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FC -RINGS
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Abstract. We investigate properties of FC -rings (i.e. rings R in which the centralizer CR.a/ of
any element a 2R is of finite index in R) and, in particular, characterize left Artinian rings with
a finite set of all derivations DerR (respectively inner derivations IDerR). We show that if R is
a Jacobson radical ring in which its adjoint group Rı has a finite number of conjugacy classes,
then
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is a ring direct sum of Jacobson radical rings Rpi
and D, where the additive group DC is a

torsion-free divisible group, the adjoint group Dı is a group with a finite number of conjugacy
classes, RCpi

is a finite pi -group .i D 1; : : : ; t / and p1; : : : ;pt are pairwise distinct primes.
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1. INTRODUCTION

Let R be an associative ring, not necessarily with identity.
It is well-known that a group G is called an FC -group if the centralizer CG.g/ of

any element g 2G is of finite index in G [19]. Naturally, if the centralizer

CR.a/D fr 2R j ar D rag

of any element a 2R is of finite index in the additive groupRC ofR, thenR is called
an FC -ring. Every finite ring and every commutative ring are FC -rings. Since

@a WR 3 r 7! ar � raD Œa;r� 2R

(so-called an inner derivation of R induced by a) is an endomorphism of the group
RC, the kernel

ker@a D fr 2R j raD arg D CR.a/

is the centralizer of a 2 R and the quotient group RC=ker@a is isomorphic to the
image Im@a, we deduce that R is an FC -ring if and only if Im@a is finite for any
a 2R. A map ı WR!R is said to be a derivation of R if

ı.aCb/D ı.a/C ı.b/ and ı.ab/D ı.a/bCaı.b/

c
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for all a;b 2R. Clearly, the zero map 0R WR 3 r 7! 0 2R is a derivation of R.
An algebraic operation “ı” determined by the rule

a ıb D aCbCab

for any a;b 2R is associative with the neutral element 0 2R. The set of all invertible
elements in R with respect to “ı” is a group (which is called the adjoint group of R
and denoted by Rı).

Notations. For a group G, g�1 is the inverse of g 2G, aG WD fg�1ag j g 2Gg is
the conjugacy class of a 2 G, G0 is the commutator subgroup of G (i.e. a subgroup
generated by all multiplicative commutators g�1h�1gh, where g;h 2G), Z0.G/ WD
1 is a trivial subgroup of G, Z.G/ D Z1.G/ WD f´ 2 G j ´g D g´ for all g 2 Gg
is the center of G, Z˛C1.G/=Z˛.G/D Z.G=Z˛.G// and Z�.G/D [ˇ<�Zˇ .G/,
where ˛ is an ordinal and � a limit ordinal. Recall that a group G is called:

� hypercentral (respectively nilpotent) if Z� .G/ D G for some ordinal (re-
spectively non-negative integer) � ,
� locally nilpotent if every its finitely generated subgroup is nilpotent,
� simple in case G ¤ 1 and 1, G are the only normal subgroups of G,
� solvable if G.n/ D 1 for some integer n� 0, where G.0/ DG and G.mC1/ D
.G.m//0 for any integer m� 1,
� locally solvable if every its finitely generated subgroup is solvable.

Every nilpotent group is hypercentral. It is known that a group is hypercentral if and
only if every its non-trivial homomorphic image has the non-trivial center. A group
G with a finite number of conjugacy classes is called a �-group. A subgroup A of
an (additive) abelian group G is called pure if A\nG D nA for any integer n. An
(additive) abelian groupG is divisible if, for every positive integer n and every a 2G,
there exists x 2G such that nx D a.

