Miskolc Mathematical Notes HU e-ISSN 1787-2413

&\ Vol. 18 (2017), No. 2, pp. 623-637 DOI: 10.18514/MMN.2017.1531
FC-RINGS
OREST ARTEMOVYCH

Received 03 February, 2015

Abstract. We investigate properties of FC-rings (i.e. rings R in which the centralizer Cg(a) of
any element a € R is of finite index in R) and, in particular, characterize left Artinian rings with
a finite set of all derivations Der R (respectively inner derivations IDer R). We show that if R is
a Jacobson radical ring in which its adjoint group R° has a finite number of conjugacy classes,

then
R = Rp, EB"'@RP: @D

is a ring direct sum of Jacobson radical rings Rp, and D, where the additive group Dtisa
torsion-free divisible group, the adjoint group D° is a group with a finite number of conjugacy
classes, R;;. is a finite p;-group (i =1,...,¢) and py,..., p; are pairwise distinct primes.
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1. INTRODUCTION

Let R be an associative ring, not necessarily with identity.
It is well-known that a group G is called an F C-group if the centralizer Cg(g) of
any element g € G is of finite index in G [19]. Naturally, if the centralizer

Cr(a)={reR|ar =ra}
of any element a € R is of finite index in the additive group R™ of R, then R is called
an FC-ring. Every finite ring and every commutative ring are F'C-rings. Since

dg:R>r+—ar—ra=la,r]€R

(so-called an inner derivation of R induced by a) is an endomorphism of the group
R™, the kernel

kerd, ={r € R|ra=ar} = Cg(a)
is the centralizer of a € R and the quotient group R™/kerd, is isomorphic to the
image Imd,, we deduce that R is an F'C-ring if and only if Imd, is finite for any
a € R. Amap 6 : R — R is said to be a derivation of R if

8(a+b) =38(a)+6(b) and 6(ab) = §(a)b + ad(b)
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for all a,b € R. Clearly, the zero map Og : R > r — 0 € R is a derivation of R.
An algebraic operation “o” determined by the rule

aoch=a+b+ab

for any a,b € R is associative with the neutral element O € R. The set of all invertible
elements in R with respect to “o” is a group (which is called the adjoint group of R
and denoted by R°).

Notations. For a group G, g~ ! is the inverse of g € G, a% := {g lag | g € G} is
the conjugacy class of a € G, G’ is the commutator subgroup of G (i.e. a subgroup
generated by all multiplicative commutators g~ A~ gh, where g,h € G), Zo(G) :=
1 is a trivial subgroup of G, Z(G) = Z1(G) :={z € G | zg = gz forall g € G}
is the center of G, Zy+1(G)/Za(G) = Z(G/Zx(G)) and Z;(G) = Ug 1 Zg(G),
where « is an ordinal and A a limit ordinal. Recall that a group G is called:

1

e hypercentral (respectively nilpotent) it Zy(G) = G for some ordinal (re-
spectively non-negative integer) 6,

e locally nilpotent if every its finitely generated subgroup is nilpotent,

e simple in case G # 1 and 1, G are the only normal subgroups of G,

e solvable if G™ =1 for some integer n > 0, where GO =G and GMFD =
(G™)Y for any integer m > 1,

e locally solvable if every its finitely generated subgroup is solvable.

Every nilpotent group is hypercentral. It is known that a group is hypercentral if and
only if every its non-trivial homomorphic image has the non-trivial center. A group
G with a finite number of conjugacy classes is called a v-group. A subgroup A of
an (additive) abelian group G is called pure if ANnG = nA for any integer n. An
(additive) abelian group G is divisible if, for every positive integer n and every a € G,
there exists x € G such that nx = a.

For any ring R, [x,r] = xr —rx is an additive commutator of x,r € R, C(R) is
the commutator ideal of R that is the ideal generated by the commutator set [R, R] =
{[x.r] | x,r € R}, J(R) is the Jacobson radical of R, R* is the additive group of
R, N(R) is the set of all nilpotent elements of R, U(R) is the unit group of R with
identity, Z(R) is the center of R, F(R) = {a € R | a is of finite order in R} is the
torsion part of R, exp F(R) is the exponent of the group F(R)™, g1 is the inverse
of g in the adjoint group R°, x( is the nth power of x in the adjoint group R°,
ann X = {a € R|aX = 0= Xa} is the annihilator of X € R. By Der R we denote
the set of all derivations of R. A subring S is of finite index in R (i.e. |R: S| < 00)
if the additive subgroup S has a finite index in R™. Recall that a ring R is called:

