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Abstract 

Measurements of the radiocarbon and tritium activity in a 5.8 m long ice core from the 

Saarhalle, Dachstein-Mammoth Cave allowed a substantial revision of previous opinions 

concerning the age of the ice block, and provide useful experience that may be applied to 

future 
14

C dating of cave ice deposits. The stepped combustion technique results in a 

remarkably older radiocarbon age for the 800°C than for the 400°C fractions of the 

carbonaceous matter from ice layer samples. The highest tritium activity (37.2±1.2 TU) can 

be linked to the period of anthropogenically increased tritium activity of atmospheric 

precipitation at the mid-1960s, providing a well-dated radiochemical reference horizon. 

Compared the 
3
H-based extrapolated ages of two shallow samples to the expected 

atmospheric signal an average 
14

C reservoir bias of ~1500 BP was obtained for the insoluble 

organic fraction combusted at 400°C. The conventional 
14

C age measured for the 400°C 

fraction of the deeper samples has been corrected with the average reservoir bias. The median 

calibrated age of the deepest analyzed sample of the ice profile is ~1830 cal BC and a linear 

extrapolation to the bottom ice layer gave 2590 cal BC making Saarhalle ice block among the 

oldest dated cave ice deposits known in the Alpine domain. 

 

Keywords: cave ice, tritium, ice core, stepped combustion, insoluble organic material, 

Holocene, Alps 

 

INTRODUCTION 

One of the most important issues when considering sub-surface ice deposits and their 

potential use as paleoclimate archives is their age (Luetscher et al. 2013). There might be 

plenty of options for dating near-surface cave ice deposits (Luetscher et al. 2007; Kern 2018).  

Radiocarbon (
14

C) analysis has became the most frequently-used option, allowing the direct 

dating of cave ice sequences, at least when sufficient organic remnants are to be found (e.g., 

Hercmann et al. 2010; Perşoiu and Pazdur 2011; Sancho et al. 2012, 2018; Spötl et al. 2014; 

Gradziński et al. 2016; Munroe et al. 2018; Perşoiu et al. 2017). However, the dating of cave 

ice bodies settled deep in the high mountain karstic environment is often a great challenge due 

to the relative scarcity of embedded organic materials (e.g. May et al. 2011). 

A novel dating approach was introduced a decade ago, targeting glacier ice cores, and based 

on extracting at the microgram level organic carbon fractions embedded in the ice matrix for 
14

C dating (Jenk et al. 2006, 2007). The approach was first tested on samples derived from 
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cave ice core from Eisriesenwelt (May et al. 2011). Although radiocarbon dating performed 

on small particulate organic matter separated from the cave ice samples proved inconclusive, 

probably due to a background contamination introduced by the antifreeze drilling liquid 

applied, a crude estimate giving a basal ice age in the order of several thousand years could be 

achieved. The method for surface ice cores has since been further improved (Uglietti et al. 

2016; Hoffmann et al. 2017) and cave ice also re-considered as potential targets in the Alpine 

cryosphere (Hoffmann et al. 2015; Colucci et al. 2018). 

The age of meteoric waters originating from modern (i.e. post mid-20
th

 century) precipitation 

can be estimated based on their tritium (
3
H) activity. Tritium is a valuable tool in the 

determination of the age of a cave ice deposits formed from meteoric waters over the past 60-

70 years (Borsato et al. 2006; Kern et al. 2009).  

In the research presented here, the 
14

C analysis of carbonaceous particulate matter was tested 

on archived ice samples available from a cave ice core extracted without the use of antifreeze 

drilling liquid. The samples were taken from the Saarhalle ice block in the Dachstein-

Mammoth cave (Mammuthöhle), Austria. Tritium activity has already been measured in eight 

water samples from the melted ice core of the Saarhalle Dachstein-Mammoth Cave using the 

liquid scintillation counting (LSC) technique (Kern et al. 2011). None of those samples, 

however, provided detectable tritium activity. In this study a more sensitive method was 

applied to measure the 
3
H activity of additional samples from the upper part of the ice core. 

The new radiometric ages allowed the placing of chronological constraints on the 5.8 m long 

profile and supported a substantial revision of previous opinion concerning the age of the ice 

block. 

