

Miskolc Mathematical Notes Vol. 18 (2017), No. 2, pp. 751–758

DEGREE SUM CONDITION FOR FRACTIONAL ID-k-FACTOR-CRITICAL GRAPHS

WEI GAO AND WEIFAN WANG

Received 25 May, 2014

Abstract. A graph G is called a fractional ID-k-factor-critical graph if after deleting any independent set of G the resulting graph admits a fractional k-factor. In this paper, we prove that for $k \ge 2$, G is a fractional ID-k-factor-critical graph if $\delta(G) \ge \frac{n}{3} + k$, $\sigma_2(G) \ge \frac{4n}{3}$, $n \ge 6k - 8$. The result is best possible in some sense.

2010 Mathematics Subject Classification: 05C70

Keywords: graph, fractional factor, fractional ID-k-factor-critical graph, degree sum

1. INTRODUCTION

All graphs considered in this paper are finite, loopless, and without multiple edges. Let G be a graph with vertex set V(G) and edge set E(G). For $x \in V(G)$, the degree and the neighborhood of x in G are denoted by $d_G(x)$ and $N_G(x)$, respectively. For $S \subseteq V(G)$, we denote by G[S] the subgraph of G induced by S, and G - S = $G[V(G) \setminus S]$. We use $N_G[x]$ to denote $N_G(x) \cup \{x\}$. We denote the minimum degree and the maximum degree of G by $\delta(G)$ and $\Delta(G)$, respectively.

Let $k \ge 1$ be an integer. A spanning subgraph F of G is called a k-factor if $d_F(x) = k$ for each $x \in V(G)$. Let $h : E(G) \to [0, 1]$ be a function. If $\sum_{x \in e} h(e) = k$ for any $x \in V(G)$, then we call $G[F_h]$ a fractional k-factor of G with indicator function h where $F_h = \{e \in E(G) : h(e) > 0\}$. The following result on degree condition for fractional k-factor is known.

Theorem 1 (Yu et al. [10]). Let k be an integer with $k \ge 2$, and let G be a graph of order n with $n \ge 4k - 3$, $\delta(G) \ge k$. If

$$\max\{d_G(u), d_G(v)\} \ge \frac{n}{2}$$

for each pair of non-adjacent vertices u and v of G, then G has a fractional k-factor.

© 2017 Miskolc University Press

Research supported partially by NSFC (nos. 11401519, 11371328, and 11471293).

In what follows, we always assume that *n* is order of *G*, i.e., n = |V(G)|, and *G* is not complete. Chang et al. [1] introduced the concept of fractional independentset-deletable *k*-factor critical (shortly, ID-*k*-factor critical) graph, that is, if removing any independent *I* from *G*, the resulting graph has a fractional *k*-factor. Also, Chang et al. [1] proved that if $n \ge 6k - 8$ and $\delta(G) \ge \frac{2n}{3}$, then *G* is fractional ID-*k*-factorcritical. More results on fractional ID-*k*-factor-critical graphs can be found in Gao and Wang [2–6] and Jin [8].

In this paper, we focus on the degree sum condition for fractional ID-*k*-factorcritical graph. Let $\sigma_2(G) = \min\{d_G(u) + d_G(v)\}\)$ for each pair of non-adjacent vertices *u* and *v* of *G*. Niessen [9] researched the degree sum condition for a graph which exists regular factor. Iida and Nishimura [7] studied the existence of factor by virtue of $\sigma_2(G)$, and proved that if $n \ge 4k - 5$, kn is even, $\delta(G) \ge k$, and $\sigma_2(G) \ge n$, then *G* has a *k*-factor. The main result in our paper study the degree sum condition for fractional ID-*k*-factor-critical graphs and give as follows:

Theorem 2. Let $k \ge 2$ be an integer, and let G be a graph of order n with $n \ge 6k-8$. If $\delta(G) \ge \frac{n}{3} + k$ and $\sigma_2(G) \ge \frac{4n}{3}$, then G is a fractional ID-k-factor-critical graph.

Also, we will show that Theorem 2 is sharp in some sense.

In order to prove our main result, we need the following lemma which is the necessary and sufficient condition for the existence of a fractional k-factor in a graph.