e Jacobson radical if R° = R,

e nil if every its element x is nilpotent, i.e. there exists an integer n = n(x) > 0
such that x” = 0; if there exists an integer n > 0 such that x” = 0 for any
X € R, then R is nil of bounded index,
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e nilpotent in case there is an integer m > 0 such that x; x5 --- x, = 0 for any
X1,X2,...,Xm € R,

locally nilpotent if every its finitely generated subring is nilpotent,

reduced if it is without nonzero nilpotent elements,

simple in case R% # 0 and 0, R are the only ideals of R,

local if it has identity and the quotient ring R/J(R) is simple,

semiprime if it has no nonzero nilpotent ideals,

left Artinian in case for every descending chain

h>L>->1,>--
of left ideals /; of R, there is anintegern > 1 with I,,41 =1, (j =1,2,...).

Any unexplained terminology is standard as in [3, 10] and [19].

The purpose of this paper is to study associative F'C-rings R and some related
topics. Obviously, commutative rings and, in particular, differentially trivial rings
(i.e. Der R = {Og}) are F'C-rings. Associative rings R with finite sets Der R, IDer R
are very related to F C-rings. Rings R with the center Z(R) of finite index are F C-
rings. In [21, Problem 84] F. Szdsz asked: “In which rings R the additive group
Z(R)™ of the center Z(R) has a finite group-theoretic index with respect to R™?”
From Corollary 2 it follows that this problem is equivalent to study of rings with a
finite set of all inner derivations IDer R. Y. Hirano [12, Proposition 1] has proved
that the condition |R : Z(R)| < oo implies that the commutator ideal C(R) is finite.
F. Szész [21, Problem 83] asked: “In which rings the commutator ideal is finite or
can be finitely generated?” H. Bell [5] has proved that if I is a nonzero right ideal of
finite index in a prime ring R and [/, ] is finite, then R is either finite or commutative
(see also [17, Corollary 1.2]). C. Lanski [16] has showed that if T is a finite higher
commutator of R containing no nonzero nilpotent element, then 7" generates a finite
ideal of R.

We study left Artinian rings with the finite set of all derivations Der R (respectively
inner derivations IDer R) and prove the following with similar flavour.

Theorem 1. Let R be a left Artinian ring. Then IDer R (respectively Der R) is
finite if and only if R = A® F is a direct sum of a finite ideal F and a commutative
(respectively differentially trivial) reduced ideal A.

An F(C-ring R has the adjoint F'C-group. It is easy to see that a Jacobson radical
ring R is an FC-ring if and only if its adjoint group R° is an FC-group. In [2],
Problem 88] F. Szasz asked:* Let

a={1-x)a(l—x)"'|xeR}
in a Jacobson radical ring R. When is every class a finite, and when is a number of
the classes a finite?”” About Jacobson radical rings we prove the following

Proposition 1. If R is a Jacobson radical ring with the adjoint FC -group R°,
then:
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(1) every nonzero homomorphic image B of R is commutative or ann B is nonzero,

(2) R° is a hypercentral group,

(3) if R is torsion-free, then R is commutative,

(4) if R is nonzero, then the commutator ideal C(R) is proper in R; if, moreover,
R is non-commutative, then R? is proper in R.

We give a partial answer on the second part of [21, Problem 88] in the following

Proposition 2. Let R be a Jacobson radical ring. Then the adjoint group R° is a

v-group if and only if
R= RPI @'"@sz@D

is a ring direct sum of Jacobson radical rings Ry, and D, where D is a torsion-free
divisible group, D° is a v-group, le-i is a finite p;-group (i =1,...,t) and p1,..., p;
are pairwise distinct primes.

F. Szasz [20] has investigated properties of infinite Jacobson radical rings R whose
adjoint groups R° have only two conjugacy classes. If, moreover, R? = R, then it is
a simple domain by Propositions 1 and 2 from [20]. We make this result more precise
in the following

Corollary 1. If R is a simple Jacobson radical ring, then the following hold:
(1) if R° is a v-group, then either R is a domain or contains a nonzero nilpotent
element,
(2) if the adjoint group R° has only two conjugacy classes, then R is a do-
main with the torsion-free divisible additive group R and the simple adjoint
group R°.

