DEGREE SUM CONDITION FOR FRACTIONAL ID- k-FACTOR-CRITICAL GRAPHS

WEI GAO AND WEIFAN WANG

Received 25 May, 2014

Abstract

A graph G is called a fractional ID- k-factor-critical graph if after deleting any independent set of G the resulting graph admits a fractional k-factor. In this paper, we prove that for $k \geq 2, G$ is a fractional ID- k-factor-critical graph if $\delta(G) \geq \frac{n}{3}+k, \sigma_{2}(G) \geq \frac{4 n}{3}, n \geq 6 k-8$. The result is best possible in some sense.

2010 Mathematics Subject Classification: 05C70
Keywords: graph, fractional factor, fractional ID- k-factor-critical graph, degree sum

1. Introduction

All graphs considered in this paper are finite, loopless, and without multiple edges. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For $x \in V(G)$, the degree and the neighborhood of x in G are denoted by $d_{G}(x)$ and $N_{G}(x)$, respectively. For $S \subseteq V(G)$, we denote by $G[S]$ the subgraph of G induced by S, and $G-S=$ $G[V(G) \backslash S]$. We use $N_{G}[x]$ to denote $N_{G}(x) \cup\{x\}$. We denote the minimum degree and the maximum degree of G by $\delta(G)$ and $\Delta(G)$, respectively.

Let $k \geq 1$ be an integer. A spanning subgraph F of G is called a k-factor if $d_{F}(x)=k$ for each $x \in V(G)$. Let $h: E(G) \rightarrow[0,1]$ be a function. If $\sum_{x \in e} h(e)=k$ for any $x \in V(G)$, then we call $G\left[F_{h}\right]$ a fractional k-factor of G with indicator function h where $F_{h}=\{e \in E(G): h(e)>0\}$. The following result on degree condition for fractional k-factor is known.

Theorem 1 (Yu et al. [10]). Let k be an integer with $k \geq 2$, and let G be a graph of order n with $n \geq 4 k-3, \delta(G) \geq k$. If

$$
\max \left\{d_{G}(u), d_{G}(v)\right\} \geq \frac{n}{2}
$$

for each pair of non-adjacent vertices u and v of G, then G has a fractional k-factor.

[^0]In what follows, we always assume that n is order of G, i.e., $n=|V(G)|$, and G is not complete. Chang et al. [1] introduced the concept of fractional independent-set-deletable k-factor critical (shortly, ID- k-factor critical) graph, that is, if removing any independent I from G, the resulting graph has a fractional k-factor. Also, Chang et al. [1] proved that if $n \geq 6 k-8$ and $\delta(G) \geq \frac{2 n}{3}$, then G is fractional ID- k-factorcritical. More results on fractional ID- k-factor-critical graphs can be found in Gao and Wang [2-6] and Jin [8].

In this paper, we focus on the degree sum condition for fractional ID- k-factorcritical graph. Let $\sigma_{2}(G)=\min \left\{d_{G}(u)+d_{G}(v)\right\}$ for each pair of non-adjacent vertices u and v of G. Niessen [9] researched the degree sum condition for a graph which exists regular factor. Iida and Nishimura [7] studied the existence of factor by virtue of $\sigma_{2}(G)$, and proved that if $n \geq 4 k-5, k n$ is even, $\delta(G) \geq k$, and $\sigma_{2}(G) \geq n$, then G has a k-factor. The main result in our paper study the degree sum condition for fractional ID- k-factor-critical graphs and give as follows:

Theorem 2. Let $k \geq 2$ be an integer, and let G be a graph of order n with $n \geq$ $6 k-8$. If $\delta(G) \geq \frac{n}{3}+k$ and $\sigma_{2}(G) \geq \frac{4 n}{3}$, then G is a fractional ID- k-factor-critical graph.

Also, we will show that Theorem 2 is sharp in some sense.
In order to prove our main result, we need the following lemma which is the necessary and sufficient condition for the existence of a fractional k-factor in a graph.

