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Abstract. Motivated mainly by certain interesting recent extensions of the generalized hyper-
geometric function [15], the second Appell function [6] and Srivastava’s triple hypergeometric
functions [9], we introduce here the family of incomplete Srivastava’s triple hypergeometric func-
tions 
H

A
and � H

A
. We then systematically investigate several properties of each of these incom-

plete Srivastava’s triple hypergeometric functions including, for example, their various integral
representations, transformation formula, reduction formula, derivative formula and recurrence
relations. Various (known or new) special cases and consequences of the results presented here
are also considered.
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1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

The familiar incomplete Gamma functions 
.s;x/ and � .s;x/ defined by


.s;x/ WD

Z x

0

ts�1 e�t dt
�
<.s/ > 0I x = 0

�
(1.1)

and

� .s;x/ WD

Z 1
x

ts�1 e�t dt
�
x = 0I <.s/ > 0 when x D 0

�
; (1.2)

respectively, satisfy the following decomposition formula:


.s;x/C� .s;x/ WD � .s/
�
<.s/ > 0

�
: (1.3)

Each of these functions plays an important role in the study of the analytic solutions
of a variety of problems in diverse areas of science and engineering (see, e.g., [1, 4,
7, 16, 17, 23]).
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Throughout this paper, N, Z� and C denote the sets of positive integers, negative
integers and complex numbers, respectively,

N0 WDN[f0g and Z�0 WDZ�[f0g :

Moreover, the parameter x = 0 used above in (1.1) and (1.2) and elsewhere in this
paper is independent of <.´/ of the complex number ´ 2C.

Recently, Srivastava et al. [15] introduced and studied in a rather systematic man-
ner the following two families of generalized incomplete hypergeometric functions:

p
q

�
.˛1;x/;˛2; � � � ; p̨I

ˇ1; � � � ;ˇqI
´

�
D

1X
nD0

.˛1Ix/n.˛2/n � � �. p̨/n

.ˇ1/n � � �.ˇq/n

´n

nŠ
(1.4)

and

p�q

�
.˛1;x/;˛2; � � � ; p̨I

ˇ1; � � � ;ˇqI
´

�
D

1X
nD0

Œ˛1Ix�n.˛2/n � � �. p̨/n

.ˇ1/n � � �.ˇq/n

´n

nŠ
; (1.5)

where, in terms of the incomplete Gamma functions 
.s;x/ and � .s;x/ defined by
(1.1) and (1.2), respectively, the incomplete Pochhammer symbols .�Ix/� and Œ�Ix��
.�I � 2CI x = 0/ are defined as follows:

.�Ix/� WD

.�C�;x/

� .�/
.�;� 2CI x = 0/ (1.6)

and

Œ�Ix�� WD
� .�C�;x/

� .�/
.�;� 2CI x = 0/; (1.7)

so that, obviously, these incomplete Pochhammer symbols .�Ix/� and Œ�Ix�� satisfy
the following decomposition relation:

.�Ix/�C Œ�Ix�� WD .�/� .�I � 2CI x = 0/: (1.8)

Here, and in what follows, .�/� .�;� 2C/ denotes the Pochhammer symbol (or the
shifted factorial) which is defined (in general) by

.�/� WD
� .�C�/

� .�/
D

8<: 1 .� D 0I � 2Cn f0g/

�.�C1/ � � �.�Cn�1/ .� D n 2NI � 2C/;
(1.9)

it being understood conventionally that .0/0 WD 1 and assumed tacitly that the � -
quotient exists (see, for details, [17, p. 21 et seq.]).

As already observed by Srivastava et al. [15], the definitions (1.4) and (1.5) readily
yield the following decomposition formula:

p
q

�
.˛1;x/;˛2; : : : ; p̨I

ˇ1; : : : ;ˇqI
´

�
Cp�q

�
.˛1;x/;˛2; : : : ; p̨I

ˇ1; � � � ;ˇqI
´

�
DpFq

�
˛1;˛2; : : : ; p̨I

ˇ1; : : : ;ˇqI
´

� (1.10)
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for the familiar generalized hypergeometric function pFq .
More recently, Çetinkaya [6] introduced and studied various properties of the fol-

lowing two families of the incomplete second Appell hypergeometric functions 
2
and �2:


2Œ.˛;x/;ˇ1;ˇ2I
1;
2Ix1;x2�D

1X
m;pD0

.˛Ix/mCp.ˇ1/m.ˇ2/p

.
1/m.
2/p

xm1
mŠ

x
p
2

pŠ
(1.11)

and

�2Œ.˛;x/;ˇ1;ˇ2I
1;
2Ix1;x2�D

1X
m;pD0

Œ˛Ix�mCp.ˇ1/m.ˇ2/p

.
1/m.
2/p

xm1
mŠ

x
p
2

pŠ
: (1.12)

Very recently, Choi et al. [9] introduced and studied various properties of the
following two families of the incomplete Srivastava’s triple hypergeometric functions

HB and � HB as follows:


HB Œ.˛;x/;ˇ1;ˇ2I
1;
2;
3Ix1;x2;x3�

D

1X
m;n;pD0

.˛Ix/mCp.ˇ1/mCn.ˇ2/nCp

.
1/m.
2/n.
3/p

xm1
mŠ

xn2
nŠ

x
p
3

pŠ

(1.13)

and

� HB Œ.˛;x/;ˇ1;ˇ2I
1;
2;
3Ix1;x2;x3�

D

1X
m;n;pD0

Œ˛Ix�mCp.ˇ1/mCn.ˇ2/nCp

.
1/m.
2/n.
3/p

xm1
mŠ

xn2
nŠ

x
p
3

pŠ

(1.14)

�
x = 0I jx1j< r; jx2j< s; jx3j< t; rC sC tC2

p
rst D 1 when x D 0

�
:

In a sequel to the aforementioned work by Srivastava et al. [15], Çetinkaya [6]
and Choi et al. [9] and motivated essentially by these families of incomplete hyper-
geometric functionsp
q andp�q , incomplete second Appell functions 
2 and �2 and
incomplete Srivastava’s triple hypergeometric functions 
HB and � HB (see, for details,
[6, 9, 15] and the references cited therein), we aim here at systematically investigat-
ing the family of the incomplete Srivastava’s triple hypergeometric functions 
HA and
� HA to present various representations and formulas, for example, various definite
and semi-definite integral representations involving the Laguerre polynomials, Bessel
and modified Bessel functions, transformation formula, reduction formula, derivative
formula and recurrence relations. For various other investigations involving general-
izations of the hypergeometric function pFq , which were motivated essentially by
the pioneering work of Srivastava et al. [15], the interested reader may refer to recent
papers on the subject (see, for example, [8,19–22] and the references cited in each of
these papers).
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2. THE INCOMPLETE SRIVASTAVA’S TRIPLE HYPERGEOMETRIC FUNCTIONS

In terms of the incomplete Pochhammer symbol .�Ix/� and Œ�Ix�� defined by
(1.6) and (1.7), we introduce the following incomplete Srivastava’s triple hypergeo-
metric functions 
HA and � HA : For ˛; ˇ1; ˇ2 2C and 
1; 
2 2CnZ�0 ,


HA Œ.˛;x/;ˇ1;ˇ2I
1;
2Ix1;x2;x3�

D

1X
m;n;pD0

.˛Ix/mCp.ˇ1/mCn.ˇ2/nCp

.
1/m.
2/nCp

xm1
mŠ

xn2
nŠ

x
p
3

pŠ

(2.1)

.x = 0I jx1j< r; jx2j< s; jx3j< t; rC sC t D 1C st when x D 0/

and
� HA Œ.˛;x/;ˇ1;ˇ2I
1;
2Ix1;x2;x3�

D

1X
m;n;pD0

Œ˛Ix�mCp.ˇ1/mCn.ˇ2/nCp

.
1/m.
2/nCp

xm1
mŠ

xn2
nŠ

x
p
3

pŠ

(2.2)

.x = 0I jx1j< r; jx2j< s; jx3j< t; rC sC t D 1C st when x D 0/ :

In view of (1.8), these incomplete Srivastava’s triple hypergeometric functions
satisfy the following decomposition formula:


HA Œ.˛;x/;ˇ1;ˇ2I
1;
2Ix1;x2;x3�C�
H
A Œ.˛;x/;ˇ1;ˇ2I
1;
2Ix1;x2;x3�

DHAŒ˛;ˇ1;ˇ2I
1;
2Ix1;x2;x3�;
(2.3)

whereHA is the familiar Srivastava’s triple hypergeometric functions (see, for details,
[10–14, 17]).

Remark 1. It is interesting to note that the special cases of (2.1) and (2.2) when
x2 D 0 reduce to the known incomplete second Appell hypergeometric functions
(1.11) and (1.12). Also, the special cases of (2.1) and (2.2) when x2 D 0 and x3 D 0
or x1 D 0 are seen to yield the known incomplete families of Gauss hypergeometric
functions [15].