2. PRELIMINARIES

For a convenience of the reader and in order to have the paper more self-contained
in this section we collect some results needed in the next.

Lemma 1 ([1], Lemma 2.4(1)). If R is a nil-ring and p is prime, then the additive
group R is a p-group if and only if the adjoint group R° is a p-group.

Lemma 2 (see [2], Corollary 1). Let G be a subgroup of the adjoint group of a
radical ring. If G has finite exponent, then it is locally nilpotent.

If (R, +,-) is an associative ring, then R is a Lie ring with respect to the addition
“4+” and the Lie multiplication “[—, —]” (denoted by RL) defined by the rule [a,b] =
a-b—b-a forany a,b € R. Then the center Z(R) of R is an ideal of the Lie ring
RL.

Lemma 3. If R is an associative ring, then there is a Lie ring isomorphism

IDerR > 9, —a+ Z(R) € RY/Z(R).
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Proof. Immediate. 0
From this we have the following

Corollary 2. Let R be a ring. Then the set IDer R is finite if and only if |R :
Z(R)| < 0.

Lemma 4. Let R be a ring, I an ideal and S a subring of R. If the set of all inner
derivations IDer R is finite, then sets IDer S and IDer(R /1) are finite.
Proof. Straightforward. U

Lemma 5 ([13], Theorem 1). Let S be a subring of a ring R. If S has a finite
index in R, then there exists an ideal I of R contained in S such that R/ is a finite
ring.

If R has identity 1, then

R°>ar1+acU(R)
is a group isomorphism of the adjoint group R° and the unit group U(R) of R. As
proved in [8], a division ring D with multiplicative F'C-group U(D) is commutative.

Lemma 6. A local ring R is an FC-ring if and only if its adjoint group R° is an
FC-group.

Proof. The adjoint group of any F'C-ring is an F'C-group. A commutative ring
is an F C-ring. Therefore we assume that a local ring R is not commutative and R°
is an F'C-group. Since R has a proper ideal of finite index in view of Lemma 5, we
conclude that the quotient ring R/J(R) is finite. Moreover, J(R)° = 1+ J(R) is a
subgroup of the unit group U(R),

|J(R) : Cyry(@)| =14+ J(R) : Cr4y(ry(a)| <00
for any a € U(R) and therefore |R : Cg(a)| < co. Inasmuch R = J(R) UU(R) and
J(R) is a Jacobson radical FC-ring, we deduce that R is an F C-ring. U

Lemma 7 ([19], Theorem 14.5.9). If G is an FC-group, then the commutator
subgroup G’ is torsion.

Lemma 8 ([15], Theorem 2). Let R be a semiprime ring and S = {x € R | x> =0}.
Ifthe cardinality card S is finite, then R = A® F is a direct sum of ideals A and F, A
is reduced and F is finite. In particular, R has only finitely many nilpotent elements.

Lemma 9 (see [11, 18]). Let A be an algebra over a field of characteristic zero.
Suppose that there is a positive integer n such that a™ = 0 for all a € A. Then there
is an integer N such that ayay---ay =0 forall ay,as,...,any € A.

Theorem 1 of [23] implies the next

Lemma 10. A finite Jacobson radical ring is nilpotent.
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Lemma 11 ([15], Lemma 3). If R is a finite ring which is not nilpotent, then R
contains a nonzero idempotent.

Lemma 12 ([19], 4.3.8). A pure subgroup A of finite index of an abelian group G
is a direct summand.

A ring R is a subdirect product of some rings S; (i € I) if, forany i € I, S; =~
R/K;, where K; is an ideal of R and

(ki =o0.

iel
Lemma 13 (see [4]). A ring R is reduced if and only if it is a subdirect product of
domains.

Lemma 14 ([10], §1.4, Corollary 2). If R is a left Artinian ring and its Jacobson
radical J(R) = 0 is zero, then R contains identity.

If I is an ideal of a ring R, then we say that an idempotent g 4 I of the quotient
ring R/ 1 can be lifted (to e) modulo I in case there is an idempotent e € R such that
g+1=e+1.

Lemma 15 ([3], Proposition 27.1). If I is a nil-ideal of a ring R, then idempotents
lift modulo 1.

Lemma 16 ([9], Theorem 18.13). A left Artinian ring is left Noetherian (i.e. every
its ideal is finitely generated).