Lemma 1 (L. Zhang and G. Liu [11]). Let $k \ge 1$ be an integer, and let G be a graph. Then G has a fractional k-factor if and only if for every subset S of V(G),

$$\delta_G(S,T) = k|S| + \sum_{x \in T} d_{G-S}(x) - k|T| \ge 0$$

where $T = \{x : x \in V(G) - S, d_{G-S}(x) \le k - 1\}.$

2. PROOF OF THEOREM 2

Suppose that G satisfies the conditions of Theorem 2, but is not a fractional ID-k-factor-critical graph. Then there exist an independent set I such that G' = G - I has no fractional k-factor. By the argument of Lemma 1, there exists a subset S of V(G') such that

$$\delta_{G'}(S,T) = k|S| + \sum_{x \in T} d_{G'-S}(x) - k|T| \le -1.$$
(2.1)

Here, $T = \{x : x \in V(G') - S, d_{G'-S}(x) \le k - 1\}.$

If G' is a completed graph, then G' has fractional k-factor from the degree sum condition, the bound of n and the definition of fractional k-factor. This is a contradiction.

753

If |I| = 1, then $n' \ge 6k - 9$. It is easy to verify that $\delta(G') \ge k$ and $\max\{d_{G'}(u), d_{G'}(v)\} \ge \frac{n'}{2} = \frac{n-1}{2}$ for each pair of non-adjacent vertices u and v of G'. Thus, the results holds from Theorem 1.

We now consider $|I| \ge 2$ and G' is not complete. Obviously, $T \ne \emptyset$ and $S \ne \emptyset$ by $|I| \ge 2$ and $\delta(G) \ge \frac{n}{3} + k$. Let $d_1 = \min\{d_{G'-S}(x) : x \in T\}$ and choose $x_1 \in T$ such that $d_{G'-S}(x_1) = d_1$. If $T - N_T[x_1] \ne \emptyset$, let $d_2 = \min\{d_{G'-S}(x) : x \in T - N_T[x_1]\}$ and choose $x_2 \in T - N_T[x_1]$ such that $d_{G'-S}(x_2) = d_2$. So, $d_1 \le d_2$. Let |S| = s, |T| = t, $|N_T[x_1]| = p$. Then we have $p \le d_1 + 1$, $d_{G'-S}(T) \ge d_1p + d_2(t-p)$ and $ks - kt + d_1p + d_2(t-p) \le k|S| - k|T| + d_{G'-S}(T) < 0$. Thus,

$$|S| \le \frac{k|T| - d_{G'-S}(T) - 1}{k} \le \frac{k|T| - 1}{k},$$

i.e., $1 \le s \le t - \frac{1}{k}$.

Let |V(G')| = n'. We obtain $2n' \ge \sigma_2(G) \ge \frac{4n}{3} \ge \frac{4}{3}(6k-8)$. Since n' is an integer, we get $n' \ge 4k-5$. If $\sigma_2(G') < n'$, then $\frac{4(n'+|I|)}{3} \le \sigma_2(G) < n'+2|I|$, i.e., $n' < 2|I| \le \frac{2n}{3}$. This contradicts to $\sigma_2(G) \ge \frac{4n}{3}$ and $|I| \ge 2$. Therefore, $\sigma_2(G') \ge n'$. Furthermore, we obtain $\delta(G') \ge k$ by $|I| \ge 2$ and $\delta(G) \ge \frac{n}{3} + k$.

We consider following two cases:

Case 1. $T = N_T[x_1]$. In this case, $t = p \le d_1 + 1$ and $d_2 = 0$. If $d_1 = k - 1$, then $t \le k, k|S|-k|T| + d_{G'-S}(T) \ge ks - kt + d_1p = ks - kt + (k-1)t \ge ks - t \ge 0$, which contradicts (2.1). If $0 \le d_1 \le k - 2$, then $t \le d_1 + 1 \le k - 1$. By $\delta(G') \ge k$ and $d_{G'}(x_1) \le s + d_1$, we have $s \ge k - d_1$. Thus, $k|S| - k|T| + d_{G'-S}(T) \ge ks - kt + d_1p \ge k(k - d_1) + (d_1 - k)t = (k - d_1)(k - t) > 0$, which contradicts (2.1).