In view of the formula (2.3), it is sufficient to discuss properties and characteristics
of one of the incomplete Srivastava’s triple hypergeometric functions 
HA and � HA .

3. INTEGRAL REPRESENTATIONS OF � HA

In this section, we apply (1.2) and (1.7) to present certain integral representations
of the incomplete Srivastava’s triple hypergeometric functions � HA . We also obtain
various integral representations involving Laguerre polynomial, Bessel and modified
Bessel functions.
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Theorem 1. The following integral representation for � HA in (2.2) holds true:

� HA Œ.˛;x/;ˇ1;ˇ2I
1;
2Ix1;x2;x3�D
1

� .˛/� .ˇ1/
(3.1)

�

Z 1
x

Z 1
0

e�s�t t˛�1sˇ1�1 0F1.�I
1Ix1st/ 1F1.ˇ2I
2Ix2sCx3t /dtds�
x = 0I maxf<.x2/;<.x3/g< 1; minf<.˛/;<.ˇ1/g> 0 when x D 0

�
:

Proof of Theorem 1. Using the integral representations of the incomplete Poch-
hammer symbol Œ˛Ix�mCp by considering (1.2) and (1.7), the classical Pochhammer
symbol .ˇ1/mCn and using the elementary series identity [18, p. 52, Eq. 1.6(2)]:

1X
m1;m2D0

˝ .m1Cm2/
x
m1
1

m1Š

x
m2
2

m2Š
D

1X
mD0

˝.m/
.x1Cx2/

m

mŠ
; (3.2)

in (2.2), we are led to the desired result. �

Theorem 2. The following triple integral representation for � HA in (2.2) holds
true:

� HA Œ.˛;x/;ˇ1;ˇ2I
1;
2Ix1;x2;x3�D
1

� .˛/� .ˇ1/� .ˇ2/

�

Z 1
x

Z 1
0

Z 1
0

e�s�t t˛�1sˇ1�1uˇ2�1 (3.3)

� 0F1.�I
1Ix1st/ 0F1.�I
2Ix2usCx3ut/dt ds du�
x = 0I minf<.˛/;<.ˇ1/;<.ˇ2/g> 0 when x D 0

�
:

Proof of Theorem 2. Using the elementary integral representation [2, p. 678,
Eq.(4)]:

1F1.�I�I´/D
1

� .�/

Z 1
0

t��1e�t 0F1.�I�I´t/ dt .<.�/ > 0/ (3.4)

in (3.1), we are led to the desired integral representation. �

The Laguerre polynomial L.˛/n .x/ of order (index) ˛ and degree n in x, Bessel
function J�.´/ and the modified Bessel function I�.´/ are expressible in terms of
hypergeometric functions as follows (see, e.g., [2]; see also [1, p. 265, Eq. (3.2)]
and [5, 23]):

L.˛/n .x/D
.˛C1/n

nŠ
1F1.�nI˛C1Ix/; (3.5)

J�.´/D
.´
2
/�

� .�C1/
0F1

�
I�C1I�

1

4
´2
�

.� 2CnZ�/ (3.6)
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and

I�.´/D
.´
2
/�

� .�C1/
0F1

�
I�C1I

1

4
´2
�

.� 2CnZ�/: (3.7)

Now, applying the relationships (3.5) to (3.1), (3.6) and (3.7) to (3.1), and (3.5),
(3.6) and (3.7) to (3.1), respectively, we can deduce certain interesting integral rep-
resentations for the incomplete Srivastava’s triple hypergeometric function in (2.2)
asserted by Corollaries 1, 2 and 3 below. Their proofs are omitted.

Corollary 1. The following integral representation for � HA in (2.2) holds true:

� HA Œ.˛;x/;ˇ1;�mI
1;
2C1Ix1;x2;x3�D
mŠ

.
2C1/m� .˛/� .ˇ1/

�

Z 1
x

Z 1
0

e�s�t t˛�1sˇ1�1 0F1.�I
1Ix1st/ L
.
2/
m .x2sCx3t /dtds:

(3.8)

Corollary 2. Each of the following double integral representations holds true:

� HA Œ.˛;x/;ˇ1;ˇ2I
1C1;
2I�x1;x2;x3� D
� .
1C1/x

�

1
2

1

� .˛/� .ˇ1/
(3.9)