 

 
Figure 1 Relief map of Austria with the location of Dachstein-Mammoth Cave (MH) and the 

reference stations (Feuerkogel: FEU and Vienna: VIE). The inset map shows the location of 

Austria within Europe in black. 
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SITE DESCRIPTION 

The cave system is located in the Dachstein Mts of the Northern Calcareous Alps (Fig. 1). 

The total length of all passages in Dachstein-Mammoth Cave amounts to 67.5 km, and the 

vertical extension is 1.2 km making it the fourth longest and fifth deepest cave in Austria 

(Spötl et al. 2016). Perennial ice is present in two huge chambers, Feenpalast and Saarhalle, 

not far from the western entrance (Spötl et al., 2018). These glaciated chambers have been 

targets of annual ice level measurements in combination with cave air monitoring since the 

1990s (Mais and Pavuza, 2000). The monitoring data revealed that the air temperature in the 

Saarhalle follows the temperature fluctuations of the Feenpalast with a reduced amplitude 

during the winter ventilation regime (~from November to early May, Mais and Pavuza, 2000) 

suggesting that the cold outside air flows in the Saarhalle chamber via the Feenpalast. While, 

air temperature rises slightly above the freezing point (0.1–0.2°C) during the rest of the year. 

The mean annual air temperature in the Saarhalle ranged from -0.46°C to -0.10°C in the 

period 1996-2000, and the long-term average was -0.30°C (Mais and Pavuza 2000). Dripping 

water entering to the Saarhalle chamber passes through a ~60 m thick rock overburden. This 

type of water supply has probably fed the ice accumulation in historical times. However, no 

current ice accumulation was observed in this chamber; rather, the ice level shows a steady 

decline since 1996 at a nearly constant rate of -7 cm/yr (Mais and Pavuza 2000, unpublished 

data until 2014). 

The lateral extension of the Saarhalle ice body is 40 m×15 m (Behm and Hausmann 2008) 

and the estimated maximum ice thickness, determined by ground penetrating radar, was  ~6 m 

in 2008 (Hausmann and Behm 2011).  

 

METHODS 

Ice drilling and sample selection 

A 5.28 m long ice core was extracted from the Saarhalle ice block in September 2009 and 

sectioned into 105 sub-samples on the spot, each subsample’s length being ~5 cm (Kern et al. 

2011). The melted samples not used in the first stage of the analysis were stored in well-

sealed centrifuge tubes at room temperature. Five samples were selected from the stored ice 

core samples in 2015 to test the AMS radiocarbon analysis of the water-insoluble 

carbonaceous matter embedded in the ice, and 11 samples were selected from the upper 2 m 

section in 2012 for 
3
He-ingrowth analysis using noble gas mass spectrometry. 

 

Radiocarbon analysis by stepped combustion 

A standard pre-treatment with 1-2 mL C-free hydrochloric-acid (1N) was added to the melted 

samples (1-2 mL liquid) and reacted at 75°C for 2 hours in order to remove inorganic carbon 

(Molnár et al. 2013a). Pre-treated samples were then freeze-dried into quartz combustion 

tubes and subjected to stepped combustion in pure O2 gas atmosphere first at 400°C (Step 1), 

then at 800°C (Step 2) (Újvári et al. 2016). In Step 1 (400°C combustion) the easy-burning 

non-charred organic carbon is released from the ice samples, while afterwards in Step2 all the 

rest of the charred carbon fraction is mobilized, including elemental sources. The developed 

CO2 of the two fractions were graphitized by a sealed-tube graphitization method (Rinyu et al, 

2015); and measured separately by the EnvironMICADAS AMS system in Debrecen (Molnár 

et al. 2013b).  

The conventional radiocarbon ages were calculated according to the method to be found in 

Stuiver and Polach (1977), using the Libby half-life (5568 years), and corrected for isotope 

fractionation using the AMS measured 
13

C/
12

C ratio, which accounts for both natural and 

machine fractionation. The calibration of conventional 
14

C dates to calendar years were 
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performed using the OxCal 4.2.4 (Bronk Ramsey 2009) program in conjunction with the 

Northern Hemisphere IntCal13 (Reimer et al. 2013) dataset. 