A commutative ring V is called a v-ring if it is complete (in the J(V')-adic to-
pology), discrete, unramified valuation ring of characteristic 0 with the quotient ring
V/J(V) of prime characteristic p [0, p.79]. Then J(V) = pV, V/pV is a field,
p*V/p¥*t1and V/ pV are isomorphic as (V/ pV)-linear spaces.

Lemma 17. Let R be a complete (in the J(R)-adic topology) local Noetherian
commutative ring of prime power characteristic p". Then the following hold:
(1) (see [0, Theorem 9)) if n = 1, then there exists a subfield C of R such that
R = J(R) + C is a group direct sum,
(2) (see [0, Theorem 11]) if n > 2, then there exists a subring C of R such that
R = J(R) + C is a group sum, where C = V/p"V for some v-ring V and
J(R)NV = pV.

Any local Artinian ring R is a complete local Noetherian ring.

3. PROPERTIES OF FC-RINGS

Lemma 18. If R is an infinite ring with a finite set of all inner derivations IDer R,
then the following hold:
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(1) the centralizer Cr(a) is a subring of finite index in R for any a € R (i.e. R
is an FC-ring),

(2) the adjoint group R° is an FC-group,

(3) if R is a simple ring, then R is a field,

(4) R contains a central ideal I of finite index such that I - C(R) = 0,

(5) the commutator ideal C(R) is finite.

Proof. (1) Since the set {d,(a) | r € R} is finite, the index |R : Cgr(a)| is finite.

(2) It follows from the part (1).

(3) It holds from Corollary 2 in view of Lemma 5.

(4) Corollary 2 and Lemma 5 imply that R contains an ideal / of finite index such
that I < Z(R). Moreover, for any r,t € R and i € I we obtain that

(rt)i =r(@i)=(@i)r =t(r)=1t(ri) = (tr)i,
and so (rt —tr)i = 0. As a consequence, I -C(R) = 0.
(5) By Corollary 2, the center Z(R) is of finite index in R and so, by the part (4),
the annihilator ann d (y) has a finite index in R. Then the commutator ideal

C(R)= >  R()R
x,yER\Z(R)
is finite.
O

Proof of Proposition 1. (1) Assume that B is a non-commutative homorphic im-
age of R and a € B\ Z(B). Then Cpg(a) is of finite index in B and, by Lemma 5,
the centralizer Cp(a) contains a proper ideal / of B such that |B:[| <oo. Ifi € ]
and r € B, then

ari =ria =rai, iar =air =ira
and so
la,rli =0=i]a,r].
This gives that [B, B] € ann/. Since B/I is a finite radical ring, it is nilpotent by
Lemma 10. We have that B” < | for some positive integer n and ann/ C ann(B").
From this it holds that ann B # 0. Then every non-trivial homomorphic image of R
is commutative or has a non-trivial annihilator.

(2) Since ann R C Z(R), we deduce that every proper quotient group of R° has
the non-trivial center. This means that the adjoint group R° is hypercentral [19,
Exercises 12.2.2].

(3) By Lemma 7, every torsion-free F C-group is abelian.

(4) The commutator ideal of a commutative ring R is zero (and so it is proper in
R # 0). Assume that R is non-commutative. As in the part (1), we can prove that
R contains a proper ideal of finite index and therefore R? is proper in R in view of
Lemma 10. Obviously that C(R) € R?. Hence C(R) is proper in a non-commutative
ring R.
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4. RINGS WITH A FINITE SET OF DERIVATIONS

Lemma 19. If e is an idempotent of a commutative ring R, then d(e) = 0 for any
d € DerR.

Proof. In fact, d(e) = d(e?) = d(e)e + ed(e) implies that ed(e) = ed(e)e +
ed(e) and so d(e)e = ed(e) = e?d(e) = ed(e)e = 0. Hence d(e) = 0. O

Lemma 20. Let R be a ring. If the set Der R (respectively IDer R) is finite, then
Der R = {Og} (respectively R is commutative) or §(R) € F(R) for any § € Der R
(respectively § € IDer R).

Proof. Assume that §(a) # 0 for some § € Der R and a € R. Since the set
{né(a) | n is an integer}
is finite, the torsion part F(R) # 0 is nonzero and §(a) € F(R). g
Lemma 21. Any finite semiprime commutative ring R is differentially trivial.

