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Abstract. In this paper, we prove that the double inequality My (a,b) < Ngg(a,b) < Mg(a,b)
holds for all a,b > 0 with a # b if and only if @ < 2log2/(5log2 —2lognm) = 1.1785--- and
B > 4/3,where Ngg(a.b) = [G(a.b) + 0%(a,b)/U(a,b)]/2 is the second Neuman mean,

G(a,b) = vab, Q(a,b) = +/(a%2+5b2)/2 and U(a,b) = (a —b)/[v/2tan~ 1 ((a — b)//2ab)]
are the geometric, quadratic and Yang mean of a and b, respectively.
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1. INTRODUCTION

For p € Rand a,b > 0 with a # b, the pth power mean Mj(a,b)[14] of a and b
is defined by

(#)l/p if p#£0
~ab if p=0.

It is well known that the power mean M, (a, b) is continuous and strictly increas-
ing with respect to p € R for fixed a,b > 0 with a # b. Many bivariate means
are the special cases of the power mean, for example, My(a,b) = G(a,b) = Jab,
Mi(a,b) = A(a,b) = (a+b)/2 and M>(a,b) = Q(a,b) = /(a% +b2)/2 are re-
spectively the arithmetic, geometric and quadratic means. Many properties for the
power mean can be found in the literature[2—5, 11,22,24,26,31,36].

The Schwab-Borchardt mean SB(a,b)[16, 17] defined by

N
SBlaby = e A<D

N2
on-T@p S a>b

Mpy(a,b) =

where cos™!(x) and cosh™!(x) = log(x 4+ ~/x2 —1) are the inverse cosine and in-
verse hyperbolic cosine functions, respectively.It is well-known that S B(a, b) is strictly
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increasing in both ¢ and b, nonsymmetric and homogeneous of degree 1 with re-
spect to a and b. Many symmetric bivariate means are special cases of the Schwab-
Borchardt mean, for example, the first Seiffert mean P(a,b), second Seiffert mean
T(a,b), Neuman-Sandor mean M (a,b), logarithmic mean L(a,b) and Yang mean
Ul(a,b)[29] are respectively defined by

a—>b

Pab)= - T SB[G(a.b). A(a.b)].
a—>b

T@b)=5— CECIrET SB[A(a.b). Q(a.b)].
a—>b

M@ D) = S by /@ +b)] SB[0(@.b). A(.b)];
a—>b

L@b) = —m T SB[A(a.b).G(a.b)].

and
Ula,b) = a=b = SB[G(a.b). Q(a.b)]-

V2tan—1 [(a —b)/VZab]
In 2014, Neuman [15] found a new bivariate means derived from the Schwab-
Borchardt mean
Na.b) = 2 |a+ i |
a,b)y=—-la+——-~1|
2 SB(a,b)
We call N(a,b) is the second Neuman mean[19]. Leta > b,v=(a—b)/(a+b) €
(0, 1), then Neuman [15] gave explicit formulas

-1
Nag(a,b) = %A(a,b)[l +(1 —vz)w],NGA(a,b) - %A(a,b)[ 1—v2 4

sin"!(v) ]

v

S -1
Noala.b) = %A(a,b)[ 1+ 024 Smhv (v)],NAQ(a,b) - %A(a,b)[l—i—(l—f—vz)w].

and proved that the inequalities
G(a,b) < N4g(a,b) < Nga(a.b) < A(a.b) < Noa(a.b) <Nag(a,b) < Q(a.b)
fora,b > 0 witha # b.

Very recently, Shen et. al. [21] found a new mean Ngg(a,b) derived from the
Schwab- Borchardt mean. Let a > b, u = (a —b)/~2ab € (0,+00), then explicit
formulas for NG (a,b) be in the following:

1 tan~!
Ngola.b) = EG(a,b)[l +(1 +u2)an—(“)].
u

Recently, the bounds involving the power and the Schwab-Borchardt means has
been the subject of intensive research. In particular, many remarkable inequalities
for the power mean, Schwab-Borchardt mean and their related means can be found
in the literature [1,6—10, 12,13, 18=21,23,25,27-30,32-35].
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Rado[20] (see also [13, 18,23]) proved that the double inequalities
Mp(a,b) < L(a,b) < My(a,b),M)(a,b) < I(a,b) < My(a,b)

hold for all @,b > 0 witha # b if and only if p <0,¢ > 1/3,1 <2/3 and u > log2,
where 1(a,b) = (a®/b?)V/(@=b) /¢ is the indentric mean of « and b.