Case 2. $T - N_T[x_1] \neq \emptyset$. We consider following three subcases.

Case 2.1. $d_1 = d_2 = k - 1$. In this subcase, $k|S| - k|T| + d_{G'-S}(T) \ge ks - kt + d_1p + d_2(t-p) = ks - kt + (k-1)p + (k-1)(t-p) = ks - t \ge 0$, which contradicts (2.1). In fact, if $ks \le t - 1$, then $s + ks + 1 \le s + t \le n'$. Note that x_1 , x_2 are not adjacent in G'. Thus, $2(s + k - 1) \ge \sigma_2(G') \ge n' \ge s + sk + 1$. We get s = 1. Thus, $2(1 + k - 1) \ge 2(s + k - 1) \ge \sigma_2(G') \ge n' \ge 4k - 5$, i.e., k = 2. In this case, $d_1 = d_2 = 1$, s = 1, $t \ge 3$, $n' \ge 4$. We have $4 \le n' \le \sigma_2(G') \le 2s + 2 = 4$, i.e., t = 3, n' = 4. Thus, the vertex $T - \{x_1, x_2\}$ has degree 2 in T, and we can check that $k|S| - k|T| + d_{G'-S}(T) = 0$. This is a contradiction.

Case 2.2. $0 \le d_1 \le k - 2$ and $d_2 = k - 1$. In this subcase, $p \le d_1 + 1 \le k - 1$. Since x_1 and x_2 are not adjacent in G', we have $(s + k - 1) + (s + d_1) \ge \sigma_2(G') \ge n' \ge 4k - 5$, i.e., $n' \le 2s + k - 1 + d_1$ and $s \ge \frac{3k - d_1 - 4}{2}$. Thus, $k |S| = k |T| + d_{CL} - s(T)$

$$k|S| - k|T| + d_{G'-S}(T)$$

$$\geq ks - kt + d_1p + d_2(t-p)$$

$$\geq ks - k(n'-s) + (d_1 - k + 1)(d_1 + 1) + (k-1)(n'-s)$$

$$= (k+1)s - n' - k + 1 + d_1^2 + (2-k)d_1$$

$$\geq (k+1)s - (2s+k-1+d_1) - k + 1 + d_1^2 + (2-k)d_1 = (k-1)s - 2k + 2 + d_1^2 + (1-k)d_1 \geq (k-1)\frac{3k-d_1-4}{2} - 2k + 2 + d_1^2 + (1-k)d_1 = d_1^2 + \frac{3}{2}(1-k)d_1 + (k-1)\frac{3k-4}{2} - 2k + 2.$$

If $k \ge 5$, then $\frac{3}{4}(k-1) \le k-2$ and d_1 can reach to $\frac{3}{4}(k-1)$. We get

$$d_1^2 + \frac{3}{2}(1-k)d_1 + (k-1)\frac{3k-4}{2} - 2k + 2$$

$$\geq \frac{9}{16}(k-1)^2 - \frac{9}{8}(k-1)^2 + (k-1)\frac{3k-4}{2} - 2k + 2$$

$$= \frac{15}{16}k^2 - \frac{35}{8}k + \frac{55}{16}$$

$$\geq \frac{15}{16}k^2 - \frac{35}{8}k + \frac{55}{16} > 0,$$

which contradicts (2.1).

If k = 2, 3, 4, then

$$d_1^2 + \frac{3}{2}(1-k)d_1 + (k-1)\frac{3k-4}{2} - 2k + 2$$

$$\ge (k-2)^2 + \frac{3}{2}(1-k)(k-2) + (k-1)\frac{3k-4}{2} - 2k + 2$$

$$= k^2 - 5k + 5.$$

If k = 4, then $k^2 - 5k + 5 \ge 0$, which contradicts (2.1).

