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DEGREE SUM CONDITION FOR FRACTIONAL
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Abstract. A graph G is called a fractional ID-k-factor-critical graph if after deleting any inde-
pendent set of G the resulting graph admits a fractional k-factor. In this paper, we prove that for
k � 2, G is a fractional ID-k-factor-critical graph if ı.G/ � n

3 C k, �2.G/ �
4n
3 , n � 6k� 8.

The result is best possible in some sense.
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1. INTRODUCTION

All graphs considered in this paper are finite, loopless, and without multiple edges.
Let G be a graph with vertex set V.G/ and edge set E.G/. For x 2 V.G/, the degree
and the neighborhood of x in G are denoted by dG.x/ and NG.x/, respectively.
For S � V.G/, we denote by GŒS� the subgraph of G induced by S , and G �S D
GŒV.G/nS�. We useNG Œx� to denoteNG.x/[fxg. We denote the minimum degree
and the maximum degree of G by ı.G/ and �.G/, respectively.

Let k � 1 be an integer. A spanning subgraph F of G is called a k-factor if
dF .x/D k for each x 2 V.G/. Let h WE.G/! Œ0;1� be a function. If

P
x2e h.e/D k

for any x 2 V.G/, then we call GŒFh� a fractional k-factor of G with indicator func-
tion h where Fh D fe 2 E.G/ W h.e/ > 0g. The following result on degree condition
for fractional k-factor is known.

Theorem 1 (Yu et al. [10]). Let k be an integer with k � 2, and let G be a graph
of order n with n� 4k�3, ı.G/� k. If

maxfdG.u/;dG.v/g �
n

2

for each pair of non-adjacent vertices u and v ofG, thenG has a fractional k-factor.
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In what follows, we always assume that n is order of G, i.e., nD jV.G/j, and G
is not complete. Chang et al. [1] introduced the concept of fractional independent-
set-deletable k-factor critical (shortly, ID-k-factor critical) graph, that is, if removing
any independent I from G, the resulting graph has a fractional k-factor. Also, Chang
et al. [1] proved that if n � 6k�8 and ı.G/ � 2n

3
, then G is fractional ID-k-factor-

critical. More results on fractional ID-k-factor-critical graphs can be found in Gao
and Wang [2–6] and Jin [8].

In this paper, we focus on the degree sum condition for fractional ID-k-factor-
critical graph. Let �2.G/DminfdG.u/CdG.v/g for each pair of non-adjacent ver-
tices u and v of G. Niessen [9] researched the degree sum condition for a graph
which exists regular factor. Iida and Nishimura [7] studied the existence of factor by
virtue of �2.G/, and proved that if n� 4k�5, kn is even, ı.G/� k, and �2.G/� n,
then G has a k-factor. The main result in our paper study the degree sum condition
for fractional ID-k-factor-critical graphs and give as follows:

Theorem 2. Let k � 2 be an integer, and let G be a graph of order n with n �
6k�8. If ı.G/� n

3
Ck and �2.G/�

4n
3

, then G is a fractional ID-k-factor-critical
graph.

Also, we will show that Theorem 2 is sharp in some sense.
In order to prove our main result, we need the following lemma which is the ne-

cessary and sufficient condition for the existence of a fractional k-factor in a graph.

Lemma 1 (L. Zhang and G. Liu [11]). Let k � 1 be an integer, and let G be a
graph. Then G has a fractional k-factor if and only if for every subset S of V.G/,

ıG.S;T /D kjS jC
X
x2T

dG�S .x/�kjT j � 0

where T D fx W x 2 V.G/�S;dG�S .x/� k�1g.

2. PROOF OF THEOREM 2

Suppose that G satisfies the conditions of Theorem 2, but is not a fractional ID-k-
factor-critical graph. Then there exist an independent set I such that G0 DG�I has
no fractional k-factor. By the argument of Lemma 1, there exists a subset S of V.G0/
such that

ıG0.S;T /D kjS jC
X
x2T

dG0�S .x/�kjT j � �1: (2.1)

Here, T D fx W x 2 V.G0/�S;dG0�S .x/� k�1g.
If G0 is a completed graph, then G0 has fractional k-factor from the degree sum

condition, the bound of n and the definition of fractional k-factor. This is a contra-
diction.