For any ring R, Œx;r�D xr � rx is an additive commutator of x;r 2 R, C.R/ is
the commutator ideal of R that is the ideal generated by the commutator set ŒR;R�D
fŒx;r� j x;r 2 Rg, J.R/ is the Jacobson radical of R, RC is the additive group of
R, N.R/ is the set of all nilpotent elements of R, U.R/ is the unit group of R with
identity, Z.R/ is the center of R, F.R/D fa 2 R j a is of finite order in RCg is the
torsion part of R, expF.R/ is the exponent of the group F.R/C, g.�1/ is the inverse
of g in the adjoint group Rı, x.n/ is the nth power of x in the adjoint group Rı,
annX D fa 2 R j aX D 0D Xag is the annihilator of X � R. By DerR we denote
the set of all derivations of R. A subring S is of finite index in R (i.e. jR W S j <1)
if the additive subgroup SC has a finite index in RC. Recall that a ring R is called:

� Jacobson radical if Rı DR,
� nil if every its element x is nilpotent, i.e. there exists an integer nD n.x/ > 0

such that xn D 0; if there exists an integer n > 0 such that xn D 0 for any
x 2R, then R is nil of bounded index,
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� nilpotent in case there is an integer m > 0 such that x1x2 � � �xm D 0 for any
x1;x2; : : : ;xm 2R,
� locally nilpotent if every its finitely generated subring is nilpotent,
� reduced if it is without nonzero nilpotent elements,
� simple in case R2 ¤ 0 and 0, R are the only ideals of R,
� local if it has identity and the quotient ring R=J.R/ is simple,
� semiprime if it has no nonzero nilpotent ideals,
� left Artinian in case for every descending chain

I1 � I2 � � � � � In � � � �

of left ideals Ij of R, there is an integer n� 1 with InC1D In .j D 1;2; : : :/.
Any unexplained terminology is standard as in [3, 10] and [19].
The purpose of this paper is to study associative FC -rings R and some related

topics. Obviously, commutative rings and, in particular, differentially trivial rings
(i.e. DerRD f0Rg) are FC -rings. Associative rings R with finite sets DerR, IDerR
are very related to FC -rings. Rings R with the center Z.R/ of finite index are FC -
rings. In [21, Problem 84] F. Szász asked: “In which rings R the additive group
Z.R/C of the center Z.R/ has a finite group-theoretic index with respect to RC?”
From Corollary 2 it follows that this problem is equivalent to study of rings with a
finite set of all inner derivations IDerR. Y. Hirano [12, Proposition 1] has proved
that the condition jR W Z.R/j <1 implies that the commutator ideal C.R/ is finite.
F. Szász [21, Problem 83] asked: “In which rings the commutator ideal is finite or
can be finitely generated?” H. Bell [5] has proved that if I is a nonzero right ideal of
finite index in a prime ringR and ŒI;I � is finite, thenR is either finite or commutative
(see also [17, Corollary 1.2]). C. Lanski [16] has showed that if T is a finite higher
commutator of R containing no nonzero nilpotent element, then T generates a finite
ideal of R.

We study left Artinian rings with the finite set of all derivations DerR (respectively
inner derivations IDerR) and prove the following with similar flavour.

Theorem 1. Let R be a left Artinian ring. Then IDerR (respectively DerR) is
finite if and only if RD A˚F is a direct sum of a finite ideal F and a commutative
(respectively differentially trivial) reduced ideal A.

An FC -ring R has the adjoint FC -group. It is easy to see that a Jacobson radical
ring R is an FC -ring if and only if its adjoint group Rı is an FC -group. In [21,
Problem 88] F. Szász asked:“ Let

OaD f.1�x/a.1�x/�1 j x 2Rg

in a Jacobson radical ring R. When is every class Oa finite, and when is a number of
the classes Oa finite?” About Jacobson radical rings we prove the following

Proposition 1. If R is a Jacobson radical ring with the adjoint FC -group Rı,
then:
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.1/ every nonzero homomorphic imageB ofR is commutative or annB is nonzero,

.2/ Rı is a hypercentral group,

.3/ if RC is torsion-free, then R is commutative,

.4/ ifR is nonzero, then the commutator ideal C.R/ is proper inR; if, moreover,
R is non-commutative, then R2 is proper in R.