Lemma 1 (L. Zhang and G. Liu [11]). Let $k \geq 1$ be an integer, and let G be a graph. Then G has a fractional k-factor if and only iffor every subset S of $V(G)$,

$$
\delta_{G}(S, T)=k|S|+\sum_{x \in T} d_{G-S}(x)-k|T| \geq 0
$$

where $T=\left\{x: x \in V(G)-S, d_{G-S}(x) \leq k-1\right\}$.

2. Proof of Theorem 2

Suppose that G satisfies the conditions of Theorem 2, but is not a fractional ID- k -factor-critical graph. Then there exist an independent set I such that $G^{\prime}=G-I$ has no fractional k-factor. By the argument of Lemma 1, there exists a subset S of $V\left(G^{\prime}\right)$ such that

$$
\begin{equation*}
\delta_{G^{\prime}}(S, T)=k|S|+\sum_{x \in T} d_{G^{\prime}-S}(x)-k|T| \leq-1 \tag{2.1}
\end{equation*}
$$

Here, $T=\left\{x: x \in V\left(G^{\prime}\right)-S, d_{G^{\prime}-S}(x) \leq k-1\right\}$.
If G^{\prime} is a completed graph, then G^{\prime} has fractional k-factor from the degree sum condition, the bound of n and the definition of fractional k-factor. This is a contradiction.

If $|I|=1$, then $n^{\prime} \geq 6 k-9$. It is easy to verify that $\delta\left(G^{\prime}\right) \geq k$ and $\max \left\{d_{G^{\prime}}(u), d_{G^{\prime}}(v)\right\} \geq \frac{n^{\prime}}{2}=\frac{n-1}{2}$ for each pair of non-adjacent vertices u and v of G^{\prime}. Thus, the results holds from Theorem 1.

We now consider $|I| \geq 2$ and G^{\prime} is not complete. Obviously, $T \neq \varnothing$ and $S \neq \varnothing$ by $|I| \geq 2$ and $\delta(G) \geq \frac{n}{3}+k$. Let $d_{1}=\min \left\{d_{G^{\prime}-S}(x): x \in T\right\}$ and choose $x_{1} \in T$ such that $d_{G^{\prime}-S}\left(x_{1}\right)=d_{1}$. If $T-N_{T}\left[x_{1}\right] \neq \varnothing$, let $d_{2}=\min \left\{d_{G^{\prime}-S}(x): x \in T-N_{T}\left[x_{1}\right]\right\}$ and choose $x_{2} \in T-N_{T}\left[x_{1}\right]$ such that $d_{G^{\prime}-S}\left(x_{2}\right)=d_{2}$. So, $d_{1} \leq d_{2}$. Let $|S|=s$, $|T|=t,\left|N_{T}\left[x_{1}\right]\right|=p$. Then we have $p \leq d_{1}+1, d_{G^{\prime}-S}(T) \geq d_{1} p+d_{2}(t-p)$ and $k s-k t+d_{1} p+d_{2}(t-p) \leq k|S|-k|T|+d_{G^{\prime}-S}(T)<0$. Thus,

$$
|S| \leq \frac{k|T|-d_{G^{\prime}-S}(T)-1}{k} \leq \frac{k|T|-1}{k}
$$

i.e., $1 \leq s \leq t-\frac{1}{k}$.

Let $\left|V\left(G^{\prime}\right)\right|=n^{\prime}$. We obtain $2 n^{\prime} \geq \sigma_{2}(G) \geq \frac{4 n}{3} \geq \frac{4}{3}(6 k-8)$. Since n^{\prime} is an integer, we get $n^{\prime} \geq 4 k-5$. If $\sigma_{2}\left(G^{\prime}\right)<n^{\prime}$, then $\frac{4\left(n^{\prime}+|I|\right)}{3} \leq \sigma_{2}(G)<n^{\prime}+2|I|$, i.e., $n^{\prime}<2|I| \leq \frac{2 n}{3}$. This contradicts to $\sigma_{2}(G) \geq \frac{4 n}{3}$ and $|I| \geq 2$. Therefore, $\sigma_{2}\left(G^{\prime}\right) \geq n^{\prime}$. Furthermore, we obtain $\delta\left(G^{\prime}\right) \geq k$ by $|I| \geq 2$ and $\delta(G) \geq \frac{n}{3}+k$.