DEGREE SUM CONDITION FOR FRACTIONAL ID-k-FACTOR-CRITICAL GRAPHS 753

If jI j D 1, then n0 � 6k � 9. It is easy to verify that ı.G0/ � k and
maxfdG0.u/;dG0.v/g � n0

2
D

n�1
2

for each pair of non-adjacent vertices u and v of
G0. Thus, the results holds from Theorem 1.

We now consider jI j � 2 andG0 is not complete. Obviously, T ¤¿ and S ¤¿ by
jI j � 2 and ı.G/� n

3
Ck. Let d1DminfdG0�S .x/ W x 2 T g and choose x1 2 T such

that dG0�S .x1/D d1. If T �NT Œx1�¤¿, let d2DminfdG0�S .x/ W x 2 T �NT Œx1�g

and choose x2 2 T �NT Œx1� such that dG0�S .x2/D d2. So, d1 � d2. Let jS j D s,
jT j D t , jNT Œx1�j D p. Then we have p � d1C1, dG0�S .T /� d1pCd2.t �p/ and
ks�ktCd1pCd2.t �p/� kjS j�kjT jCdG0�S .T / < 0. Thus,

jS j �
kjT j�dG0�S .T /�1

k
�
kjT j�1

k
;

i.e., 1� s � t � 1
k

.
Let jV.G0/j D n0. We obtain 2n0 � �2.G/ �

4n
3
�

4
3
.6k � 8/. Since n0 is an

integer, we get n0 � 4k�5. If �2.G
0/ < n0, then 4.n0CjI j/

3
� �2.G/ < n

0C2jI j, i.e.,
n0 < 2jI j � 2n

3
. This contradicts to �2.G/�

4n
3

and jI j � 2. Therefore, �2.G
0/� n0.

Furthermore, we obtain ı.G0/� k by jI j � 2 and ı.G/� n
3
Ck.

We consider following two cases:
Case 1. T DNT Œx1�. In this case, t D p � d1C1 and d2 D 0. If d1 D k�1, then

t � k, kjS j�kjT jCdG0�S .T /� ks�ktCd1p D ks�ktC .k�1/t � ks� t � 0,
which contradicts (2.1). If 0 � d1 � k� 2, then t � d1C 1 � k� 1. By ı.G0/ � k
and dG0.x1/ � sCd1, we have s � k�d1. Thus, kjS j �kjT jCdG0�S .T / � ks�

ktCd1p � k.k�d1/C .d1�k/t D .k�d1/.k� t / > 0, which contradicts (2.1).
Case 2. T �NT Œx1�¤¿. We consider following three subcases.
Case 2.1. d1 D d2 D k � 1. In this subcase, kjS j � kjT j C dG0�S .T / � ks �

kt C d1pC d2.t �p/ D ks� kt C .k � 1/pC .k � 1/.t �p/ D ks� t � 0, which
contradicts (2.1). In fact, if ks � t � 1, then sCksC 1 � sC t � n0. Note that x1,
x2 are not adjacent in G0. Thus, 2.sCk� 1/ � �2.G

0/ � n0 � sC skC 1. We get
s D 1. Thus, 2.1Ck�1/� 2.sCk�1/� �2.G

0/� n0 � 4k�5, i.e., k D 2. In this
case, d1 D d2 D 1, s D 1, t � 3, n0 � 4. We have 4� n0 � �2.G

0/� 2sC2D 4, i.e.,
t D 3, n0 D 4. Thus, the vertex T �fx1;x2g has degree 2 in T , and we can check that
kjS j�kjT jCdG0�S .T /D 0. This is a contradiction.