If k = 3, then $d_2 = 2$, $d_1 = 0$ or 1. If $d_1 = 0$, then $s \ge \frac{n'}{2} - 1$ and $t \le \frac{n'}{2} + 1$. Thus, $k|S|-k|T| + d_{G'-S}(T) \ge k(\frac{n'}{2}-1)-k(\frac{n'}{2}+1)+2(\frac{n'}{2}+1-1) \ge 2k-5 > 0$, which contradicts (2.1). Assume $d_1 = 1$. If $n' \ge 8 = 4k-4$, then we get contradiction similarly as what we discuss above. If n' = 7, then $n \le 10$ since $n' \ge \frac{2n}{3}$. And, if $s \ge 3$, we obtain $k|S|-k|T| + d_{G'-S}(T) \ge 0$. The last situation is k = 3, n' = 7, s = 2. Thus, $\sigma_2(G) \le 13$ which contradicts $\sigma_2(G) \ge \frac{4n}{3}$. Assume k = 2. Then $d_1 = 0$ and $d_2 = 1$. If $G' - S - T \ne \emptyset$, then $t \le n'-s-1$ and

Assume k = 2. Then $d_1 = 0$ and $d_2 = 1$. If $G' - S - T \neq \emptyset$, then $t \leq n' - s - 1$ and $k|S|-k|T| + d_{G'-S}(T) \geq 2s - 2(n' - s - 1) + (n' - s - p - 1) \geq 3s - n' - p + 1 \geq 3s - n \geq 3s - (2s + 1) = s - 1 \geq 0$, which contradicts (2.1). Suppose $G' - S - T = \emptyset$. If $n' \geq 4k - 3 = 5$, then $s \geq \frac{n'-1}{2}$ and $t \leq \frac{n'+1}{2}$. Thus, $k|S| - k|T| + d_{G'-S}(T) \geq k\frac{n'-1}{2} - k\frac{n'+1}{2} + (\frac{n'+1}{2} - 1) \geq 0$, which contradicts (2.1). If n' = 4k - 4 = 4, then $s \geq 2$ and $t \leq 2$ by s is an integer. Thus, $k|S| - k|T| + d_{G'-S}(T) > 0$, which contradicts (2.1). If n = 3 = 4k - 5, then $s \geq 1$ and $t \leq 2$. If $t \leq 1$, then $s \geq 2$ and we have $k|S| - k|T| + d_{G'-S}(T) \geq 0$, which contradicts (2.1). The last case is s = 1 and t = 2. Then at least one vertex in T is of degree at least 2 in G' - S. Thus, k|S| - k|S| -

 $k|T| + d_{G'-S}(T) \ge ks - kt + d_1p + d_2(t-p) \ge k - 2k + (2-1) + 1 = 0$, which contradicts (2.1).

Case 2.3. $0 \le d_1 \le d_2 \le k-2$. In this subcase, $k-1-d_2 \ge 1$ and $n'-s-t \ge 0$. So, $(k-1-d_2)(n'-s-t) > ks-kt+d_1p+d_2(t-p)$. Thus, $(k-d_2)(n'-s)-ks > (d_1-d_2)p+(n'-s-t) \ge (d_1-d_2)(d_1+1)+(n'-s-t)$, i.e.,

$$(k-d_2)(n'-s)-ks \ge (d_1-d_2)(d_1+1)+1.$$
(2.2)

In terms of $n' \ge 4k - 5$, we obtain

$$d_2 \frac{n'}{2} \ge d_2 (2k - \frac{5}{2}). \tag{2.3}$$

In view of $s \ge \frac{n'-d_1-d_2}{2}$, we have

$$(s - \frac{n'}{2})(2k - d_2) \ge -\frac{d_1 + d_2}{2}(2k - d_2).$$
(2.4)

Adding (2.2), (2.3) and (2.4), we get

$$0 \ge d_1^2 + \frac{d_2^2}{2} - \frac{d_1d_2}{2} + d_1 - \frac{7}{2}d_2 + 1 + (d_2 - d_1)k$$

$$\ge d_1^2 + \frac{d_2^2}{2} - \frac{d_1d_2}{2} + d_1 - \frac{7}{2}d_2 + 1 + (d_2 - d_1)(d_2 + 2)$$

$$= d_1^2 + \frac{3}{2}d_2^2 - \frac{3}{2}d_1d_2 - \frac{3}{2}d_2 - d_1 + 1.$$

Equivalent to

$$(d_1 - (\frac{3}{4}d_2 + \frac{1}{2}))^2 + (\frac{\sqrt{15}}{4}d_2 - \frac{9}{2\sqrt{15}})^2 - \frac{3}{5} \le 0.$$