We consider following two cases:
Case 1. $T=N_{T}\left[x_{1}\right]$. In this case, $t=p \leq d_{1}+1$ and $d_{2}=0$. If $d_{1}=k-1$, then $t \leq k, k|S|-k|T|+d_{G^{\prime}-S}(T) \geq k s-k t+d_{1} p=k s-k t+(k-1) t \geq k s-t \geq 0$, which contradicts (2.1). If $0 \leq d_{1} \leq k-2$, then $t \leq d_{1}+1 \leq k-1$. By $\delta\left(G^{\prime}\right) \geq k$ and $d_{G^{\prime}}\left(x_{1}\right) \leq s+d_{1}$, we have $s \geq k-d_{1}$. Thus, $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq k s-$ $k t+d_{1} p \geq k\left(k-d_{1}\right)+\left(d_{1}-k\right) t=\left(k-d_{1}\right)(k-t)>0$, which contradicts (2.1).

Case 2. $T-N_{T}\left[x_{1}\right] \neq \varnothing$. We consider following three subcases.
Case 2.1. $d_{1}=d_{2}=k-1$. In this subcase, $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq k s-$ $k t+d_{1} p+d_{2}(t-p)=k s-k t+(k-1) p+(k-1)(t-p)=k s-t \geq 0$, which contradicts (2.1). In fact, if $k s \leq t-1$, then $s+k s+1 \leq s+t \leq n^{\prime}$. Note that x_{1}, x_{2} are not adjacent in G^{\prime}. Thus, $2(s+k-1) \geq \sigma_{2}\left(G^{\prime}\right) \geq n^{\prime} \geq s+s k+1$. We get $s=1$. Thus, $2(1+k-1) \geq 2(s+k-1) \geq \sigma_{2}\left(G^{\prime}\right) \geq n^{\prime} \geq 4 k-5$, i.e., $k=2$. In this case, $d_{1}=d_{2}=1, s=1, t \geq 3, n^{\prime} \geq 4$. We have $4 \leq n^{\prime} \leq \sigma_{2}\left(G^{\prime}\right) \leq 2 s+2=4$, i.e., $t=3, n^{\prime}=4$. Thus, the vertex $T-\left\{x_{1}, x_{2}\right\}$ has degree 2 in T, and we can check that $k|S|-k|T|+d_{G^{\prime}-S}(T)=0$. This is a contradiction.

Case 2.2. $0 \leq d_{1} \leq k-2$ and $d_{2}=k-1$. In this subcase, $p \leq d_{1}+1 \leq k-1$. Since x_{1} and x_{2} are not adjacent in G^{\prime}, we have $(s+k-1)+\left(s+d_{1}\right) \geq \sigma_{2}\left(G^{\prime}\right) \geq$ $n^{\prime} \geq 4 k-5$, i.e., $n^{\prime} \leq 2 s+k-1+d_{1}$ and $s \geq \frac{3 k-d_{1}-4}{2}$. Thus,

$$
\begin{gathered}
k|S|-k|T|+d_{G^{\prime}-S}(T) \\
\geq k s-k t+d_{1} p+d_{2}(t-p) \\
\geq k s-k\left(n^{\prime}-s\right)+\left(d_{1}-k+1\right)\left(d_{1}+1\right)+(k-1)\left(n^{\prime}-s\right) \\
=(k+1) s-n^{\prime}-k+1+d_{1}^{2}+(2-k) d_{1}
\end{gathered}
$$