We give a partial answer on the second part of [21, Problem 88] in the following

Proposition 2. Let R be a Jacobson radical ring. Then the adjoint group Rı is a
�-group if and only if

RDRp1

M
� � �

M
Rpt

M
D

is a ring direct sum of Jacobson radical ringsRpi
andD, whereDC is a torsion-free

divisible group,Dı is a �-group,RCpi
is a finite pi -group .i D 1; : : : ; t / and p1; : : : ;pt

are pairwise distinct primes.

F. Szász [20] has investigated properties of infinite Jacobson radical ringsR whose
adjoint groups Rı have only two conjugacy classes. If, moreover, R2 D R, then it is
a simple domain by Propositions 1 and 2 from [20]. We make this result more precise
in the following

Corollary 1. If R is a simple Jacobson radical ring, then the following hold:
.1/ if Rı is a �-group, then either R is a domain or contains a nonzero nilpotent

element,
.2/ if the adjoint group Rı has only two conjugacy classes, then R is a do-

main with the torsion-free divisible additive groupRC and the simple adjoint
group Rı.

2. PRELIMINARIES

For a convenience of the reader and in order to have the paper more self-contained
in this section we collect some results needed in the next.

Lemma 1 ([1], Lemma 2.4(1)). If R is a nil-ring and p is prime, then the additive
group RC is a p-group if and only if the adjoint group Rı is a p-group.

Lemma 2 (see [2], Corollary 1). Let G be a subgroup of the adjoint group of a
radical ring. If G has finite exponent, then it is locally nilpotent.

If .R;C; �/ is an associative ring, then R is a Lie ring with respect to the addition
“C” and the Lie multiplication “Œ�;��” (denoted by RL) defined by the rule Œa;b�D
a � b� b �a for any a;b 2 R. Then the center Z.R/ of R is an ideal of the Lie ring
RL.

Lemma 3. If R is an associative ring, then there is a Lie ring isomorphism

IDerR 3 @a 7! aCZ.R/ 2RL=Z.R/:
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Proof. Immediate. �

From this we have the following

Corollary 2. Let R be a ring. Then the set IDerR is finite if and only if jR W
Z.R/j<1.

Lemma 4. Let R be a ring, I an ideal and S a subring of R. If the set of all inner
derivations IDerR is finite, then sets IDerS and IDer.R=I / are finite.

Proof. Straightforward. �

Lemma 5 ([13], Theorem 1). Let S be a subring of a ring R. If S has a finite
index in R, then there exists an ideal I of R contained in S such that R=I is a finite
ring.

If R has identity 1, then

Rı 3 a 7! 1Ca 2 U.R/

is a group isomorphism of the adjoint group Rı and the unit group U.R/ of R. As
proved in [8], a division ringD with multiplicative FC -group U.D/ is commutative.

Lemma 6. A local ring R is an FC -ring if and only if its adjoint group Rı is an
FC -group.

Proof. The adjoint group of any FC -ring is an FC -group. A commutative ring
is an FC -ring. Therefore we assume that a local ring R is not commutative and Rı

is an FC -group. Since R has a proper ideal of finite index in view of Lemma 5, we
conclude that the quotient ring R=J.R/ is finite. Moreover, J.R/ı Š 1CJ.R/ is a
subgroup of the unit group U.R/,

jJ.R/ W CJ.R/.a/j D j1CJ.R/ W C1CJ.R/.a/j<1

for any a 2 U.R/ and therefore jR W CR.a/j <1. Inasmuch RD J.R/[U.R/ and
J.R/ is a Jacobson radical FC -ring, we deduce that R is an FC -ring. �

Lemma 7 ([19], Theorem 14.5.9). If G is an FC -group, then the commutator
subgroup G0 is torsion.

Lemma 8 ([15], Theorem 2). LetR be a semiprime ring and S Dfx 2R j x2D 0g.
If the cardinality cardS is finite, thenRDA˚F is a direct sum of idealsA and F , A
is reduced and F is finite. In particular, R has only finitely many nilpotent elements.