Proof. By Lemma 14, R contains identity 1 and, by the Artin-Wedderburn struc-
ture theorem, R = R ®--- @ Ry, is aring direct sum of finite fields R; (i = 1,...,m).
Since 1 = f1 +---+ fm, where f; is identity of R; and R; = f; R, we obtain that

d(R;) =d(fi)R+ fid(R) = fid(R) € fiR=R;

for any d € Der R by Lemma 19. Every finite field is differentially trivial and we
conclude that d(R) = 0. Hence R is differentially trivial. O

Proposition 3. Let R be a reduced ring (respectively a ring with the torsion-free
additive group R™ ). Then the following hold:

(1) the set of all inner derivations 1Der R is finite if and only if R is commutative,
(2) the set of all derivations Der R is finite if and only if R is differentially trivial.

Proof. If the additive group R is torsion-free and IDer R (respectively Der R) is
finite, the assertion follows in view of Lemma 20. Therefore we suppose that R is
reduced.

(1) Assume that the set IDer R is finite. By Lemmas 13 and 20, R is a subdirect
product of domains D with finite sets IDer D of inner derivations. If D is finite,
then it is a field. If D is infinite, then it does not contain a proper ideal of finite
index and therefore it is commutative in view of Lemma 18(4). This implies that R
is commutative.

The converse is clear.

(2) If DerR is finite, then R is commutative in view of the part (1). Assume
that d(a) # 0 for some d € DerR anda € R. Therule rd : R> x — rd(x) € R
determines a derivation rd of R and so Rd C Der R. Then the set Rd(a) is a finite
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ring and Lemma 11 implies that there exists a nonzero idempotent e € Rd(a) such
that

Re < Rd(a)

and e = td(a) for some ¢ € R. By Lemma 21, Re is differentially trivial. This gives
that

0=d(ae)=d(a)e =d(a)td(a).

Then d(a)t is a nilpotent element and therefore e = 0, a contradiction. Hence
Der R = {Og}.
The converse is clear. g

Corollary 3. Let R be a semiprime ring. Then IDer R (respectively Der R) is
finite if and only if R = A® F is a direct sum of a finite ideal F and a commutative
(respectively differentially trivial) reduced ideal A (in particular, A = 0).

Proof. Assume that R is infinite and IDer R (respectively Der R) is finite. If a €
Z(R)N N(R), then aR is a nilpotent ideal of R and therefore |[N(R)| < |R : Z(R)]|.
Since the index |R : Z(R)| is finite by Corollary 2, we deduce that

R=AEBF

is a direct sum of a finite ideal F and a reduced ideal A by Lemma 8 (in particular,
A =0).If A0, then A is a commutative (respectively differentially trivial) ring by
Proposition 3.

The converse is clear. U

Corollary 4. A semiprime Jacobson radical F C-ring is commutative.

Proof. In view of Lemma 10, R does not contain a nonzero finite ideal and so
C(R) = 0 by Lemma 18(5). Hence R is commutative. O

Lemma 22. If R is a commutative Artinian ring such that |R : J(R)| < oo, then it
is finite.

Proof. Since R is a ring direct sum of local Artinian rings of prime power charac-
teristics by the Artin-Wedderburn structure theorem, we may assume that R is local
Artinian of characteristic p” for some prime p and an integer n > 1. By Lemma 17,
R = J(R) + C is a group sum, where either C is a field (and consequently it is fi-
nite) or C = V' / p™V for some v-ring V and n > 2. Since R/J(R) = V/pV is afield,
p*V/ p¥+1V and V/ pV are isomorphic as (V/ pV)-linear spaces (k =1,...,n—1),
we deduce that C is finite. In view of Lemma 16,

J(R)= JjsR
s=1
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for some integer ¢ > 1 and elements jp,..., js € R. Then

J(R) = (jsJ(R)+ jsC)

s=1

t t
= Us D GiT(R)+jiC) + jsC)

s=1 I=1

for some integer w > 1 and g1,...,2w € J(R). Thus R is finite. O

As usual, if e is an idempotent od a ring R (not necessary with 1), then we write
eR(l1—e):={er—ere|re R}, (1—e)Re:={re—ere|r e R}

and
(1—e)R(l—e):={r—er—re+ere|r e R}

Proof of Theorem 1. a) Suppose that the set IDer R is finite and R is infinite. By
Lemma 18, the commutator ideal C(R) is finite. The quotient ring