$$
\begin{aligned}
& \geq(k+1) s-\left(2 s+k-1+d_{1}\right)-k+1+d_{1}^{2}+(2-k) d_{1} \\
& =(k-1) s-2 k+2+d_{1}^{2}+(1-k) d_{1} \\
& \geq(k-1) \frac{3 k-d_{1}-4}{2}-2 k+2+d_{1}^{2}+(1-k) d_{1} \\
& =d_{1}^{2}+\frac{3}{2}(1-k) d_{1}+(k-1) \frac{3 k-4}{2}-2 k+2
\end{aligned}
$$

If $k \geq 5$, then $\frac{3}{4}(k-1) \leq k-2$ and d_{1} can reach to $\frac{3}{4}(k-1)$. We get

$$
\begin{aligned}
& d_{1}^{2}+\frac{3}{2}(1-k) d_{1}+(k-1) \frac{3 k-4}{2}-2 k+2 \\
\geq & \frac{9}{16}(k-1)^{2}-\frac{9}{8}(k-1)^{2}+(k-1) \frac{3 k-4}{2}-2 k+2 \\
= & \frac{15}{16} k^{2}-\frac{35}{8} k+\frac{55}{16} \\
\geq & \frac{15}{16} k^{2}-\frac{35}{8} k+\frac{55}{16}>0,
\end{aligned}
$$

which contradicts (2.1).
If $k=2,3,4$, then

$$
\begin{aligned}
& d_{1}^{2}+\frac{3}{2}(1-k) d_{1}+(k-1) \frac{3 k-4}{2}-2 k+2 \\
\geq & (k-2)^{2}+\frac{3}{2}(1-k)(k-2)+(k-1) \frac{3 k-4}{2}-2 k+2 \\
= & k^{2}-5 k+5 .
\end{aligned}
$$

If $k=4$, then $k^{2}-5 k+5 \geq 0$, which contradicts (2.1).
If $k=3$, then $d_{2}=2, d_{1}=0$ or 1 . If $d_{1}=0$, then $s \geq \frac{n^{\prime}}{2}-1$ and $t \leq \frac{n^{\prime}}{2}+1$. Thus, $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq k\left(\frac{n^{\prime}}{2}-1\right)-k\left(\frac{n^{\prime}}{2}+1\right)+2\left(\frac{n^{\prime}}{2}+1-1\right) \geq 2 k-5>0$, which contradicts (2.1). Assume $d_{1}=1$. If $n^{\prime} \geq 8=4 k-4$, then we get contradiction similarly as what we discuss above. If $n^{\prime}=7$, then $n \leq 10$ since $n^{\prime} \geq \frac{2 n}{3}$. And, if $s \geq 3$, we obtain $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq 0$. The last situation is $k=3, n^{\prime}=7$, $s=2$. Thus, $\sigma_{2}(G) \leq 13$ which contradicts $\sigma_{2}(G) \geq \frac{4 n}{3}$.

Assume $k=2$. Then $d_{1}=0$ and $d_{2}=1$. If $G^{\prime}-S-T \neq \varnothing$, then $t \leq n^{\prime}-s-1$ and $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq 2 s-2\left(n^{\prime}-s-1\right)+\left(n^{\prime}-s-p-1\right) \geq 3 s-n^{\prime}-p+1 \geq$ $3 s-n \geq 3 s-(2 s+1)=s-1 \geq 0$, which contradicts (2.1). Suppose $G^{\prime}-S-T=\varnothing$. If $n^{\prime} \geq 4 k-3=5$, then $s \geq \frac{\bar{n}^{\prime}-1}{2}$ and $t \leq \frac{n^{\prime}+1}{2}$. Thus, $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq$ $k \frac{n^{\prime}-1}{2}-k \frac{n^{\prime}+1}{2}+\left(\frac{n^{\prime}+1}{2}-1\right) \geq 0$, which contradicts (2.1). If $n^{\prime}=4 k-4=4$, then $s \geq$ 2 and $t \leq 2$ by s is an integer. Thus, $k|S|-k|T|+d_{G^{\prime}-S}(T)>0$, which contradicts (2.1). If $n=3=4 k-5$, then $s \geq 1$ and $t \leq 2$. If $t \leq 1$, then $s \geq 2$ and we have $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq 0$, which contradicts (2.1). The last case is $s=1$ and $t=2$. Then at least one vertex in T is of degree at least 2 in $G^{\prime}-S$. Thus, $k|S|-$
$k|T|+d_{G^{\prime}-S}(T) \geq k s-k t+d_{1} p+d_{2}(t-p) \geq k-2 k+(2-1)+1=0$, which contradicts (2.1).