Lemma 9 (see [11, 18]). Let A be an algebra over a field of characteristic zero.
Suppose that there is a positive integer n such that an D 0 for all a 2 A. Then there
is an integer N such that a1a2 � � �aN D 0 for all a1;a2; : : : ;aN 2 A.

Theorem 1 of [23] implies the next

Lemma 10. A finite Jacobson radical ring is nilpotent.
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Lemma 11 ([15], Lemma 3). If R is a finite ring which is not nilpotent, then R
contains a nonzero idempotent.

Lemma 12 ([19], 4.3.8). A pure subgroup A of finite index of an abelian group G
is a direct summand.

A ring R is a subdirect product of some rings Si .i 2 I / if, for any i 2 I , Si Š
R=Ki , where Ki is an ideal of R and\

i2I

Ki D 0:

Lemma 13 (see [4]). A ring R is reduced if and only if it is a subdirect product of
domains.

Lemma 14 ([10], �1.4, Corollary 2). If R is a left Artinian ring and its Jacobson
radical J.R/D 0 is zero, then R contains identity.

If I is an ideal of a ring R, then we say that an idempotent gC I of the quotient
ring R=I can be lifted (to e) modulo I in case there is an idempotent e 2R such that
gCI D eCI .

Lemma 15 ([3], Proposition 27.1). If I is a nil-ideal of a ringR, then idempotents
lift modulo I .

Lemma 16 ([9], Theorem 18.13). A left Artinian ring is left Noetherian (i.e. every
its ideal is finitely generated).

A commutative ring V is called a v-ring if it is complete (in the J.V /-adic to-
pology), discrete, unramified valuation ring of characteristic 0 with the quotient ring
V=J.V / of prime characteristic p [6, p.79]. Then J.V / D pV , V=pV is a field,
pkV=pkC1 and V=pV are isomorphic as .V=pV /-linear spaces.

Lemma 17. Let R be a complete (in the J.R/-adic topology) local Noetherian
commutative ring of prime power characteristic pn. Then the following hold:

.1/ (see [6, Theorem 9]) if n D 1, then there exists a subfield C of R such that
RD J.R/CC is a group direct sum,

.2/ (see [6, Theorem 11]) if n � 2, then there exists a subring C of R such that
R D J.R/CC is a group sum, where C Š V=pnV for some v-ring V and
J.R/\V D pV .

Any local Artinian ring R is a complete local Noetherian ring.

3. PROPERTIES OF FC -RINGS

Lemma 18. If R is an infinite ring with a finite set of all inner derivations IDerR,
then the following hold:
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.1/ the centralizer CR.a/ is a subring of finite index in R for any a 2 R (i.e. R
is an FC -ring),

.2/ the adjoint group Rı is an FC -group,

.3/ if R is a simple ring, then R is a field,

.4/ R contains a central ideal I of finite index such that I �C.R/D 0,

.5/ the commutator ideal C.R/ is finite.

Proof. .1/ Since the set f@r.a/ j r 2Rg is finite, the index jR W CR.a/j is finite.
.2/ It follows from the part .1/.
.3/ It holds from Corollary 2 in view of Lemma 5.
.4/ Corollary 2 and Lemma 5 imply that R contains an ideal I of finite index such

that I �Z.R/. Moreover, for any r; t 2R and i 2 I we obtain that

.rt/i D r.t i/D .t i/r D t .ir/D t .ri/D .t r/i;

and so .rt � t r/i D 0. As a consequence, I �C.R/D 0.
.5/ By Corollary 2, the center Z.R/ is of finite index in R and so, by the part .4/,

the annihilator ann@x.y/ has a finite index in R. Then the commutator ideal

C.R/D
X

x;y2RnZ.R/

R@x.y/R

is finite.
�

Proof of Proposition 1. .1/ Assume that B is a non-commutative homorphic im-
age of R and a 2 B nZ.B/. Then CB.a/ is of finite index in B and, by Lemma 5,
the centralizer CB.a/ contains a proper ideal I of B such that jB W I j <1. If i 2 I
and r 2 B , then

ari D riaD rai; iar D air D ira

and so
Œa;r�i D 0D i Œa;r�:

This gives that ŒB;B� � annI . Since B=I is a finite radical ring, it is nilpotent by
Lemma 10. We have that Bn � I for some positive integer n and annI � ann.Bn/.
From this it holds that annB ¤ 0. Then every non-trivial homomorphic image of R
is commutative or has a non-trivial annihilator.
.2/ Since annR � Z.R/, we deduce that every proper quotient group of Rı has

the non-trivial center. This means that the adjoint group Rı is hypercentral [19,
Exercises 12.2.2].
.3/ By Lemma 7, every torsion-free FC -group is abelian.
.4/ The commutator ideal of a commutative ring R is zero (and so it is proper in

R ¤ 0). Assume that R is non-commutative. As in the part .1/, we can prove that
R contains a proper ideal of finite index and therefore R2 is proper in R in view of
Lemma 10. Obviously that C.R/�R2. Hence C.R/ is proper in a non-commutative
ring R.
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�

4. RINGS WITH A FINITE SET OF DERIVATIONS

Lemma 19. If e is an idempotent of a commutative ring R, then d.e/D 0 for any
d 2 DerR.

Proof. In fact, d.e/ D d.e2/ D d.e/eC ed.e/ implies that ed.e/ D ed.e/eC

ed.e/ and so d.e/e D ed.e/D e2d.e/D ed.e/e D 0. Hence d.e/D 0. �

Lemma 20. Let R be a ring. If the set DerR (respectively IDerR) is finite, then
DerR D f0Rg (respectively R is commutative) or ı.R/ � F.R/ for any ı 2 DerR
(respectively ı 2 IDerR).

Proof. Assume that ı.a/¤ 0 for some ı 2 DerR and a 2R. Since the set

fnı.a/ j n is an integerg

is finite, the torsion part F.R/¤ 0 is nonzero and ı.a/ 2 F.R/. �

Lemma 21. Any finite semiprime commutative ring R is differentially trivial.

Proof. By Lemma 14, R contains identity 1 and, by the Artin-Wedderburn struc-
ture theorem,RDR1˚�� �˚Rm is a ring direct sum of finite fieldsRi .i D 1; : : : ;m/.
Since 1D f1C�� �Cfm, where fi is identity of Ri and Ri D fiR, we obtain that

d.Ri /D d.fi /RCfid.R/D fid.R/� fiRDRi

for any d 2 DerR by Lemma 19. Every finite field is differentially trivial and we
conclude that d.R/D 0. Hence R is differentially trivial. �

Proposition 3. Let R be a reduced ring (respectively a ring with the torsion-free
additive group RC). Then the following hold:

.1/ the set of all inner derivations IDerR is finite if and only ifR is commutative,

.2/ the set of all derivations DerR is finite if and only ifR is differentially trivial.

Proof. If the additive group RC is torsion-free and IDerR (respectively DerR) is
finite, the assertion follows in view of Lemma 20. Therefore we suppose that R is
reduced.
.1/ Assume that the set IDerR is finite. By Lemmas 13 and 20, R is a subdirect

product of domains D with finite sets IDerD of inner derivations. If D is finite,
then it is a field. If D is infinite, then it does not contain a proper ideal of finite
index and therefore it is commutative in view of Lemma 18.4/. This implies that R
is commutative.

The converse is clear.
.2/ If DerR is finite, then R is commutative in view of the part .1/. Assume

that d.a/ ¤ 0 for some d 2 DerR and a 2 R. The rule rd W R 3 x 7! rd.x/ 2 R

determines a derivation rd of R and so Rd � DerR. Then the set Rd.a/ is a finite
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ring and Lemma 11 implies that there exists a nonzero idempotent e 2 Rd.a/ such
that

Re �Rd.a/

and e D td.a/ for some t 2 R. By Lemma 21, Re is differentially trivial. This gives
that

0D d.ae/D d.a/e D d.a/td.a/:

Then d.a/t is a nilpotent element and therefore e D 0, a contradiction. Hence
DerRD f0Rg.