Case 2.2. 0 � d1 � k� 2 and d2 D k� 1. In this subcase, p � d1C 1 � k� 1.
Since x1 and x2 are not adjacent in G0, we have .sCk� 1/C .sCd1/ � �2.G

0/ �

n0 � 4k�5, i.e., n0 � 2sCk�1Cd1 and s � 3k�d1�4
2

. Thus,

kjS j�kjT jCdG0�S .T /

� ks�ktCd1pCd2.t �p/

� ks�k.n0� s/C .d1�kC1/.d1C1/C .k�1/.n
0
� s/

D .kC1/s�n0�kC1Cd2
1 C .2�k/d1
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� .kC1/s� .2sCk�1Cd1/�kC1Cd
2
1 C .2�k/d1

D .k�1/s�2kC2Cd2
1 C .1�k/d1

� .k�1/
3k�d1�4

2
�2kC2Cd2

1 C .1�k/d1

D d2
1 C

3

2
.1�k/d1C .k�1/

3k�4

2
�2kC2:

If k � 5, then 3
4
.k�1/� k�2 and d1 can reach to 3

4
.k�1/. We get

d2
1 C

3

2
.1�k/d1C .k�1/

3k�4

2
�2kC2

�
9

16
.k�1/2�

9

8
.k�1/2C .k�1/

3k�4

2
�2kC2

D
15

16
k2
�
35

8
kC

55

16

�
15

16
k2
�
35

8
kC

55

16
> 0;

which contradicts (2.1).
If k D 2;3;4, then

d2
1 C

3

2
.1�k/d1C .k�1/

3k�4

2
�2kC2

� .k�2/2C
3

2
.1�k/.k�2/C .k�1/

3k�4

2
�2kC2

D k2
�5kC5:

If k D 4, then k2�5kC5� 0, which contradicts (2.1).
If k D 3, then d2 D 2, d1 D 0 or 1. If d1 D 0, then s � n0

2
� 1 and t � n0

2
C 1.

Thus, kjS j�kjT jCdG0�S .T /� k.
n0

2
�1/�k.n0

2
C1/C2.n0

2
C1�1/� 2k�5 > 0,

which contradicts (2.1). Assume d1D 1. If n0� 8D 4k�4, then we get contradiction
similarly as what we discuss above. If n0 D 7, then n � 10 since n0 � 2n

3
. And, if

s � 3, we obtain kjS j �kjT jCdG0�S .T / � 0. The last situation is k D 3, n0 D 7,
s D 2. Thus, �2.G/� 13 which contradicts �2.G/�

4n
3

.
Assume kD 2. Then d1D 0 and d2D 1. IfG0�S�T ¤¿, then t � n0�s�1 and

kjS j�kjT jCdG0�S .T /� 2s�2.n
0� s�1/C .n0� s�p�1/� 3s�n0�pC1�

3s�n� 3s�.2sC1/D s�1� 0, which contradicts (2.1). SupposeG0�S�T D¿.
If n0 � 4k� 3D 5, then s � n0�1

2
and t � n0C1

2
. Thus, kjS j �kjT jCdG0�S .T / �

k n0�1
2
�k n0C1

2
C.n0C1

2
�1/� 0, which contradicts (2.1). If n0D 4k�4D 4, then s�

2 and t � 2 by s is an integer. Thus, kjS j�kjT jCdG0�S .T / > 0, which contradicts
(2.1). If n D 3 D 4k � 5, then s � 1 and t � 2. If t � 1, then s � 2 and we have
kjS j � kjT j C dG0�S .T / � 0, which contradicts (2.1). The last case is s D 1 and
t D 2. Then at least one vertex in T is of degree at least 2 in G0�S . Thus, kjS j �
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kjT jCdG0�S .T / � ks�kt Cd1pCd2.t �p/ � k� 2kC .2� 1/C 1D 0, which
contradicts (2.1).

