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Abstract. In this paper, we prove that the double inequality M˛.a;b/ < NGQ.a;b/ <Mˇ .a;b/
holds for all a;b > 0 with a ¤ b if and only if ˛ � 2 log2=.5 log2� 2 log�/ D 1:1785 � � � and
ˇ � 4=3,where NGQ.a;b/ D ŒG.a;b/CQ2.a;b/=U.a;b/�=2 is the second Neuman mean,
G.a;b/ D

p
ab, Q.a;b/ D

p
.a2Cb2/=2 and U.a;b/ D .a� b/=Œ

p
2 tan�1..a� b/=

p
2ab/�

are the geometric, quadratic and Yang mean of a and b, respectively.
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1. INTRODUCTION

For p 2 R and a;b > 0 with a ¤ b, the pth power mean Mp.a;b/[14] of a and b
is defined by

Mp.a;b/D

(
.a

pCbp

2
/1=p if p ¤ 0

p
ab if p D 0:

It is well known that the power mean Mp.a;b/ is continuous and strictly increas-
ing with respect to p 2 R for fixed a;b > 0 with a ¤ b. Many bivariate means
are the special cases of the power mean, for example, M0.a;b/ D G.a;b/ D

p
ab,

M1.a;b/ D A.a;b/ D .aC b/=2 and M2.a;b/ DQ.a;b/ D
p
.a2Cb2/=2 are re-

spectively the arithmetic, geometric and quadratic means. Many properties for the
power mean can be found in the literature[2–5, 11, 22, 24, 26, 31, 36].

The Schwab-Borchardt mean SB.a;b/[16, 17] defined by

SB.a;b/D

8<:
p
b2�a2

cos�1.a=b/
if a < b

p
a2�b2

cosh�1.a=b/
if a > b;

where cos�1.x/ and cosh�1.x/ D log.xC
p
x2�1/ are the inverse cosine and in-

verse hyperbolic cosine functions, respectively.It is well-known that SB.a;b/ is strictly
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increasing in both a and b, nonsymmetric and homogeneous of degree 1 with re-
spect to a and b. Many symmetric bivariate means are special cases of the Schwab-
Borchardt mean, for example, the first Seiffert mean P.a;b/, second Seiffert mean
T .a;b/, Neuman-Sándor mean M.a;b/, logarithmic mean L.a;b/ and Yang mean
U.a;b/[29] are respectively defined by

P.a;b/D
a�b

2sin�1
�
.a�b/=.aCb/

� D SB�G.a;b/;A.a;b/�;
T .a;b/D

a�b

2 tan�1
�
.a�b/=.aCb/

� D SB�A.a;b/;Q.a;b/�;
M.a;b/D

a�b

2sinh�1
�
.a�b/=.aCb/

� D SB�Q.a;b/;A.a;b/�;
L.a;b/D

a�b

2 tanh�1
�
.a�b/=.aCb/

� D SB�A.a;b/;G.a;b/�;
and

U.a;b/D
a�b

p
2 tan�1

�
.a�b/=

p
2ab

� D SB�G.a;b/;Q.a;b/�:
In 2014, Neuman [15] found a new bivariate means derived from the Schwab-

Borchardt mean

N.a;b/D
1

2

h
aC

b2

SB.a;b/

i
:

We callN.a;b/ is the second Neuman mean[19]. Let a > b, vD .a�b/=.aCb/2
.0;1/, then Neuman [15] gave explicit formulas

NAG.a;b/D
1

2
A.a;b/

h
1C .1�v2/

tanh�1.v/
v

i
;NGA.a;b/D

1

2
A.a;b/

hp
1�v2C

sin�1.v/
v

i
;

NQA.a;b/D
1

2
A.a;b/

hp
1Cv2C

sinh�1.v/
v

i
;NAQ.a;b/D

1

2
A.a;b/

h
1C .1Cv2/

tan�1.v/
v

i
:

and proved that the inequalities

G.a;b/ < NAG.a;b/ < NGA.a;b/ < A.a;b/ < NQA.a;b/ < NAQ.a;b/ < Q.a;b/

for a;b > 0 with a¤ b.
Very recently, Shen et. al. [21] found a new mean NGQ.a;b/ derived from the

Schwab- Borchardt mean. Let a > b, u D .a� b/=
p
2ab 2 .0;C1/, then explicit

formulas for NGQ.a;b/ be in the following:

NGQ.a;b/D
1

2
G.a;b/

h
1C .1Cu2/

tan�1.u/
u

i
:

Recently, the bounds involving the power and the Schwab-Borchardt means has
been the subject of intensive research. In particular, many remarkable inequalities
for the power mean, Schwab-Borchardt mean and their related means can be found
in the literature [1, 6–10, 12, 13, 18–21, 23, 25, 27–30, 32–35].
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Radó[20] (see also [13, 18, 23]) proved that the double inequalities

Mp.a;b/ < L.a;b/ <Mq.a;b/;M�.a;b/ < I.a;b/ <M�.a;b/

hold for all a;b > 0 with a¤ b if and only if p � 0, q � 1=3, �� 2=3 and �� log2,
where I.a;b/D .aa=bb/1=.a�b/=e is the indentric mean of a and b.

In [7–10, 12, 28], the authors proved that p1 D log2= log� , q1 D 2=3, p2 D
log2=.log� � log2/, q2 D 5=3, p3 D log2= logŒ2 log.1C

p
2/� and q3 D 4=3 are

the best possible parameters such that the double inequalities

Mp1
.a;b/ < P.a;b/ <Mq1

.a;b/;

Mp2
.a;b/ < T .a;b/ <Mq2

.a;b/;

Mp3
.a;b/ <M.a;b/ <Mq3

.a;b/

hold for all a;b > 0 with a¤ b.
Chu [6] and Yang [30] proved that the double inequalities

M�1
.a;b/ < X.a;b/ <M�1

.a;b/;M�2
.a;b/ < U.a;b/ <M�2

.a;b/

hold for all a;b > 0 with a ¤ b if and only if �1 � 1=3, �1 � log2=.1C log2/,
�2 � 2 log2=.2 log�� log2/ and �2 � 4=3, whereX.a;b/DAeG=P�1is the Sándor
mean of a and b.

In [21], the authors proved the double inequalities

˛1Q.a;b/C .1�˛1/G.a;b/ < NGQ.a;b/ < ˇ1Q.a;b/C .1�ˇ1/G.a;b/;

˛2

G.a;b/
C
1�˛2

Q.a;b/
<

1

NGQ.a;b/
<

ˇ2

G.a;b/
C
1�ˇ2

Q.a;b/
;

˛3Q.a;b/C .1�˛3/U.a;b/ < NGQ.a;b/ < ˇ3Q.a;b/C .1�ˇ3/U.a;b/

hold for all a;b > 0 with a¤ b if and only if ˛1 � 2=3, ˇ1 � �=4, ˛2 � 0, ˇ2 � 1=3,
˛3 � 0 and ˇ3 � .�2�8/=Œ4.� �2/�D 0:4094 � � �

The main purpose of this paper is to present the best possible parameter ˛ and
ˇ such that the double inequalities M˛.a;b/ < NGQ.a;b/ < Mˇ .a;b/ hold for all
a;b > 0 with a¤ b.

2. MAIN RESULT

In order to prove our main result we need a lemma, which we present in this
section.

Lemma 1. Let p 2 R, and

f .x/D x2pC2Cx2pC1C5x2pCx2p�1C .2p�3/xpC3�4xpC2C4xp

� .2p�3/xp�1�x3�5x2�x�1 (2.1)

Then the following statements are true:
(1) If p D 4=3, then f .x/ > 0 for all x 2 .1;C1/;
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(2) If p D 2 log2=.5 log2�2 log�/D 1:1785 � � � , then there exists � 2 .1;C1/
such that f .x/ < 0 for x 2 .1;�/ and f .x/ > 0 for x 2 .�;C1/.

Proof. For part (1), if p D 4=3, then (2.1) becomes

f .x/D
1

3
.x2=3�1/3.3x8=3�x7=3C9x2C6x4=3C9x2=3�x1=3C3/

D
1

3
.x2=3�1/3

�
2x8=3Cx7=3.x1=3�1/C9x2C6x4=3

C8x2=3Cx1=3.x1=3�1/C3
�

>
1

3
.x2=3�1/3.2x8=3C9x2C6x4=3C8x2=3C3/ (2.2)

for x 2 .1;C1/.
Therefore, part (1) follows from (2.2).
For part (2), let pD 2 log2=.5 log2�2 log�/D 1:1785 � � � , f1.x/Df 0.x/, f2.x/D