We have

$$0 \le d_1 \le d_2 \le 2$$

by $\left(\frac{\sqrt{15}}{4}d_2 - \frac{9}{2\sqrt{15}}\right)^2 - \frac{3}{5} \le 0.$

• If $d_1 = d_2 = 2$. In this case, if $n' \ge 4k - 4$, then $s \ge \frac{n'}{2} - 2$ and $t \le n' - s \le \frac{n'}{2} + 2$. Thus, $k|S| - k|T| + d_{G'-S}(T) \ge k(\frac{n'}{2} - 2) - k(\frac{n'}{2} + 2) + 2(\frac{n'}{2} + 2) \ge 0$, which contradicts (2.1). If n' = 4k - 5, then $s \ge 2k - 4$ and $t \le n' - s \le 2k - 1$ since s is an integer. Thus, $k|S| - k|T| + d_{G'-S}(T) \ge k(2k - 4) - k(2k - 1) + 2(2k - 1) = k - 2 \ge 0$, which contradicts (2.1).

• If $d_1 = 1$ and $d_2 = 2$. In this case, if $n' \ge 4k - 3$, then $s \ge \frac{n'-3}{2}$ and $t \le n' - s \le \frac{n'+3}{2}$. Thus, $k|S| - k|T| + d_{G'-S}(T) \ge k\frac{n'-3}{2} - k\frac{n'+3}{2} + 2 + 2\frac{n'-1}{2} \ge k - 2 \ge 0$, which contradicts (2.1). If n' = 4k - 4, then $s \ge 2k - 3$ and $t \le n' - s \le 2k - 1$ since s is an integer. Thus, $k|S| - k|T| + d_{G'-S}(T) \ge k(2k - 3) - k(2k - 1) + 2 + 2(2k - 1 - 2) = 2k - 4 \ge 0$, which contradicts (2.1). If n' = 4k - 5, then $s \ge 2k - 4$ and $t \le n' - s \le 2k - 4$ and $t \le n' - s \le 2k - 1$. Thus, $k|S| - k|T| + d_{G'-S}(T) \ge k(2k - 4) - k(2k - 1) + 2 + 4$

 $2(2k-3) = k-4 \ge 0$ if $k \ge 4$, which contradicts (2.1). If k = 2, then n' = 4k-5 = 3. In terms of $n' \ge \frac{2}{3}n$, we get n=4, which contradicts $|I| \ge 2$. In particular, for k = 3. If $n' \ge 8 = 4k-4$, then we get $k|S|-k|T| + d_{G'-S}(T) \ge 0$. If n' = 7, then $n \le 10$ since $n' \ge \frac{2n}{3}$. And, if $s \ge 3$, we get $k|S|-k|T| + d_{G'-S}(T) \ge 0$. The last situation is k = 3, n' = 7, s = 2. Thus, $\sigma_2(G) \le 13$ which which contradicts $\sigma_2(G) \ge \frac{4n}{3}$.

• If $d_1 = 0$ and $d_2 = 2$. In this case, if $n' \ge 4k - 4$, then $s \ge \frac{n'}{2} - 1$ and $t \le n - s \le \frac{n'}{2} + 1$. Thus, $k|S| - k|T| + d_{G'-S}(T) \ge k(\frac{n'}{2} - 1) - k(\frac{n'}{2} + 1) + 2(\frac{n'}{2} + 1 - 1) = n' - 2k \ge 2k - 4 \ge 0$, which contradicts (2.1). If n' = 4k - 5, then $s \ge 2k - 3$ and $t \le n' - s \le 2k - 2$ since s is an integer. Thus, $k|S| - k|T| + d_{G'-S}(T) \ge k(2k - 3) - k(2k - 2) + 2(2k - 2 - 1) = 3k - 6 \ge 0$, which contradicts (2.1).