In [7-10, 12, 28], the authors proved that p; = log2/logx, q1 = 2/3, p2 =
log2/(logm —log2), g2 = 5/3, p3 = log2/log[2log(1 + +/2)] and g3 = 4/3 are
the best possible parameters such that the double inequalities

My, (a,b) < P(a,b) < My, (a,b),
My,(a,b) < T(a,b) < My,(a.b),
Mp,(a,b) < M(a,b) < My;(a,b)
hold for all a,b > 0 with a # b.
Chu [6] and Yang [30] proved that the double inequalities
M, (a,b) < X(a,b) <M, (a,b),M;,(a,b) <U(a,b) < My,(a,b)
hold for all a,b > 0 with a # b if and only if A < 1/3, u; >log2/(1 + log2),
Ao <2log2/(2logm —log?2) and po > 4/3, where X (a,b) = Ae%/P~1is the Sandor
mean of a and b.
In [21], the authors proved the double inequalities

a1Q(a.b)+(1-a1)G(a,b) < Ngo(a,b) < p1Q(a.b) +(1—-p1)G(a.b),
o Jrl—Otz - 1 - B2 +1—/32’
G(a,b) Q(a,b) Ngg(a,b) G(a,b) Qf(a,b)
a3Q(a,b)+ (1—a3)U(a,b) < Ngo(a,b) < B30(a.b)+ (1—B3)U(a,b)
hold for all @,b > 0 witha # b ifand only if 1 <2/3, 81 > /4,05 <0, B2 > 1/3,
a3 <0and B3 > (n2—8)/[4(w —2)] = 0.4094---
The main purpose of this paper is to present the best possible parameter o and

B such that the double inequalities My (a,b) < Ngo(a,b) < Mg(a,b) hold for all
a,b >0 witha # b.

2. MAIN RESULT

In order to prove our main result we need a lemma, which we present in this
section.

Lemma 1. Let p € R, and
f(x) — x2p+2 +x2p+1 +5x2p +x2p—1 +(2p—3)x”+3—4x1’+2 +4xp
—Q2p=3)xP1—x3-5x2—x—1 (2.1

Then the following statements are true:
(1) If p=4/3, then f(x) > 0 forall x € (1,400);
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2) If p =2log2/(5log2—2logm) = 1.1785---, then there exists A € (1,4+00)
such that f(x) <0 forx € (1,A) and f(x) > 0 for x € (A,+00).

Proof. For part (1), if p = 4/3, then (2.1) becomes
1
f(x)= g(x2/3 —1)33x®3 —x7/3 1 0x? 4 6xH/3 4 9x2/3 _x1/3 1 3)

1
= g(x2/3—1)3[2x8/3+x7/3(x1/3—1)+9x2+6x4/3
+8x2/3+x1/3(x1/3—1)+3]
1
> §(x2/3 —1)2@2x¥ +ox2 +6x*3 +8x27 +3) (22

for x € (1, 4+00).

Therefore, part (1) follows from (2.2).

For part (2), let p =2log2/(5log2—2logm) =1.1785---, f1(x) = f'(x), fa(x) =
F1(x) . f3(x) = f5(x), fa(x) = x>7P f](x). Then elaborated computations lead to

lim1 f(x)=0, lil}rl f(x) =400, (2.3)

fix)=2(p+ l)le""1 +Q2p+ 1)x2p + 10px2p_1 +Q2p— 1)x2p_2
+(p+3)2p—3)xPT2—4(p+2)xPT! +4pxP~!
—(p—DQ2p—-3)xP"2-3x2—10x—1

4
lim f1(x) = 24(p — —) <0, lim fj(x) =400, 2.4)
x—1 3 X—>+00

FH(x)=2(p+D2p+Dx?? +2p2p + DHx?P" 1 +10p(2p — 1)x2P72
+2(p—1)Q2p— x>+ (p+2)(p+3)2p —3)xP*!
—4(p+D(p+2)x? +4p(p—1)xP2

—(p—D(p—-2)2p—-3)xP3—6x—-10

4
lim fo(x) =24@p+ D(p—3) <0._lim _fo(x) =+oc,  (25)

f3(x) =4p(p+1DQ2p+Dx*P " +2p(4p> —1)x*? 2 +20p(p—1)(2p—1)x>P 7>
+2(p—1D)2p—1)2p—=3)x>"*+(p+ D(p+2(p+3)2p—3)x?
—4p(p+1)(p+2)x? " +4p(p—1)(p—2)xP7>
—(p—D(p-2)(p-3)2p-3)x""*—6
)}i_r)nl f3(x) =42p3-33p2 +17p—12) < O’xlirfoo f3(x) = +o0, (2.6)
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fa(x) =4p(p+ D) (4p> = DxP*> +4p(p—1)(4p> — HxP*?
+20p(p—1)2p—1)2p-3)x" ! +4(p—-(p—2)2p—-D(@2p—3)x”
+p(p+D(p+2)(p+3)2p—3)x*—4p(p*> - D(p +2)x°
+4p(p—D(p—=2)(p=3)x—(p—D(p-2)(p-3)(p—4H(2p-3)
=aox? 3+ arxP 2 v agxP T v asx? +aix* +asx3 +agx +a7. (2.7)

Note that

p+3>4>p+2>3>p+1>p>1>0, (2.8)
ag > 0,611 < 0,612 > 0,613 < O,a4 < O,a5 > 0,616 > O,a7 < O, (29)
23p%2 —43p+12=—6.7311---<0,2p> —37p% +89p —48 =8.7726--- > 0, (2.10)
2p3 +119p% —125p 470 = 91.2430--- > 0, (2.11)
ap+ay = p(p> —1)2p*+25p +22) >0, (2.12)
ar+az+as =4p(p—1)(23p% —43p+12) (2.13)
as+ag+a7=(p—1)2—p)(2p> —37p% +89p —48), (2.14)
4
> ai = p(p—1)(2p* +119p* —125p +70), (2.15)
i=0

It follows from (2.7)-(2.15) that

fa(x) > (ag +ay)x* + (az +az +asg)x> + (as +as +a7)x

4
> Zam“ +(as+ag+a7)x >0 (2.16)
i=0
for x € (1,400).