Case 2.3. $0 \leq d_{1} \leq d_{2} \leq k-2$. In this subcase, $k-1-d_{2} \geq 1$ and $n^{\prime}-s-t \geq 0$. So, $\left(k-1-d_{2}\right)\left(n^{\prime}-s-t\right)>k s-k t+d_{1} p+d_{2}(t-p)$. Thus, $\left(k-d_{2}\right)\left(n^{\prime}-s\right)-k s>$ $\left(d_{1}-d_{2}\right) p+\left(n^{\prime}-s-t\right) \geq\left(d_{1}-d_{2}\right)\left(d_{1}+1\right)+\left(n^{\prime}-s-t\right)$, i.e.,

$$
\begin{equation*}
\left(k-d_{2}\right)\left(n^{\prime}-s\right)-k s \geq\left(d_{1}-d_{2}\right)\left(d_{1}+1\right)+1 \tag{2.2}
\end{equation*}
$$

In terms of $n^{\prime} \geq 4 k-5$, we obtain

$$
\begin{equation*}
d_{2} \frac{n^{\prime}}{2} \geq d_{2}\left(2 k-\frac{5}{2}\right) \tag{2.3}
\end{equation*}
$$

In view of $s \geq \frac{n^{\prime}-d_{1}-d_{2}}{2}$, we have

$$
\begin{equation*}
\left(s-\frac{n^{\prime}}{2}\right)\left(2 k-d_{2}\right) \geq-\frac{d_{1}+d_{2}}{2}\left(2 k-d_{2}\right) \tag{2.4}
\end{equation*}
$$

Adding (2.2), (2.3) and (2.4), we get

$$
\begin{aligned}
0 & \geq d_{1}^{2}+\frac{d_{2}^{2}}{2}-\frac{d_{1} d_{2}}{2}+d_{1}-\frac{7}{2} d_{2}+1+\left(d_{2}-d_{1}\right) k \\
& \geq d_{1}^{2}+\frac{d_{2}^{2}}{2}-\frac{d_{1} d_{2}}{2}+d_{1}-\frac{7}{2} d_{2}+1+\left(d_{2}-d_{1}\right)\left(d_{2}+2\right) \\
& =d_{1}^{2}+\frac{3}{2} d_{2}^{2}-\frac{3}{2} d_{1} d_{2}-\frac{3}{2} d_{2}-d_{1}+1
\end{aligned}
$$

Equivalent to

$$
\left(d_{1}-\left(\frac{3}{4} d_{2}+\frac{1}{2}\right)\right)^{2}+\left(\frac{\sqrt{15}}{4} d_{2}-\frac{9}{2 \sqrt{15}}\right)^{2}-\frac{3}{5} \leq 0
$$

We have

$$
0 \leq d_{1} \leq d_{2} \leq 2
$$

by $\left(\frac{\sqrt{15}}{4} d_{2}-\frac{9}{2 \sqrt{15}}\right)^{2}-\frac{3}{5} \leq 0$.