R/J(R) = Fi P4
is semisimple and so, by the Artin-Wedderburn structure theorem, it is a direct sum
of ideals F; and A;, where F} is finite. If A7 = 0, then R/C(R) (and consequently
R) is finite by Lemma 22, a contradiction with the assumption. Thus A; # 0 and we
may assume that A; does not contain a nonzero finite ideal and so, by the Artin-
Wedderburn structure theorem, A;p is a ring direct sum of finitely many infinite
semisimple Artinian rings (which are fields). An idempotent that is identity of A;
can be lifted to an idempotent e € R by Lemma 15. We denote eRe by A and
ANannC(R) by C;. Then |A : Cq1| < oo in view of Lemma 18(4) and J(A) =
AN J(R). Since A; does not contain a proper ideal of finite index and the quotient
ring
A/J(A) = (A+ J(R))/J(R) = A,
is a ring direct sum of finitely many infinite fields, we deduce that
A/J(A) =(C1+J(A))/J(A)and A = J(A)+C;.

The Jacobson radical J(A) does not contain e and, as a consequence, 4 = C; <
ann C(R). Since e € A, we have that eC(R) = C(R)e = 0 and hence

rea—erea = (re—er)ea =0and aer —aere = ae(er—re) =0
foranya € Aandr € R. If
I=(1—-e)R(1—e)+eR(1—e)+ (1—e)Re+ C(R),
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then 7 is an ideal of R and R = I + A. Inasmuch /4 = 0 = AI, we conclude that 4
is an ideal of R. Moreover, if z € I N A, then

exe=7=(U—eu—ue+eue)+ (ev—eve)+ (we —ewe) +c¢

for some x,u,v,w € R, c € C(R) and exe = e2xe? = eze = ece = 0 what forces

that / N A = 0. Hence
R=14 (4.1)
is a ring direct sum, where 4 is commutative.

b) Now assume that the set Der R is finite. Then the set IDer R is also finite and
(4.1) it follows. Consequently, Der A is finite. If § € Der A4, then the rule

bS:A>r>b8(r)e A

determines a derivation b§ of A for any b € A. Since sets A§ and Ad(a) are finite, the
index |A : anné(a)| < oo for any a € A. But A/J(A) is a ring direct sum of finitely
many infinite fields and so A does not contain a proper ideal of finite index. This
yields that 6 = 04 is zero and consequently A is a differentially trivial ring.

The converse is clear.

5. ON JACOBSON RADICAL RINGS WITH TWO CONJUGACY CLASSES

It is well known that any linear group (over a field) and any S/ -group (i.e. group
which possess a normal series with abelian factors) with a finite number of conjugacy
classes are finite (see e.g. [19] or [14]). A result of Cohn [7] says that there exists a
radical ring whose adjoint group has only two conjugacy classes and it is a torsion-
free simple group.

Lemma 23. If R is a Jacobson radical ring with the adjoint v-group R°, then:

(1) R has only the finite number of two-sided ideals,
(2) R has a simple homomorphic image,
(3) the center Z(R) is finite.

Proof. (1) If I is an ideal of R, then I/° is a normal subgroup of R°. Since
every normal subgroup is a set-theoretic sum of some conjugacy classes, the assertion
holds.

(2) It follows from the part (1).

(3) If a € Z(R), then the conjugacy class a®

contains only one a. U

Lemma 24. Let R be a Jacobson radical ring and R* # R. If the adjoint group
R° has only two conjugacy classes, then R is a zero-ring that contains only two
elements.

Proof. Assume G = R° has only exactly two conjugacy classes. Now, {0} is a
conjugacy class by itself, and the other class is a% for some 0 # a € G. Then (R?)®
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is a normal subgroup of G, because R? is an ideal of R, thus (R?)° is the union of
conjugacy classes. As 0 € R?, we have that (R?)° is either {0} or G. Since the ring
R is Jacobson radical, we obtain that R? is either {0} or R. From R? # R it follows
that R = {0}, i.e. R is a zero-ring. Hence “o” is simply the addition, and then a
number of conjugacy classes is card R from the commutativity of the addition “+”.
O

Lemma 25 ([22], Corollary, p. 332). Let G be a locally solvable group. If G has
a finite number of conjugacy classes, then it is finite.

Corollary 5. Any Jacobson radical ring R with the torsion adjoint v-group R° is
finite.