 

Tritium activity determined by the 
3
He-ingrowth method 

The water samples were first distilled and filled into metal canisters. After degassing, the 

metal container was closed and stored for several months to allow 
3
He ingrowth from tritium 

decay. Finally, the sample containers were connected to the inlet line of the noble gas mass 

spectrometer and the He fraction was allowed to enter a dual collector noble gas mass 

spectrometer (VG 5400), and 
3
He and 

4
He were measured simultaneously, applying the peak 

height method. During the sample intake, an ultrapure 
4
He spike was added to each sample 

(Palcsu et al. 2010). Tritium activity is expressed in tritium units, (1 TU= 

0.119 Bq/L=6.68ˣ10
7
 

3
H atoms/L). The overall precision of the tritium measurements was 

better than 2.4% above 1 TU, if sample size was larger than 500 mL. For samples of 30-

40 mL, the detection limit is about 0.8 TU, roughly one tenth that of the previously applied 

LSC method. 

The ice core derived tritium activity record was then compared to the regionally available 

historical inventories. The monthly mean tritium concentration of past precipitation was 

obtained for Feuerkogel from the Austrian Network of Isotopes in Precipitation (Kralik et al. 

2003), and for Vienna from the Global Network of Isotopes in Precipitation (IAEA, 2010). 

The decay-corrected tritium activity both of past precipitation and ice core samples were 

calculated for 01.09.2009 using a half-life of 12.32 years (Lucas and Unterweger 2000). 

 

RESULTS AND DISCUSSION 

Most of the samples yielded sufficient carbon (>0.1 mg, Uglietti et al. 2016) for the applied 

sealed-tube graphitization method and AMS
 14

C analysis. The exceptions were the Step 2 

fraction of MH24 and both fractions of the MH26 sample. The obtained conventional 
14

C 

results for the Step 2 fraction gave significantly older ages than those of the Step 1 fraction 

(Table 1). These results send an immediate methodological warning message, because the 

applied slight acidification and single step combustion at 800°C combustion of the total 

carbon content is a standard protocol in many AMS Labs. However, in the case of single step 

combustion one would get a 'mixed' result from the different carbon-pools which can then in 

turn result in a false age estimate.  

In addition, the ages obtained for the 800°C fractions from stepped combustion stand in 

contradiction to the stratigraphic position of the samples, while the 400°C fractions conform 

to stratigraphy (Table 1). The 400°C results can provide only maximum age estimates (the ice 

layer cannot be older than this age) because the water frozen in the ice layer might have 

already been carrying aged organic carbon (e.g. derived from the aged soil carbon at the 

surface during infiltration). These findings provide a plausible explanation for the older-than-

expected age obtained in single step 
14

C analysis as reported from a cave ice deposit in the 

Southern Alps (Colucci et al. 2016). 
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Table 1 Radiocarbonage results of particulate organic matter separated from the Saarhalle cave ice core. 

sample code depth (m)
a
 Step

b
 

C yield 

(μg) 
Lab code 

14
C age (BP) (±1 σ) 

14
C bias corr. 

(BP)
 

calibrated median date 

(95.4%) 

MH21 1.11 
1 110 DeA-9913 1180±35 used for ΔR  

2 500 DeA-8567 4975±40   

MH24 1.26 
1 110 DeA-9914 1790±35 used for ΔR  

2 30 -  

MH26 1.36 
1 60 -    

2 10 -    

MH92 4.62 
1 470 DeA-6808 4550±40 3030±80

c
 

1270 cal BC 

(1450-1031 cal BC) 

2 1720 DeA-6809 17140±80   

MH98 4.90 
1 180 DeA-6810 4990±70 3500±100

c
 

1830 cal BC 

(2134-2081 (2.9%) 

2060-1608 (91.7%) 

1581-1562 (0.8%)) 

2 160 DeA-6811 10460±160   

a: depth of the midpoint of the represented interval below the September 2009 ice surface 

b: fractions of the two-step combustion Step 1: 400°C and Step 2: 800°C 

c: propagated error estimated from the analytical uncertainty and the assigned uncertainty of the reservoir bias 
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Table 2 Tritium activity with the uncertainty obtained using the 
3
He-ingrowth method of 

eleven selected samples of the Saarhalle cave ice core. 