- If $d_{1}=d_{2}=2$. In this case, if $n^{\prime} \geq 4 k-4$, then $s \geq \frac{n^{\prime}}{2}-2$ and $t \leq n^{\prime}-s \leq$ $\frac{n^{\prime}}{2}+2$. Thus, $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq k\left(\frac{n^{\prime}}{2}-2\right)-k\left(\frac{n^{\prime}}{2}+2\right)+2\left(\frac{n^{\prime}}{2}+2\right) \geq 0$, which contradicts (2.1). If $n^{\prime}=4 k-5$, then $s \geq 2 k-4$ and $t \leq n^{\prime}-s \leq 2 k-1$ since s is an integer. Thus, $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq k(2 k-4)-k(2 k-1)+2(2 k-1)=$ $k-2 \geq 0$, which contradicts (2.1).
- If $d_{1}=1$ and $d_{2}=2$. In this case, if $n^{\prime} \geq 4 k-3$, then $s \geq \frac{n^{\prime}-3}{2}$ and $t \leq n^{\prime}-s \leq$ $\frac{n^{\prime}+3}{2}$. Thus, $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq k \frac{n^{\prime}-3}{2}-k \frac{n^{\prime}+3}{2}+2+2 \frac{n^{\prime}-1}{2} \geq k-2 \geq 0$, which contradicts (2.1). If $n^{\prime}=4 k-4$, then $s \geq 2 k-3$ and $t \leq n^{\prime}-s \leq 2 k-1$ since s is an integer. Thus, $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq k(2 k-3)-k(2 k-1)+2+2(2 k-$ $1-2)=2 k-4 \geq 0$, which contradicts (2.1). If $n^{\prime}=4 k-5$, then $s \geq 2 k-4$ and $t \leq n^{\prime}-s \leq 2 k-1$. Thus, $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq k(2 k-4)-k(2 k-1)+2+$
$2(2 k-3)=k-4 \geq 0$ if $k \geq 4$, which contradicts (2.1). If $k=2$, then $n^{\prime}=4 k-5=3$. In terms of $n^{\prime} \geq \frac{2}{3} n$, we get $n=4$, which contradicts $|I| \geq 2$. In particular, for $k=3$. If $n^{\prime} \geq 8=4 k-4$, then we get $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq 0$. If $n^{\prime}=7$, then $n \leq 10$ since $n^{\prime} \geq \frac{2 n}{3}$. And, if $s \geq 3$, we get $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq 0$. The last situation is $k=3, n^{\prime}=7, s=2$. Thus, $\sigma_{2}(G) \leq 13$ which which contradicts $\sigma_{2}(G) \geq \frac{4 n}{3}$.
- If $d_{1}=0$ and $d_{2}=2$. In this case, if $n^{\prime} \geq 4 k-4$, then $s \geq \frac{n^{\prime}}{2}-1$ and $t \leq n-s \leq$ $\frac{n^{\prime}}{2}+1$. Thus, $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq k\left(\frac{n^{\prime}}{2}-1\right)-k\left(\frac{n^{\prime}}{2}+1\right)+2\left(\frac{n^{\prime}}{2}+1-1\right)=$ $n^{\prime}-2 k \geq 2 k-4 \geq 0$, which contradicts (2.1). If $n^{\prime}=4 k-5$, then $s \geq 2 k-3$ and $t \leq n^{\prime}-s \leq 2 k-2$ since s is an integer. Thus, $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq k(2 k-$ 3) $-k(2 k-2)+2(2 k-2-1)=3 k-6 \geq 0$, which contradicts (2.1).