• If $d_1 = d_2 = 1$. In this case, $s \ge \frac{n'}{2} - 1$ and $t \le n' - s \le \frac{n'}{2} + 1$. If $n' \ge 4k - 2$, then $k|S| - k|T| + d_{G'-S}(T) \ge k(\frac{n'}{2} - 1) - k(\frac{n'}{2} + 1) + (\frac{n'}{2} + 1) \ge 0$, which contradicts (2.1). If n' = 4k - 3, then $s \ge 2k - 2$ and $t \le n' - s \le 2k - 1$. Thus, $k|S| - k|T| + d_{G'-S}(T) \ge k(2k - 2) - k(2k - 1) + (2k - 1) = k - 1 > 0$, which contradicts (2.1). If n' = 4k - 4, then $s \ge 2k - 3$ and $t \le 2k - 1$. If $s \ge 2k - 2$ or $t \le 2k - 2$, then we have $k|S| - k|T| + d_{G'-S}(T) \ge 0$. If s = 2k - 3 and t = 2k - 1, then at least one vertex in T is of degree at least 2 in T since t is odd. Thus, $k|S| - k|T| + d_{G'-S}(T) \ge k(2k - 3) - k(2k - 1) + (2k - 1) + 1 = 0$, which contradicts (2.1). If n' = 4k - 5, then $s \ge 2k - 3$ and $t \le 2k - 2$ since s is an integer. Thus, $k|S| - k|T| + d_{G'-S}(T) \ge k(2k - 3) - k(2k - 2) + (2k - 2) = k - 2 \ge 0$, which contradicts (2.1).

• If $d_1 = 0$ and $d_2 = 1$. In this case, $s \ge \frac{n'-1}{2}$, $t \le n'-s = \frac{n'+1}{2}$ and $p \le d_1 + 1 = 1$. Thus, $k|S| - k|T| + d_{G'-S}(T) \ge k(\frac{n'-1}{2}) - k(\frac{n'+1}{2}) + (\frac{n'+1}{2} - 1) \ge k - 3 \ge 0$ if $k \ge 3$, which contradicts (2.1). If k = 2 and $n' \ge 5 = 4k - 3$, then $k|S| - k|T| + d_{G'-S}(T) \ge k\frac{n'-1}{2} - k\frac{n'+1}{2} + (\frac{n'+1}{2} - 1) \ge k - 2 = 0$, which contradicts (2.1). If n' = 4 = 4k - 4, then $s \ge 2$ and $t \le 2$. Thus, $k|S| - k|T| + d_{G'-S}(T) \ge 2k - 2k + (2-1) > 0$, which contradicts (2.1). The last situation is k = 2 and n' = 3 = 4k - 5. Then $s \ge 1$ and $t \le 2$. If $s \ge 2$ or $t \le 1$, then we get $k|S| - k|T| + d_{G'-S}(T) \ge 0$, which contradicts (2.1). Otherwise, s = 1 and t = 2. Then at least one vertex in T has degree at least 2 in T since t is even and $d_1 = 0$. Thus, $k|S| - k|T| + d_{G'-S}(T) \ge 2 - 4 + 1 + 1 = 0$, which contradicts (2.1).

• If $d_1 = d_2 = 0$. In this case, $s \ge \frac{n'}{2}$ and $t \le \frac{n'}{2}$. Thus, $k|S| - k|T| + d_{G'-S}(T) \ge 0$, which contradicts (2.1).

Thus, we complete the proof of Theorem 2.

Remark 1. We construct some graphs to show that the bounds in the Theorem 2 are best possible.

For $k \ge 3$, let $G = (2k-3)K_1 \vee (K_{2k-4} \vee (k-1)K_2)$. Then n = 6k-9, $\delta(G) = 4k-6 \ge \frac{n}{3}+k$ and $\sigma_2(G) = 8k-12 = \frac{4n}{3}$. Let $I = (2k-3)K_1$, $S = K_{2k-4}$. Then $T = (k-1)K_2$ and $k|S|-k|T|+d_{G'-S}(T) = -2 < 0$. So, G is not a fractional

757

ID-*k*-factor-critical graph. For k = 2 and |G| = 3 = 6k - 9, then G is not a fractional ID-*k*-factor-critical graph. Thus, the bound of *n* is best possible.