The converse is clear. �

Corollary 3. Let R be a semiprime ring. Then IDerR (respectively DerR) is
finite if and only if RD A˚F is a direct sum of a finite ideal F and a commutative
(respectively differentially trivial) reduced ideal A (in particular, AD 0).

Proof. Assume that R is infinite and IDerR (respectively DerR) is finite. If a 2
Z.R/\N.R/, then aR is a nilpotent ideal of R and therefore jN.R/j � jR WZ.R/j.
Since the index jR WZ.R/j is finite by Corollary 2, we deduce that

RD A
M

F

is a direct sum of a finite ideal F and a reduced ideal A by Lemma 8 (in particular,
AD 0). If A¤ 0, then A is a commutative (respectively differentially trivial) ring by
Proposition 3.

The converse is clear. �

Corollary 4. A semiprime Jacobson radical FC -ring is commutative.

Proof. In view of Lemma 10, R does not contain a nonzero finite ideal and so
C.R/D 0 by Lemma 18.5/. Hence R is commutative. �

Lemma 22. If R is a commutative Artinian ring such that jR W J.R/j<1, then it
is finite.

Proof. Since R is a ring direct sum of local Artinian rings of prime power charac-
teristics by the Artin-Wedderburn structure theorem, we may assume that R is local
Artinian of characteristic pn for some prime p and an integer n � 1. By Lemma 17,
R D J.R/CC is a group sum, where either C is a field (and consequently it is fi-
nite) or C Š V=pnV for some v-ring V and n� 2. SinceR=J.R/Š V=pV is a field,
pkV=pkC1V and V=pV are isomorphic as .V=pV /-linear spaces .kD 1; : : : ;n�1/,
we deduce that C is finite. In view of Lemma 16,

J.R/D

tX
sD1

jsR
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for some integer t � 1 and elements j1; : : : ;js 2R. Then

J.R/D

tX
sD1

.jsJ.R/CjsC/

D

tX
sD1

.js

tX
lD1

.jlJ.R/CjlC/CjsC/

: : :D

wX
uD1

gwC

for some integer w � 1 and g1; : : : ;gw 2 J.R/. Thus R is finite. �

As usual, if e is an idempotent od a ring R (not necessary with 1), then we write

eR.1� e/ WD fer � ere j r 2Rg; .1� e/Re WD fre� ere j r 2Rg

and
.1� e/R.1� e/ WD fr � er � reC ere j r 2Rg:

Proof of Theorem 1. a/ Suppose that the set IDerR is finite and R is infinite. By
Lemma 18, the commutator ideal C.R/ is finite. The quotient ring

R=J.R/D F1
M

A1

is semisimple and so, by the Artin-Wedderburn structure theorem, it is a direct sum
of ideals F1 and A1, where F1 is finite. If A1 D 0, then R=C.R/ (and consequently
R) is finite by Lemma 22, a contradiction with the assumption. Thus A1 ¤ 0 and we
may assume that A1 does not contain a nonzero finite ideal and so, by the Artin-
Wedderburn structure theorem, A1 is a ring direct sum of finitely many infinite
semisimple Artinian rings (which are fields). An idempotent that is identity of A1
can be lifted to an idempotent e 2 R by Lemma 15. We denote eRe by A and
A\ annC.R/ by C1. Then jA W C1j <1 in view of Lemma 18(4) and J.A/ D
A\J.R/. Since A1 does not contain a proper ideal of finite index and the quotient
ring

A=J.A/Š .ACJ.R//=J.R/Š A1

is a ring direct sum of finitely many infinite fields, we deduce that

A=J.A/D .C1CJ.A//=J.A/ and AD J.A/CC1:

The Jacobson radical J.A/ does not contain e and, as a consequence, A D C1 �
annC.R/. Since e 2 A, we have that eC.R/D C.R/e D 0 and hence

rea� ereaD .re� er/eaD 0 and aer �aere D ae.er � re/D 0

for any a 2 A and r 2R. If

I D .1� e/R.1� e/C eR.1� e/C .1� e/ReCC.R/;
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then I is an ideal of R and RD I CA. Inasmuch IAD 0DAI , we conclude that A
is an ideal of R. Moreover, if ´ 2 I \A, then

exe D ´D .u� eu�ueC eue/C .ev� eve/C .we� ewe/C c

for some x;u;v;w 2 R, c 2 C.R/ and exe D e2xe2 D e´e D ece D 0 what forces
that I \AD 0. Hence

RD I
M

A (4.1)

is a ring direct sum, where A is commutative.
b/ Now assume that the set DerR is finite. Then the set IDerR is also finite and

.4:1/ it follows. Consequently, DerA is finite. If ı 2 DerA, then the rule

bı W A 3 r 7! bı.r/ 2 A

determines a derivation bı of A for any b 2A. Since sets Aı and Aı.a/ are finite, the
index jA W annı.a/j <1 for any a 2 A. But A=J.A/ is a ring direct sum of finitely
many infinite fields and so A does not contain a proper ideal of finite index. This
yields that ı D 0A is zero and consequently A is a differentially trivial ring.

The converse is clear.
�

5. ON JACOBSON RADICAL RINGS WITH TWO CONJUGACY CLASSES

It is well known that any linear group (over a field) and any SI -group (i.e. group
which possess a normal series with abelian factors) with a finite number of conjugacy
classes are finite (see e.g. [19] or [14]). A result of Cohn [7] says that there exists a
radical ring whose adjoint group has only two conjugacy classes and it is a torsion-
free simple group.

Lemma 23. If R is a Jacobson radical ring with the adjoint �-group Rı, then:
.1/ R has only the finite number of two-sided ideals,
.2/ R has a simple homomorphic image,
.3/ the center Z.R/ is finite.

Proof. .1/ If I is an ideal of R, then I ı is a normal subgroup of Rı. Since
every normal subgroup is a set-theoretic sum of some conjugacy classes, the assertion
holds.
.2/ It follows from the part .1/.
.3/ If a 2Z.R/, then the conjugacy class aG contains only one a. �

Lemma 24. Let R be a Jacobson radical ring and R2 ¤ R. If the adjoint group
Rı has only two conjugacy classes, then R is a zero-ring that contains only two
elements.

Proof. Assume G D Rı has only exactly two conjugacy classes. Now, f0g is a
conjugacy class by itself, and the other class is aG for some 0¤ a 2G. Then .R2/ı
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is a normal subgroup of G, because R2 is an ideal of R, thus .R2/ı is the union of
conjugacy classes. As 0 2 R2, we have that .R2/ı is either f0g or G. Since the ring
R is Jacobson radical, we obtain that R2 is either f0g or R. From R2 ¤ R it follows
that R2 D f0g, i.e. R is a zero-ring. Hence “ı” is simply the addition, and then a
number of conjugacy classes is cardR from the commutativity of the addition “C”.

�

Lemma 25 ([22], Corollary, p. 332). Let G be a locally solvable group. If G has
a finite number of conjugacy classes, then it is finite.

Corollary 5. Any Jacobson radical ring R with the torsion adjoint �-group Rı is
finite.

Proof. Since elements of the same conjugacy class have the same order, Rı is of
finite exponent. Then, by Lemma 2, the adjoint group Rı is locally nilpotent. By
Lemma 25, R is finite. �

Proof of Proposition 2. a/ By Corollary 5, the torsion part F.R/ is finite and so
Dı is a �-group.
b/ Since F.R/ is an ideal of R and Rı is a �-group, we deduce that the exponent

expF.R/ is finite. Then F.R/ is a ring direct sum of finitely many p-components
for pairwise distinct primes p.
c/ Suppose that the additive group RC is torsion-free. Assume that qR is proper

in R for some prime q. Since the set

fnR j n is a positive integerg

is finite by Lemma 23(1), we conclude that

qlRD qkR

for some positive integers l;k, where l > k. If a 2R nqR, then qkaD qlb for some
b 2R and

qk.a�ql�kb/D 0:

This yields aD ql�kb 2 qR, a contradiction. Hence RC is divisible.
d/ LetR be any Jacobson radical ring with the adjoint �-groupRı. ThenRC=F.R/

is a divisible group and, by Lemma 12,

RC D F.R/
M

D

is a group direct sum, whereD is a divisible group. If c;d 2D, then cd D f Ch for
some f 2 F.R/ and h 2D. Since c D nc1 and hD nh1 for some c1;h1 2D, where
n is a positive integer, we conclude that

f 2

1\
nD1

nR:
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Therefore f D 0 and D is a ring. Moreover F.R/D D 0 D DF.R/. Then R D
F.R/˚D is a ring direct sum and soF.R/ is a ring with a finite number of conjugacy
classes. �

6. SOME COROLLARIES

If B is the two-element zero ring, then B is Jacobson radical and its adjoint group
Bı has only two conjugacy classes. But B is not simple because B2 D 0.

Proof of Corollary 1. .1/ Assume that R is not a domain and does not contain a
nonzero nilpotent element. If there exists a nonzero element a 2 R with a nonzero
right annihilator AD annr a, then A¤R, .Aa/2D 0 and, as a consequence, AaD 0.
This means that A is contained in the two-sided annihilator anna. Since R does
not contain a nonzero nilpotent element, anna is a nonzero proper ideal of R, a
contradiction.
.2/ In view of the part .1/, assume that R contains a nonzero nilpotent element

x 2 R such that x2 D 0. Then any 0 ¤ y 2 R is contained in the class xR
ı

and so
there exists a 2R such that

y D a.�1/ ıx ıa:

Since

y2 D .xCxaCa.�1/xCa.�1/xa/.xCxaCa.�1/xCa.�1/xa/

D .xa.�1/xaCxaxaCxaa.�1/xa/C .xaxCxa.�1/xCxaa.�1/x/

C .a.�1/xa.�1/xCa.�1/xaxCa.�1/xaa.�1/x/

C .a.�1/xaxaCa.�1/xa.�1/xaCa.�1/xaa.�1/xa/

D x.a.�1/ ıa/xaCx.a.�1/ ıa/xCa.�1/x.a.�1/ ıa/x

Ca.�1/x.a.�1/ ıa/xa

D 0;

we obtain that R is a nil-ring of bounded index. If F.R/¤ 0, then the p-part

Fp.R/D fa 2R j a is of finite order pn for some non-negative integer ng

is a nonzero ideal of R for some prime p and therefore R D Fp.R/. Hence RC is a
p-group. If F.R/D 0, then RC is torsion-free.
a/ If RC is a p-group, then, by Lemma 1, Rı is a p-group and, by Corollary 5, R

is finite. Then R is a nilpotent ring, a contradiction with the simplicity of R.
b/ Let RC be a torsion-free group. By Proposition 2, R is a Q-algebra and, by

Lemma 9, it is nilpotent, a contradiction.
Hence R is reduced and, by the part .1/, R is a domain. As a consequence, Rı is

a simple group. By Proposition 2, RC is torsion-free divisible. �

Corollary 6. If R is an infinite nil-ring, then R2 ¤R or Rı is not a �-group.



636 OREST ARTEMOVYCH

Proof. By contrary. IfRı is a �-group andR2DR, then, in view of Lemma 23(2),
there exists an ideal I of R with the simple homomorphic image R=I . If .R=I /C is
a torsion group, then .R=I /ı is torsion by Lemma 1 and so R=I is a finite nilpotent
ring, which leads to a contradiction. If .R=I /C is a torsion-free group, then, as in the
proof of Corollary 1, R=I is a nil Q-algebra of bounded index and it is nilpotent by
Lemma 9, a contradiction with R2 DR. �
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