sample code depth (m) 
a
  TU (±1σ) 

MH03 0.14 10.18±0.64 

MH05 0.25 -0.02±0.53 

MH09 0.48 10.05±0.73 

MH12 0.66 -0.5±0.6 

MH15 0.81 37.24±1.29 

MH17 0.91 -0.71±0.68 

MH20 1.06 0.04±0.66 

MH23 1.21 1.28±0.8 

MH25 1.31 0.83±0.71 

MH27 1.41 0.3±0.52 

MH29 1.51 0.27±0.63 

a: depth of the midpoint of the represented interval below the September 2009 ice surface 

 

A potential explanation for the much lower activity of the Step 2 fraction could be that carbon 

bearing mineral species lacking detectable 
14

C and partially resistant to the applied slight 

acidification remained in the sample and combusted at 800°C. The observation that small 

angular limestone fragments were observed in MH98 (Kern et al., 2011) which yielded the 

largest amount of carbon in Step2 fraction and presented the oldest apparent age (Table 1) 

supports this potential explanation. 

Four out of the 11 analyzed samples produced detectable tritium activity (Table 2, Figure 2) 

despite the fact that in a previous pilot study none of eight test samples provided detectable 

tritium activity using the less sensitive liquid scintillation counting (LSC) technique (Kern et 

al. 2011). A technical explanation could be that the detection limit at the LSC method was ten 

times higher because it was not possible to apply electrolytic enrichment due to the small size 

of the sample. The ice core derived tritium record was compared to the regionally available 

historical inventories (Figure 2).  

The peak (37.2±1.2 TU) argues that the cave ice layer from the -0.76 to -0.86 depth range 

enclosed the atmospheric precipitation which fell in the mid-1960s period. Keeping in mind 

that the Saarhalle ice body has shown a continuously negative mass balance at least since 

1996 (average surface ice loss rate: 7 cm yr
−1

; Mais and Pavuza 2000) and documented until 

2014. This fact not only excludes the existence of recent ice at the surface but also 

corresponds with 91 cm of cumulative ice loss before 2009. Hence 0.91 m can be added to the 

depth measured beneath the Sept 2009 ice surface to obtain a corrected depth scale for 1996. 

Consequently, the 
3
H-peak might be within the depth range represented by the MH14 or 

MH15 samples and the estimated ice accumulation for the pre-1996 period is in fact 5.06-5.2 

cm/yr. Using this average ice accumulation rate, the age of the ice layer sampled at the top of 

the ice block in 2009 was estimated to ~1978AD. 
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Figure 2 Tritium activity in regional precipitation (composite of monthly data from 

Feuerkogel and Vienna and decay corrected to 01.09.2009) and Saarhalle ice core obtained 

using the 
3
He-ingrowth method (blue dots). A: Decay corrected annual mean 

3
H activities of 

precipitation (black) and the dampened signal assuming constant mixing of 30% modern 

precipitation and 70% tritium-free old water. B: Decay corrected monthly 
3
H activities of 

precipitation smoothed with 3-yr (blue), 6-yr (green), and 12-yr (purple) moving averages 

simulating multiannual mixing in the karstic reservoir during the infiltration process. C: 

Stable oxygen isotope composition of the cave ice samples in the upper 1.5 m section of the 

Saarhalle ice core (Kern et al., 2011). 
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However, the magnitude of the 
3
H-peak is obviously far below the decay-corrected activity of 

the precipitation of the mid-1960s (Figure 2a). Two simple hypotheses were tested as 

potential explanations of the dampened signal found in the cave ice. The first one simulated 

the effect of constant and uniform dilution with a tritium-free water source (e.g. old karst 

water). The result obtained was that a mixture of ~30% modern precipitation and 70% old 

infiltrated water might produce activity comparable to that of mid-1960s infiltration as 

observed in the ice core (Figure 2a). In this case, however, the simulated infiltration from the 

later precipitation should be dampened to a level of ~1 TU, while in contrast, relatively high 

(>10 TU) activity levels have also been found at depths of 0.14 m and 0.48 m. In testing the 

second hypothesis, multiannual mixing in the karstic reservoir during the infiltration process 

was simulated, simply smoothing decay-corrected regional monthly precipitation 
3
H. The 

results showed that ~12 yr mixing could bring the peak down to the level measured in the ice 

core (Figure 2b). However, the 
3
H activity of the water supplied from such a well-mixed 

reservoir would be continuously at the >10 TU level after the mid-1960s. So, in this case we 

are again faced with a contradiction, seeing the ~0 TU samples measured at depths of 0.25 

and 0.65 m.  