If $k \ge 3$. Let $G = (2k-2)K_1 \lor (K_{2k-3} \lor (2k-2)K_1)$. Then n = 6k-7, $\delta(G) = 4k-5 \ge \frac{n}{3}+k$, but $\sigma_2(G) = 8k-10 < \frac{4n}{3}$. Let $I = (2k-2)K_1$, $S = K_{2k-3}$. Then $T = (2k-2)K_1$, $d_{G'-S}(T) = 0$ and $k|S| + \sum_{x \in T} d_{G'-S}(x) - k|T| = -k < 0$. So, G is not a fractional ID-k-factor-critical graph. The condition $\sigma_2(G) \ge \frac{4n}{3}$ is best possible for $k \ge 3$.

At last, the condition that $\delta(G) \ge \frac{n}{3} + k$ cannot be replaced by $\frac{n}{3} + k - 1$. We consider a such graph G: n is divided by 3 and $G = \frac{n}{3}K_1 \lor G'$. Let $I = \frac{n}{3}K_1$. Deleting I form G, we have $\delta(G') = k - 1$ if $\delta(G) = \frac{n}{3} + k - 1$. Therefore, G - I has no fractional k-factor by the definition.

ACKNOWLEDGEMENT

We would like to thank the anonymous referees for providing us with constructive comments and suggestions.

REFERENCES

- R. Chang, G. Liu, and Y. Zhu, "Degree conditions of fractional ID-k-factor-critical graphs." Bull. Malays. Math. Sci. Soc., vol. 33, no. 3, pp. 355–360, 2010.
- [2] W. Gao and W. F. Wang, "A neighborhood union condition for fractional (k,m)-deleted graphs." Ars Combin., vol. 113A, pp. 225–233, 2014.
- [3] W. Gao and W. F. Wang, "Binding number and fractional (g, f,n',m)-critical deleted graph." Ars Combin., vol. 113A, pp. 49–64, 2014.
- [4] W. Gao and W. F. Wang, "Degree conditions for fractional (k,m)-deleted graphs." Ars Combin., vol. 113A, pp. 273–285, 2014.
- [5] W. Gao and W. F. Wang, "The eccentric connectivity polynomial of two classes of nanotubes." *Chaos Soliton. Fract.*, vol. 89, pp. 290–294, 2016, doi: 10.1016/j.chaos.2015.11.035.
- [6] W. Gao and W. F. Wang, "New isolated toughness condition for fractional (g, f,n)-critical graphs." *Colloq. Math.*, vol. 147, no. 1, pp. 55–66, 2017, doi: 10.4064/cm6713-8-2016.
- [7] T. Iida and T. Nishimura, "An Ore-type condition for the existence of k-factors in graphs." Ars Combin., vol. 7, no. 4, pp. 353–361, 1991, doi: 10.1007/BF01787640.
- [8] J. H. Jin, "Multiple solutions of the Kirchhoff-type problem in R^N." Appl. Math. Nonl. Sc., vol. 1, no. 1, pp. 229–238, 2016, doi: 10.21042/AMNS.2016.1.00017.
- [9] T. Niessen, "A Fan-type result for regular factors." Graphs Combin., vol. 46, pp. 277–285, 1997.
- [10] J. Yu, G. Liu, M. Ma, and B. Cao, "A degree condition for graphs to have fractional factors.", vol. 35, no. 5, pp. 621–628, 2006.
- [11] L. Zhang and G. Liu, "Fractional *k*-factors of graphs." J. Systems Sci. Math. Sci., vol. 21, no. 1, pp. 88–92, 2001.

Authors' addresses

Wei Gao

Yunnan Normal University, School of Information Science and Technology, 650500 Kunming, China

E-mail address: gaowei@ynnu.edu.cn

WEI GAO AND WEIFAN WANG

Weifan Wang Zhejiang Normal University, Department of Mathematics, Jinhua 321004, China *E-mail address:* wwf@zjnu.cn