f 01.x/ , f3.x/D f 02.x/, f4.x/D x
5�pf 03.x/. Then elaborated computations lead to

lim
x!1

f .x/D 0; lim
x!C1

f .x/DC1; (2.3)

f1.x/D 2.pC1/x
2pC1

C .2pC1/x2pC10px2p�1C .2p�1/x2p�2

C .pC3/.2p�3/xpC2�4.pC2/xpC1C4pxp�1

� .p�1/.2p�3/xp�2�3x2�10x�1

lim
x!1

f1.x/D 24
�
p�

4

3

�
< 0; lim

x!C1
f1.x/DC1; (2.4)

f2.x/D 2.pC1/.2pC1/x
2p
C2p.2pC1/x2p�1C10p.2p�1/x2p�2

C2.p�1/.2p�1/x2p�3C .pC2/.pC3/.2p�3/xpC1

�4.pC1/.pC2/xpC4p.p�1/xp�2

� .p�1/.p�2/.2p�3/xp�3�6x�10

lim
x!1

f2.x/D 24.2pC1/
�
p�

4

3

�
< 0; lim

x!C1
f2.x/DC1; (2.5)

f3.x/D 4p.pC1/.2pC1/x
2p�1

C2p.4p2�1/x2p�2C20p.p�1/.2p�1/x2p�3

C2.p�1/.2p�1/.2p�3/x2p�4C .pC1/.pC2/.pC3/.2p�3/xp

�4p.pC1/.pC2/xp�1C4p.p�1/.p�2/xp�3

� .p�1/.p�2/.p�3/.2p�3/xp�4�6

lim
x!1

f3.x/D 4.22p
3
�33p2C17p�12/ < 0; lim

x!C1
f3.x/DC1; (2.6)
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f4.x/D 4p.pC1/.4p
2
�1/xpC3C4p.p�1/.4p2�1/xpC2

C20p.p�1/.2p�1/.2p�3/xpC1C4.p�1/.p�2/.2p�1/.2p�3/xp

Cp.pC1/.pC2/.pC3/.2p�3/x4�4p.p2�1/.pC2/x3

C4p.p�1/.p�2/.p�3/x� .p�1/.p�2/.p�3/.p�4/.2p�3/

D a0x
pC3
Ca2x

pC2
Ca4x

pC1
Ca5x

p
Ca1x

4
Ca3x

3
Ca6xCa7: (2.7)

Note that
pC3 > 4 > pC2 > 3 > pC1 > p > 1 > 0; (2.8)

a0 > 0;a1 < 0;a2 > 0;a3 < 0;a4 < 0;a5 > 0;a6 > 0;a7 < 0; (2.9)
23p2�43pC12D�6:7311 � � �<0;2p3�37p2C89p�48D 8:7726 � � �>0; (2.10)

2p3C119p2�125pC70D 91:2430 � � �> 0; (2.11)
a0Ca1 D p.p

2
�1/.2p2C25pC22/ > 0; (2.12)

a2Ca3Ca4 D 4p.p�1/.23p
2
�43pC12/ (2.13)

a5Ca6Ca7 D .p�1/.2�p/.2p
3
�37p2C89p�48/; (2.14)

4X
iD0

ai D p.p�1/.2p
3
C119p2�125pC70/; (2.15)

It follows from (2.7)-(2.15) that

f4.x/ > .a0Ca1/x
4
C .a2Ca3Ca4/x

3
C .a5Ca6Ca7/x

>

4X
iD0

aix
4
C .a5Ca6Ca7/x > 0 (2.16)

for x 2 .1;C1/.
From (2.16) we clearly see that f3.x/ is strictly increasing on .1;C1/. Then (2.6)

leads to the conclusion that there exists �1 > 1 such that f2.x/ is strictly decreasing
on .1;�1� and strictly increasing on Œ�1;C1/.

It follows from (2.5) and the piecewise monotonicity of f2.x/, we conclude that
there exists �2 2 .1;C1/ such that f1.x/ is strictly decreasing on .1;�2� and strictly
increasing on Œ�2;C1/.

From (2.4) and the piecewise monotonicity of f1.x/ that there exists �3 2 .1;C1/
such that f .x/ is strictly decreasing on .1;�3� and strictly increasing on Œ�3;C1/.