The pattern suggests that an "old" tritium-free component may be mixed with the "modern" 

meteoric component, resulting in the observed intermediate levels of 
3
H. This mixed water 

sources scheme conforms to the earlier explanation offered for the stable isotope 

characteristics of the Saarhalle ice core (Kern et al. 2011). Since the amount weighted δ
18

O 

value of the surface precipitation (−12.79‰) especially the winter season precipitation 

(−14.05‰) (Kern et al., 2011), which is the main contribution to infiltration, is significantly 

more depleted compared to the average δ
18

O value of three local karst springs (−12.16‰ 

Scheidleder et al., 2001) a correspondence between the tritium-free points (MH05 and MH12) 

to less depleted stable isotope compositions compared to δ
18

O values of the samples (MH03, 

MH09 and MH15) with elevated 
3
H activity might further support this theory. However, the 

correspondence, unfortunately, is not fully conclusive. Stable oxygen isotope compositions of 

MH05 and MH12 are less depleted compared to MH15 or MH09, however MH03 does not 

show similarly negative value (Figure 2c). 

Finally we note that smaller ice deposits could be abundant in similar high Alpine karstic 

system approaching the vicinity of, or even penetrating into the periglacial zone. These 

smaller ice patches probably might also act as temporary reservoir for formerly infiltrated 

meteoric waters. Refreezing of meltwater released from this kind of ice patches or frozen 

conduits might further complicate the genesis of larger ice deposits in similar Alpine system. 

Extrapolating the estimated late-20
th

 century ice accumulation rate (5.06-5.2 cm/yr) to the 

depths of MH21 and MH24 gave dates of ~1957 and ~1953, respectively, indicating a 

remarkable discrepancy between the age of the particulate organic matter (Table 1) and its 

host water/ice. The reliability of these extrapolated dates at the onset of the era of 

anthropogenic tritium contamination are supported by the fact that consistent 
3
H activity 

measured in the deeper samples are in close agreement with the expected decayed value 

(~0.2 TU) from the ~5 TU natural 
3
H of precipitation in Central Europe (Roether 1967). 

The obvious contrast between the deposition date estimated by the accumulation rate and 

obtained from the 
14

C analysis of the water-insoluble organic carbon can be explained by the 

fact that water frozen into the ice layer might have already been carrying an aged organic 

carbon (e.g. aged soil carbon) during infiltration. This is quite plausible, since soil organic 

matter with a radiocarbon age exceeding 2,000 years has frequently been reported in Central 

Europe (Molnár et al. 2004), and the radiocarbon age of organic matter in subsoils (>1 m 

depth) in all studied soil types worldwide exceeded 1,000 years (Rumpel and Kögel-Knabner 
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2011). In extreme cases, mean 
14

C ages of >6800 yr have been reported for certain organic 

fractions of soils in the subalpine range of the Italian Alps (Egli et al. 2009). 

The reservoir age bias (ΔR) of the 400°C fractions for MH21 and MH24 were estimated and 

rounded to the nearest integer as  

ΔRMH21=CRAMH21 - exCRAMH21=1180-(-269.2)=1449 

and 

ΔRMH24=CRAMH24 - exCRAMH24=1790-(201.8)=1588 

where CRA stands for ‘conventional radiocarbon age’ of the sample (Table 1) and exCRA is 

the expected conventional age corresponding to the 
3
H based extrapolated ages of MH21 and 

MH24 drawn from the pentennial mean values of the calibration curve of the NH1 zone for 

Modern Time (Bomb13NH1.14c available in OxCal 4.2.4; Bronk Ramsey 2013). 