- If $d_{1}=d_{2}=1$. In this case, $s \geq \frac{n^{\prime}}{2}-1$ and $t \leq n^{\prime}-s \leq \frac{n^{\prime}}{2}+1$. If $n^{\prime} \geq$ $4 k-2$, then $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq k\left(\frac{n^{\prime}}{2}-1\right)-k\left(\frac{n^{\prime}}{2}+1\right)+\left(\frac{n^{\prime}}{2}+1\right) \geq 0$, which contradicts (2.1). If $n^{\prime}=4 k-3$, then $s \geq 2 k-2$ and $t \leq n^{\prime}-s \leq 2 k-1$. Thus, $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq k(2 k-2)-k(2 k-1)+(2 k-1)=k-1>0$, which contradicts (2.1). If $n^{\prime}=4 k-4$, then $s \geq 2 k-3$ and $t \leq 2 k-1$. If $s \geq 2 k-2$ or $t \leq 2 k-2$, then we have $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq 0$. If $s=2 k-3$ and $t=$ $2 k-1$, then at least one vertex in T is of degree at least 2 in T since t is odd. Thus, $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq k(2 k-3)-k(2 k-1)+(2 k-1)+1=0$, which contradicts (2.1). If $n^{\prime}=4 k-5$, then $s \geq 2 k-3$ and $t \leq 2 k-2$ since s is an integer. Thus, $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq k(2 k-3)-k(2 k-2)+(2 k-2)=k-2 \geq 0$, which contradicts (2.1).
- If $d_{1}=0$ and $d_{2}=1$. In this case, $s \geq \frac{n^{\prime}-1}{2}, t \leq n^{\prime}-s=\frac{n^{\prime}+1}{2}$ and $p \leq d_{1}+1=$ 1. Thus, $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq k\left(\frac{n^{\prime}-1}{2}\right)-k\left(\frac{n^{\prime}+1}{2}\right)+\left(\frac{n^{\prime}+1}{2}-1\right) \geq k-3 \geq 0$ if $k \geq 3$, which contradicts (2.1). If $k=2$ and $n^{\prime} \geq 5=4 k-3$, then $k|S|-k|T|+$ $d_{G^{\prime}-S}(T) \geq k \frac{n^{\prime}-1}{2}-k \frac{n^{\prime}+1}{2}+\left(\frac{n^{\prime}+1}{2}-1\right) \geq k-2=0$, which contradicts (2.1). If $n^{\prime}=4=4 k-4$, then $s \geq 2$ and $t \leq 2$. Thus, $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq 2 k-2 k+$ $(2-1)>0$, which contradicts (2.1). The last situation is $k=2$ and $n^{\prime}=3=4 k-5$. Then $s \geq 1$ and $t \leq 2$. If $s \geq 2$ or $t \leq 1$, then we get $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq 0$, which contradicts (2.1). Otherwise, $s=1$ and $t=2$. Then at least one vertex in T has degree at least 2 in T since t is even and $d_{1}=0$. Thus, $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq$ $2-4+1+1=0$, which contradicts (2.1).
- If $d_{1}=d_{2}=0$. In this case, $s \geq \frac{n^{\prime}}{2}$ and $t \leq \frac{n^{\prime}}{2}$. Thus, $k|S|-k|T|+d_{G^{\prime}-S}(T) \geq$ 0 , which contradicts (2.1).