Therefore, part (2) follows from (2.3) and the piecewise monotonicity of f .x/.
�

Theorem 1. The double inequality

M˛.a;b/ < NGQ.a;b/ <Mˇ .a;b/;

holds for all a;b > 0 with a ¤ b if and only if ˛ � 2 log2=.5 log2� 2 log�/ D
1:1785 � � � and ˇ � 4=3.
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Proof. Since NGQ.a;b/ and Mp.a;b/ are symmetric and homogenous of degree
1, we assume that a > b > 0. Let x D a=b 2 .1;C1/, p 2 RC . Then we have

log
�
NGQ.a;b/

�
� log

�
Mp.a;b/

�
D log

�
2
p
x.x�1/C

p
2.x2C1/ tan�1

�x�1
p
2x

��
�log

�
4.x�1/

�
�
1

p
log

�xpC1
2

�
:

(2.17)

Let

F.x/D log
�
2
p
x.x�1/C

p
2.x2C1/ tan�1

�x�1
p
2x

��
� log

�
4.x�1/

�
�
1

p
log

�xpC1
2

� (2.18)

Then simple computations lead to

lim
x!1C

F.x/D 0; (2.19)

lim
x!C1

F.x/D
1

p
log2C log� �5 log

p
2; (2.20)

F 0.x/D
xpC1C2xp�xp�1�x2C2xC1

.x�1/.xpC1/
�
2
p
x.x�1/C

p
2.x2C1/ tan�1

�
x�1p
2x

��F1.x/; (2.21)

where

F1.x/D
2
p
x.x�1/.xp�1C1/

xpC1C2xp�xp�1�x2C2xC1
�
p
2 tan�1

�x�1
p
2x

�
;

lim
x!1

F1.x/D 0; (2.22)

lim
x!C1

F1.x/D�

p
2

2
� < 0; (2.23)

F 01.x/D�
2.x�1/

p
x.x2C1/.xpC1C2xp�xp�1�x2C2xC1/2

f .x/; (2.24)

where f .x/ is defined by (2.1).
We divide the proof into four cases.
Case 1. p D 2 log2=.5 log2� 2 log�/ Then it follows from Lemma 1(2) and

(2.24) that there exists � 2 .1;C1/ such that F1.x/ is strictly increasing on .1;��
and strictly decreasing on Œ�;C1/.

Equations (2.21) and (2.22)-(2.23) together with the piecewise monotonicity of
F1.x/ lead to the conclusion that there exists �0 2 .1;C1/ such that F.x/ is strictly
increasing on .1;�0� and strictly decreasing on Œ�0;C1/.

Note that (2.20) becomes
lim

x!C1
F.x/D 0; (2.25)
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Therefore,

NGQ.a;b/ >M2 log2=.5 log2�2 log�/.a;b/

for all a;b > 0 with a ¤ b follows from (2.17)-(2.19) and (2.25) together with the
piecewise monotonicity of F.x/.

Case 2 . pD 4=3 Then it follows from Lemma 1(1) and (2.24) that F1.x/ is strictly
decreasing on .1;C1/.

Therefore,

NGQ.a;b/ <M4=3.a;b/

for all a;b > 0 with a¤ b follows from (2.17)-(2.19) and (2.21)-(2.22) together with
the monotonicity of F1.x/.

Case 3 . p > 2 log2=.5 log2�2 log�/ Then (2.20) leads to

lim
x!C1

F.x/ < 0; (2.26)

Equations (2.17)-(2.18) together with inequality (2.26) imply that there exists large
enough M0 > 1 such that

NGQ.a;b/ <Mp.a;b/

for all a;b > 0 with x 2 .M0;C1/.
Case 4 . p < 4=3 Let x > 0, x! 0, then making use the Taylor expansion we get

NGQ.1;1Cx/�Mp.1;1Cx/

D

2x
p
xC1C

p
2
�
.xC1/2C1

�
tan�1

�
xp

2.xC1/

�
4x

�

h1C .1Cx/p
2

i1=p
D
4�3p

24
x2Co.x2/: (2.27)

Equation (2.27) implies that there exists small enough ı0 > 0 such that

NGQ.1;1Cx/ >Mp.1;1Cx/

for all a;b > 0 with x 2 .0;ı0/.
Therefore, Theorem 1 follows easily from Cases 1-4 and the monotonicity of the

function p!Mp.a;b/. �
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