Case 2.3. 0� d1 � d2 � k�2. In this subcase, k�1�d2 � 1 and n0� s� t � 0.
So, .k�1�d2/.n

0�s�t / > ks�ktCd1pCd2.t�p/. Thus, .k�d2/.n
0�s/�ks >

.d1�d2/pC .n
0� s� t /� .d1�d2/.d1C1/C .n

0� s� t /, i.e.,

.k�d2/.n
0
� s/�ks � .d1�d2/.d1C1/C1: (2.2)

In terms of n0 � 4k�5, we obtain

d2
n0

2
� d2.2k�

5

2
/: (2.3)

In view of s � n0�d1�d2

2
, we have

.s�
n0

2
/.2k�d2/� �

d1Cd2

2
.2k�d2/: (2.4)

Adding (2.2), (2.3) and (2.4), we get

0� d2
1 C

d2
2

2
�
d1d2

2
Cd1�

7

2
d2C1C .d2�d1/k

� d2
1 C

d2
2

2
�
d1d2

2
Cd1�

7

2
d2C1C .d2�d1/.d2C2/

D d2
1 C

3

2
d2

2 �
3

2
d1d2�

3

2
d2�d1C1:

Equivalent to

.d1� .
3

4
d2C

1

2
//2C .

p
15

4
d2�

9

2
p
15
/2�

3

5
� 0:

We have
0� d1 � d2 � 2

by .
p

15
4
d2�

9

2
p

15
/2� 3

5
� 0.

� If d1 D d2 D 2. In this case, if n0 � 4k� 4, then s � n0

2
� 2 and t � n0� s �

n0

2
C 2. Thus, kjS j � kjT j C dG0�S .T / � k.

n0

2
� 2/� k.n0

2
C 2/C 2.n0

2
C 2/ � 0,

which contradicts (2.1). If n0 D 4k�5, then s � 2k�4 and t � n0� s � 2k�1 since
s is an integer. Thus, kjS j�kjT jCdG0�S .T /� k.2k�4/�k.2k�1/C2.2k�1/D

k�2� 0, which contradicts (2.1).
� If d1D 1 and d2D 2. In this case, if n0 � 4k�3, then s � n0�3

2
and t � n0�s �

n0C3
2

. Thus, kjS j � kjT j C dG0�S .T / � k
n0�3

2
� k n0C3

2
C 2C 2n0�1

2
� k � 2 � 0,

which contradicts (2.1). If n0 D 4k�4, then s � 2k�3 and t � n0� s � 2k�1 since
s is an integer. Thus, kjS j�kjT jCdG0�S .T /� k.2k�3/�k.2k�1/C2C2.2k�

1� 2/ D 2k � 4 � 0, which contradicts (2.1). If n0 D 4k � 5, then s � 2k � 4 and
t � n0� s � 2k� 1. Thus, kjS j�kjT jCdG0�S .T / � k.2k� 4/�k.2k� 1/C 2C
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2.2k�3/D k�4� 0 if k� 4, which contradicts (2.1). If kD 2, then n0D 4k�5D 3.
In terms of n0 � 2

3
n, we get n=4, which contradicts jI j � 2. In particular, for k D 3.

If n0 � 8D 4k�4, then we get kjS j�kjT jCdG0�S .T /� 0. If n0 D 7, then n� 10
since n0 � 2n

3
. And, if s � 3, we get kjS j�kjT jCdG0�S .T /� 0. The last situation

is k D 3, n0 D 7, s D 2. Thus, �2.G/� 13 which which contradicts �2.G/�
4n
3

.
� If d1D 0 and d2D 2. In this case, if n0 � 4k�4, then s � n0

2
�1 and t � n�s �

n0

2
C 1. Thus, kjS j � kjT jC dG0�S .T / � k.

n0

2
� 1/� k.n0

2
C 1/C 2.n0

2
C 1� 1/ D

n0� 2k � 2k� 4 � 0, which contradicts (2.1). If n0 D 4k� 5, then s � 2k� 3 and
t � n0� s � 2k� 2 since s is an integer. Thus, kjS j �kjT jCdG0�S .T / � k.2k�

3/�k.2k�2/C2.2k�2�1/D 3k�6� 0, which contradicts (2.1).
� If d1 D d2 D 1. In this case, s � n0