Thus, we complete the proof of Theorem 2.
Remark 1. We construct some graphs to show that the bounds in the Theorem 2 are best possible.

For $k \geq 3$, let $G=(2 k-3) K_{1} \vee\left(K_{2 k-4} \vee(k-1) K_{2}\right)$. Then $n=6 k-9, \delta(G)=$ $4 k-6 \geq \frac{n}{3}+k$ and $\sigma_{2}(G)=8 k-12=\frac{4 n}{3}$. Let $I=(2 k-3) K_{1}, S=K_{2 k-4}$. Then $T=(k-1) K_{2}$ and $k|S|-k|T|+d_{G^{\prime}-S}(T)=-2<0$. So, G is not a fractional

ID- k-factor-critical graph. For $k=2$ and $|G|=3=6 k-9$, then G is not a fractional ID- k-factor-critical graph. Thus, the bound of n is best possible.

If $k \geq 3$. Let $G=(2 k-2) K_{1} \vee\left(K_{2 k-3} \vee(2 k-2) K_{1}\right)$. Then $n=6 k-7, \delta(G)=$ $4 k-5 \geq \frac{n}{3}+k$, but $\sigma_{2}(G)=8 k-10<\frac{4 n}{3}$. Let $I=(2 k-2) K_{1}, S=K_{2 k-3}$. Then $T=(2 k-2) K_{1}, d_{G^{\prime}-S}(T)=0$ and $k|S|+\sum_{x \in T} d_{G^{\prime}-S}(x)-k|T|=-k<0$. So, G is not a fractional ID- k-factor-critical graph. The condition $\sigma_{2}(G) \geq \frac{4 n}{3}$ is best possible for $k \geq 3$.

At last, the condition that $\delta(G) \geq \frac{n}{3}+k$ cannot be replaced by $\frac{n}{3}+k-1$. We consider a such graph $G: n$ is divided by 3 and $G=\frac{n}{3} K_{1} \vee G^{\prime}$. Let $I=\frac{n}{3} K_{1}$. Deleting I form G, we have $\delta\left(G^{\prime}\right)=k-1$ if $\delta(G)=\frac{n}{3}+k-1$. Therefore, $G-I$ has no fractional k-factor by the definition.

ACKNOWLEDGEMENT

We would like to thank the anonymous referees for providing us with constructive comments and suggestions.

REFERENCES

[1] R. Chang, G. Liu, and Y. Zhu, "Degree conditions of fractional ID- k-factor-critical graphs." Bull. Malays. Math. Sci. Soc., vol. 33, no. 3, pp. 355-360, 2010.
[2] W. Gao and W. F. Wang, "A neighborhood union condition for fractional (k, m)-deleted graphs." Ars Combin., vol. 113A, pp. 225-233, 2014.
[3] W. Gao and W. F. Wang, "Binding number and fractional (g, f, n^{\prime}, m)-critical deleted graph." Ars Combin., vol. 113A, pp. 49-64, 2014.
[4] W. Gao and W. F. Wang, "Degree conditions for fractional (k, m)-deleted graphs." Ars Combin., vol. 113A, pp. 273-285, 2014.
[5] W. Gao and W. F. Wang, "The eccentric connectivity polynomial of two classes of nanotubes." Chaos Soliton. Fract., vol. 89, pp. 290-294, 2016, doi: 10.1016/j.chaos.2015.11.035.
[6] W. Gao and W. F. Wang, "New isolated toughness condition for fractional (g, f, n)-critical graphs." Colloq. Math., vol. 147, no. 1, pp. 55-66, 2017, doi: 10.4064/cm6713-8-2016.
[7] T. Iida and T. Nishimura, "An Ore-type condition for the existence of k-factors in graphs." Ars Combin., vol. 7, no. 4, pp. 353-361, 1991, doi: 10.1007/BF01787640.
[8] J. H. Jin, "Multiple solutions of the Kirchhoff-type problem in R^{N}." Appl. Math. Nonl. Sc., vol. 1, no. 1, pp. 229-238, 2016, doi: 10.21042/AMNS.2016.1.00017.
[9] T. Niessen, "A Fan-type result for regular factors." Graphs Combin., vol. 46, pp. 277-285, 1997.
[10] J. Yu, G. Liu, M. Ma, and B. Cao, "A degree condition for graphs to have fractional factors." , vol. 35, no. 5, pp. 621-628, 2006.
[11] L. Zhang and G. Liu, "Fractional k-factors of graphs." J. Systems Sci. Math. Sci., vol. 21, no. 1, pp. 88-92, 2001.

Authors' addresses

Wei Gao

Yunnan Normal University, School of Information Science and Technology, 650500 Kunming, China

E-mail address: gaowei@ynnu.edu.cn

Weifan Wang

Zhejiang Normal University, Department of Mathematics, Jinhua 321004, China
E-mail address: wwfezjnu.cn

[^0]: Research supported partially by NSFC (nos. 11401519, 11371328, and 11471293).