For the mean reservoir bias 1519±70 BP can be calculated from the individual estimates 

presented above. Assuming a constant average reservoir bias for the entire dated history of the 

cave ice, the raw 
14

C ages of the 400°C fractions of the deeper samples were corrected using 

the estimated mean ΔR (Table 1). The uncertainty of the bias corrected conventional dates 

was estimated from the analytical uncertainty and the uncertainty of the estimated mean ΔR 

following a Gaussian error propagation. The most likely age range of the calibrated age 

distribution of the deepest analyzed sample (MH98) is 2060-1608 cal BC accounting for 

91.7% probability. Linear extrapolation to the bottom ice layer (5.28 m) based on the depths 

and median calibrated dates obtained for MH92 and MH98 gave 2590 cal BC. 

The recent comprehensive compilation of 
14

C dates of organic remains in East Alpine ice 

caves (Spötl et al. 2018) presented three data from the Feenpalast deposit. A wood remain 

found at the base at the retreating cliff in the highest part of the Feenpalast, the second largest 

ice block in the Dachstein-Mammoth Cave, gave a conventional age of 695 ± 35 BP (Mais 

and Pavuza 2000) while two wood samples collected at deeper layers are slightly older 

(851±45 BP and 1133±40 BP, Plan and Pavuza unpubl). The new radiometric ages argue for a 

much older cave ice deposit of the Saarhalle chamber compared to the Feenpalast chamber of 

the Dachstein-Mammoth Cave. 

The earliest date presented in the wood record from the Hundsalm Ice Cave – providing the 

largest currently available radiocarbon dataset (n=19) for an Alpine ice cave – was 

2664±32 BP (895–796 cal BC) while the estimated age of four other samples was also 

~1400 years (Spötl et al. 2014). Spötl et al. (2018) compiled the radiocarbon dates on other 

vegetal remains recovered occasionally from cave ice deposits in the Austrian Alps and 

recalibrated them using the current calibration dataset. Two wood samples from the basal ice 

of Eisgruben Eishöhle (Sarstein, Upper Austria) yielded 2210 ± 70 BP (400–65 cal BC) and 

4520 ± 50 BP (3366–3030 cal BC), respectively (Achleitner 1995; R Pavuza 2012, 

unpublished). A tree trunk released by the melting ice in Schneeloch, an ice-hosting shaft in 

the Schneealpe (Styria), was dated to 4360 ±30 BP (3085–2904 cal BC; Herrmann et al. 

2010). A single date was presented for Kraterschacht (Sengsengebirge) with 886±45 BP 

(1032-1242 cal AD; Weißmair 2011). 

In light of these data the Saarhalle ice block is among the oldest ice deposits of the Alps. The 

preserved ~4000 year-long cave ice record definitely requires further research in the future.  

 

CONCLUSIONS 

The stepped combustion technique revealed a remarkable difference between the 
14

C activity 

of insoluble carbon fractions of the studied cave ice samples from the Saarhalle Dachstein-

Mammoth Cave combusted at 400°C and 800°C. The age-relation obtained for the 800°C 

fractions contradicted the stratigraphic position of the samples; while the ages obtained for the 
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400°C fractions conformed to the stratigraphy. However, the 400°C conventional 
14

C age 

results still provided only maximum age estimates (the ice layer cannot be older than this age) 

because the water frozen the ice layer might have already carried aged organic carbon (e.g. 

transported from the aged soil carbon at the surface during infiltration). Tritium activities 

analyzed using the 
3
He-ingrowth method clearly indicated the contribution of modern water at 

least down to a depth of 1.21 m. Comparing the 
3
H based extrapolated ages of samples at 

1.11 m (MH21) and 1.26 m (MH24) to the expected atmospheric signal of the calibration 

curve of NH1 zone, an average 
14

C reservoir age bias of 1500 BP was obtained. Assuming 

that the reservoir bias in the 
14

C signal was continuous and constant over the deposition 

history of the Saarhalle ice block, the corrected deposition date for the deepest analyzed 

sample could be estimated to ~1830 cal BC (2134-2081 (2.9%) 2060-1608 (91.7%) 1581-

1562 (0.8%)) while a linear extrapolation based on the depths and median calibrated dates 

obtained for MH92 and MH98 to the bottom ice layer gave 2590 cal BC.  
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