{\mathfrak{X}_r}$ is continuous. Also by Theorem 2, $\phi|_{\mathfrak{X}_r}$ is a bijection. Let \mathcal{F} be a closed subset of \mathfrak{X}_r . Then $\mathcal{F} = \mathcal{X}_r \cap v(N)$ for some submodule N of M. Hence $\phi(\mathcal{F}) = \phi(\mathfrak{X}_r) \cap V(\sqrt{(N:M)})$ is a closed subset of $\phi(\mathfrak{X}_r)$. Thus $\phi|_{\mathfrak{X}_r}$ is a homeomorphism. Assume that $\mathfrak{X}(M) = \bigcup_{i \in I} \mathfrak{X}_{r_i}$. Since ϕ is a bijection, then for $i \in I$ we have $\mathfrak{X}_{r_i} \cong \phi(\mathfrak{X}_{r_i}) = \{\sqrt{(Q:M)} \mid Q \in \mathfrak{X}_{r_i}\} = D_{r_i} \cong Spec(R_{r_i})$. Thus by Theorem 4, \mathfrak{X}_{r_i} is an affine scheme. So it implies that $(\mathfrak{X}(M), \mathfrak{O}_{\mathfrak{X}(M)})$ is a scheme. For the last statement, since R is Noetherian, so is R_{r_i} for each $i \in I$. Hence $(\mathfrak{X}(M), \mathfrak{O}_{\mathfrak{X}(M)})$ is a locally Noetherian scheme. By Corollary 3, $\mathfrak{X}(M)$ is quasi-compact. Thus $(\mathfrak{X}(M), \mathfrak{O}_{\mathfrak{X}(M)})$ is a Noetherian scheme. \Box

ACKNOWLEDGEMENT

We would like to thank the referee for a careful reading of our article and useful comments.

REFERENCES

- H. Ansari-Toroghy and S. Habibia, "The Zariski topology-graph of modules over commutative rings." *Comm. Algebra*, vol. 42, pp. 3283–3296, 2014, doi: 10.1080/00927872.2013.780065.
- [2] H. Ansari-Toroghy and H. Ovlyaee-Sarmazdeh, "On the prime spectrum of a module and Zariski topologies." *Comm. Algebra*, vol. 38, pp. 4461–4475, 2010, doi: 10.1080/00927872.2013.780065.
- [3] M. F. Atiyah and I. G. McDonald, *Introduction to commutative algebra*. Addison Weisley Publishing Company: Springer, 1969.
- [4] H. Fazaeli Moghimi and F. Rashedi, "Primary-like submodules satisfying the primeful property." *Transactions on Algebra and its Applications*, vol. 1, no. 1, pp. 43–54, 2015.
- [5] R. Hartshorne, *Algebraic geometry*. Graduate Text in Mathematics 52: Springer-Verlag, New York Inc, 1977.
- [6] D. Hassanzadeh-Lelekaami and H. Roshan-Shekalgourabi, "Prime submodules and a sheaf on the prime spectra of modules." *Comm. Algebra*, vol. 42, pp. 3063–3077, 2014, doi: 10.1080/00927872.2013.780063.
- [7] C. P. Lu, "Prime submodules of modules." Comment. Math. Univ. St. Paul, vol. 33, pp. 61–69, 1984.
- [8] C. P. Lu, "M-radical of submodules in modules." Math. Japonica, vol. 34, pp. 211–219, 1989.

H. FAZAELI MOGHIMI AND F. RASHEDI

- [9] C. P. Lu, "The Zariski topology on the prime spectrum of a module." *Houston J. Math.*, vol. 25, pp. 417–425, 1999.
- [10] C. P. Lu, "A module whose prime spectrum has the surjective natural map." *Houston J. Math.*, vol. 33, pp. 125–143, 2007.
- [11] R. L. McCasland and M. E. Moore, "Prime submodules." Comm. Algebra, vol. 20, pp. 1803– 1817, 1992, doi: 10.1080/00927879208824432.
- [12] U. Tekir, "On the sheaf of modules." Comm. Algebra, vol. 33, pp. 2557–2562, 2005, doi: 10.1081/AGB-200065136.

Authors' addresses

H. Fazaeli Moghimi

University of Birjand, Department of Mathematics, P.O. Box 97175-615, Birjand, Iran *E-mail address:* hfazaeli@birjand.ac.ir

F. Rashedi

University of Birjand, Department of Mathematics, P.O. Box 97175-615, Birjand, Iran *E-mail address:* fatemehrashedi@birjand.ac.ir