2
� 1 and t � n0 � s � n0

2
C 1. If n0 �

4k�2, then kjS j�kjT jCdG0�S .T /� k.
n0

2
�1/�k.n0

2
C1/C .n0

2
C1/� 0, which

contradicts (2.1). If n0 D 4k � 3, then s � 2k � 2 and t � n0 � s � 2k � 1. Thus,
kjS j � kjT j C dG0�S .T / � k.2k � 2/� k.2k � 1/C .2k � 1/ D k � 1 > 0, which
contradicts (2.1). If n0 D 4k � 4, then s � 2k � 3 and t � 2k � 1. If s � 2k � 2
or t � 2k � 2, then we have kjS j � kjT j C dG0�S .T / � 0. If s D 2k � 3 and t D
2k � 1, then at least one vertex in T is of degree at least 2 in T since t is odd.
Thus, kjS j �kjT jCdG0�S .T / � k.2k� 3/�k.2k� 1/C .2k� 1/C 1D 0, which
contradicts (2.1). If n0 D 4k�5, then s � 2k�3 and t � 2k�2 since s is an integer.
Thus, kjS j�kjT jCdG0�S .T /� k.2k�3/�k.2k�2/C.2k�2/D k�2� 0, which
contradicts (2.1).
� If d1D 0 and d2D 1. In this case, s � n0�1

2
, t � n0�sD n0C1

2
and p� d1C1D

1. Thus, kjS j�kjT jCdG0�S .T / � k.
n0�1

2
/�k.n0C1

2
/C .n0C1

2
�1/ � k�3 � 0 if

k � 3, which contradicts (2.1). If k D 2 and n0 � 5 D 4k� 3, then kjS j � kjT jC
dG0�S .T / � k

n0�1
2
� k n0C1

2
C .n0C1

2
� 1/ � k� 2 D 0, which contradicts (2.1). If

n0 D 4D 4k�4, then s � 2 and t � 2. Thus, kjS j�kjT jCdG0�S .T / � 2k�2kC

.2�1/ > 0, which contradicts (2.1). The last situation is k D 2 and n0 D 3D 4k�5.
Then s � 1 and t � 2. If s � 2 or t � 1, then we get kjS j �kjT jCdG0�S .T / � 0,
which contradicts (2.1). Otherwise, sD 1 and t D 2. Then at least one vertex in T has
degree at least 2 in T since t is even and d1 D 0. Thus, kjS j�kjT jCdG0�S .T / �

2�4C1C1D 0, which contradicts (2.1).
� If d1D d2D 0. In this case, s� n0

2
and t � n0

2
. Thus, kjS j�kjT jCdG0�S .T /�

0, which contradicts (2.1).
Thus, we complete the proof of Theorem 2. �

Remark 1. We construct some graphs to show that the bounds in the Theorem 2
are best possible.

For k � 3, let G D .2k�3/K1_ .K2k�4_ .k�1/K2/. Then nD 6k�9, ı.G/D
4k�6� n

3
Ck and �2.G/D 8k�12D

4n
3

. Let I D .2k�3/K1, S DK2k�4. Then
T D .k � 1/K2 and kjS j � kjT j C dG0�S .T / D �2 < 0. So, G is not a fractional
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ID-k-factor-critical graph. For kD 2 and jGj D 3D 6k�9, thenG is not a fractional
ID-k-factor-critical graph. Thus, the bound of n is best possible.

If k � 3. Let G D .2k�2/K1_ .K2k�3_ .2k�2/K1/. Then nD 6k�7, ı.G/D
4k�5� n

3
Ck, but �2.G/D 8k�10 <

4n
3

. Let I D .2k�2/K1, S DK2k�3. Then
T D .2k�2/K1, dG0�S .T /D 0 and kjS jC

P
x2T dG0�S .x/�kjT j D �k < 0. So,

G is not a fractional ID-k-factor-critical graph. The condition �2.G/ �
4n
3

is best
possible for k � 3.

At last, the condition that ı.G/ � n
3
C k cannot be replaced by n

3
C k � 1. We

consider a such graph G: n is divided by 3 and G D n
3
K1 _G

0. Let I D n
3
K1.

Deleting I form G, we have ı.G0/D k� 1 if ı.G/D n
3
Ck� 1. Therefore, G� I

has no fractional k-factor by the definition.
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