Proof. Since elements of the same conjugacy class have the same order, R° is of
finite exponent. Then, by Lemma 2, the adjoint group R° is locally nilpotent. By
Lemma 25, R is finite. O

Proof of Proposition 2. a) By Corollary 5, the torsion part F(R) is finite and so
D° is a v-group.

b) Since F(R) is an ideal of R and R° is a v-group, we deduce that the exponent
exp F(R) is finite. Then F(R) is a ring direct sum of finitely many p-components
for pairwise distinct primes p.

¢) Suppose that the additive group R is torsion-free. Assume that gR is proper
in R for some prime ¢. Since the set

{nR | n is a positive integer}
is finite by Lemma 23(1), we conclude that
¢'R=q*R
for some positive integers [, k, where [ > k. If a € R\ ¢R, then g¥a = ¢*b for some
b€ R and
¢“(a—q""p)=0.
This yields a = ql —*kp e gR, a contradiction. Hence R is divisible.
d) Let R be any Jacobson radical ring with the adjoint v-group R°. Then R* /F(R)
is a divisible group and, by Lemma 12,

RT=F(R)PD

is a group direct sum, where D is a divisible group. If ¢,d € D, then cd = f + h for
some f € F(R)and h € D. Since ¢ =ncy and h = nhy for some c1,hy € D, where
n is a positive integer, we conclude that

fe ﬂnR.
=1
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Therefore f = 0 and D is a ring. Moreover F(R)D =0 = DF(R). Then R =
F(R) & D is aring direct sum and so F(R) is a ring with a finite number of conjugacy
classes. O

6. SOME COROLLARIES

If B is the two-element zero ring, then B is Jacobson radical and its adjoint group
B° has only two conjugacy classes. But B is not simple because B2 = 0.

Proof of Corollary 1. (1) Assume that R is not a domain and does not contain a
nonzero nilpotent element. If there exists a nonzero element a € R with a nonzero
right annihilator A = ann, a, then A # R, (Aa)? = 0 and, as a consequence, Aa = 0.
This means that A is contained in the two-sided annihilator anna. Since R does
not contain a nonzero nilpotent element, anna is a nonzero proper ideal of R, a
contradiction.

(2) In view of the part (1), assume that R contains a nonzero nilpotent element
x € R such that x> = 0. Then any 0 # y € R is contained in the class x®° and so
there exists a € R such that

y = a®Voxoa.
Since
y2 = (x +xa+ aTVx + a(_l)xa)(x +xa+a"Vx+ a(_l)xa)
= (xa(_l)xa + xaxa + xaa(_l)xa) + (xax + xa™Vx + xaa(_l)x)
+ (@ Vxa"Vx +aVxax + a(_l)xaa(_l)x)
+ (@ Vxaxa+a"Vxa"Vxa + a(_l)xaa(_l)xa)
= x(a(_l) oca)xa+ x(a(_l) oa)x + a(_l)x(a(_l) oa)x
+ a(_l)x(a(_l) oca)xa
=0,
we obtain that R is a nil-ring of bounded index. If F(R) # 0, then the p-part
Fp(R) ={a € R | a is of finite order p” for some non-negative integer n}

is a nonzero ideal of R for some prime p and therefore R = F,(R). Hence R* is a
p-group. If F(R) = 0, then R™ is torsion-free.

a) If R is a p-group, then, by Lemma 1, R° is a p-group and, by Corollary 5, R
is finite. Then R is a nilpotent ring, a contradiction with the simplicity of R.

b) Let R™ be a torsion-free group. By Proposition 2, R is a Q-algebra and, by
Lemma 9, it is nilpotent, a contradiction.

Hence R is reduced and, by the part (1), R is a domain. As a consequence, R° is
a simple group. By Proposition 2, R™ is torsion-free divisible. O

Corollary 6. If R is an infinite nil-ring, then R*> # R or R° is not a v-group.
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Proof. By contrary. If R° is a v-group and R? = R, then, in view of Lemma 23(2),
there exists an ideal / of R with the simple homomorphic image R/I. If (R/I)™ is
a torsion group, then (R/1)° is torsion by Lemma 1 and so R/[ is a finite nilpotent
ring, which leads to a contradiction. If (R/I) is a torsion-free group, then, as in the
proof of Corollary 1, R/I is a nil Q-algebra of bounded index and it is nilpotent by
Lemma 9, a contradiction with R? = R. O
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