From (2.16) we clearly see that f3(x) is strictly increasing on (1, +00). Then (2.6)
leads to the conclusion that there exists A; > 1 such that f,(x) is strictly decreasing
on (1, A1] and strictly increasing on [A1, +00).

It follows from (2.5) and the piecewise monotonicity of f>(x), we conclude that
there exists A, € (1, 400) such that f7(x) is strictly decreasing on (1, A5] and strictly
increasing on [A2, +00).

From (2.4) and the piecewise monotonicity of f7(x) that there exists 13 € (1, +00)
such that f(x) is strictly decreasing on (1, 23] and strictly increasing on [A3, 4+00).

Therefore, part (2) follows from (2.3) and the piecewise monotonicity of f(x).
0

Theorem 1. The double inequality
Mgy(a,b) < Ngg(a,b) < Mg(a,b),

holds for all a,b > 0 with a # b if and only if « < 2log2/(5log2 —2logn) =
1.1785--- and B > 4/3.
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Proof. Since Ngg(a,b) and My(a,b) are symmetric and homogenous of degree
1, we assume thata > b > 0. Let x = a/b € (1,4 0), p € R4+ . Then we have

log [NGQ (a, b)] —log [Mp (a, b)]

x—1 1 xP +1
=log[2vx(x=1)++v2(x>+ ) tan~! (=—=)]-log[4(x—1)]- =10 .
g2V =D+ V20 + Dtan™ (=) | —log [t ()
(2.17)
Let |
F(x) =1og[2ﬁ(x—1)+«/§(x2+l)tan_l(x_ )]
L e v2x (2.18)
—log[4(x—1)]-—1
og[4(x— ]~ log(———)
Then simple computations lead to
lim F(x) =0, (2.19)
x—1+
1
lim F(x) = —log2+logm —5log+/2, (2.20)
x—>400 p

XPHL 4 oxP —xP71_x2 4 2x 41

F'(x) = Fi(x), (2.21
) (x —=D)(x? + D[2/x(x — 1) + v/2(x2 + ) tan~! (%)] 1), @21
where
_ 2/x(x =) (xP71+1) x—1
Fl(x)_xl’+1+2xl’—xl’_1—x2+2x+1_ﬁtan (m),
lim F (x) =0, (2.22)
im Ry (x) = —gn <0, (2.23)
2(x—1
F{(x) = (=D f). (224

X2+ D) (P 4 2xP —xP7—x2 4 2x +1)2
where f(x) is defined by (2.1).

We divide the proof into four cases.

Case 1. p = 2log2/(5log2 —2logm) Then it follows from Lemma 1(2) and
(2.24) that there exists A € (1,+00) such that F;(x) is strictly increasing on (1,A]
and strictly decreasing on [A, +00).

Equations (2.21) and (2.22)-(2.23) together with the piecewise monotonicity of
F1(x) lead to the conclusion that there exists A¢ € (1, 400) such that F(x) is strictly
increasing on (1, A¢] and strictly decreasing on [Ag, +00).

Note that (2.20) becomes
lim F(x)=0, (2.25)

xX—>400
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Therefore,
Ngo(a,b) > M210g2/(510g2—210g7r)(a’b)

for all a,b > 0 with a # b follows from (2.17)-(2.19) and (2.25) together with the
piecewise monotonicity of F(x).

Case 2. p =4/3 Then it follows from Lemma 1(1) and (2.24) that F; (x) is strictly
decreasing on (1, +00).

Therefore,

Ngol(a,b) < Myj3(a,b)

for all a,b > 0 with a # b follows from (2.17)-(2.19) and (2.21)-(2.22) together with
the monotonicity of Fj(x).
Case 3. p > 2log2/(5log2—2log ) Then (2.20) leads to

lim F(x) <0, (2.26)

xX—>+00

Equations (2.17)-(2.18) together with inequality (2.26) imply that there exists large
enough My > 1 such that

NGQ(a,b) < Mp(a,b)
for all a,b > 0 with x € (Mg, +00).
Case 4. p <4/3 Let x > 0, x — 0, then making use the Taylor expansion we get
Ngo(1,14+x)—Mp(1,1+x)
2xV/X+ T+ V2[(x + 12+ 1]tan™! (
- 4x

«/2(fc+1)) _ [1 +(1 +x)”]1/P
2

4-3
= 24px2+0(x2). (2.27)

Equation (2.27) implies that there exists small enough 8o > 0 such that
Ngo(1,14+x) > Mp(1,1+x)

for all a,b > 0 with x € (0,8¢).
Therefore, Theorem 1 follows easily from Cases 1-4 and the monotonicity of the
function p — Mp(a,b). 0
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