�

Z 1
x

Z 1
0

e�s�t t˛�

1
2
�1sˇ1�


1
2
�1J
1.2

p
x1st/ 1F1.ˇ2I
2Ix2sCx3t /dt ds

and

� HA Œ.˛;x/;ˇ1;ˇ2I
1C1;
2Ix1;x2;x3� D
� .
1C1/x

�

1
2

1

� .˛/� .ˇ1/
(3.10)

�

Z 1
x

Z 1
0

e�s�t t˛�

1
2
�1sˇ1�


1
2
�1 I
1.2

p
x1st/ 1F1.ˇ2I
2Ix2sCx3t /dt ds;

provided that the involved integrals are convergent.

Corollary 3. Each of the following double integral representations holds true:

� HA Œ.˛;x/;ˇ1;�mI
1C1;
2C1I�x1;x2;x3� D
mŠ� .
1C1/x

�

1
2

1

.
2C1/m� .˛/� .ˇ1/
(3.11)

�

Z 1
x

Z 1
0

e�s�t t˛�

1
2
�1sˇ1�


1
2
�1J
1.2

p
x1st/ L

.
2/
m .x2sCx3t /dt ds

and

� HA Œ.˛;x/;ˇ1;�mI
1C1;
2C1Ix1;x2;x3� D
mŠ� .
1C1/x

�

1
2

1

.
2C1/m� .˛/� .ˇ1/
(3.12)

�

Z 1
x

Z 1
0

e�s�t t˛�

1
2
�1sˇ1�


1
2
�1 I
1.2

p
x1st/ L

.
2/
m .x2sCx3t /dt ds;

provided that the involved integrals are convergent.
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4. TRANSFORMATION AND REDUCTION FORMULA OF � HA

In this section, we present a transformation formula and a reduction formula for
the incomplete Srivastava’s triple hypergeometric functions � HA .

Theorem 3. The following transformation formula for � HA holds true:

� HA Œ.˛;x/;ˇ1;ˇ2I
1;
2Ix1;x2;x3�D .1�x2/
�ˇ2.1�x3/

�˛ (4.1)

� � HA

��
˛;x.1�x3/

�
;ˇ1;
2�ˇ2I
1;
2I

x1

.1�x2/.1�x3/
;
x2

x2�1
;
x3

x3�1

�
:

Proof of Theorem 3. If we first apply Kummer’s transformation formula (see, e.g.,
[2, p. 125, Eq. (2)]):

1F1.˛IˇI´/D e
´
1F1.ˇ�˛IˇI�´/ (4.2)

to (3.1), we find that

� HA Œ.˛;x/;ˇ1;ˇ2I
1;
2Ix1;x2;x3�

D
1

� .˛/� .ˇ1/

Z 1
x

Z 1
0

e�s.1�x2/�t.1�x3/t˛�1sˇ1�1 (4.3)

� 0F1.�I
1Ix1st/ 1F1.
2�ˇ2I
1I�x2s�x3t /dt ds:

The substitution t .1�x3/D u; s.1�x2/D v in (4.3), leads to

� HA Œ.˛;x/;ˇ1;ˇ2I
1;
2Ix1;x2;x3�D
.1�x2/

�ˇ1.1�x3/
�˛

� .˛/� .ˇ1/

�

Z 1
x.1�x3/

Z 1
0

e�u�vu˛�1vˇ1�1 0F1

�
�I
1I

x1uv

.1�x2/.1�x3/

�
�1F1

�

2�ˇ2I
1I

x2v

.x2�1/
C

x3u

.x3�1/

�
dudv:

(4.4)

which, in view of (3.1), is easily seen to be the same as the right-hand side of (4.1).
�

Theorem 4. The following reduction formula for � HA holds true:

� HA Œ.˛;x/;ˇ1;ˇ2I
1;ˇ2Ix1;x2;x3�D .1�x2/
�ˇ1.1�x3/

�˛

� 2�1

�
.˛;x.1�x3//;ˇ1I


1I

x1

.1�x2/.1�x3/

�
:

(4.5)

Proof of Theorem 4. Setting 
2 D ˇ2 in the integral representation (3.1), we have

� HA Œ.˛;x/;ˇ1;ˇ2I
1;ˇ2Ix1;x2;x3� (4.6)

D
1

� .˛/� .ˇ1/

Z 1
x

Z 1
0

e�s.1�x2/�t.1�x3/t˛�1sˇ1�1 0F1.�I
1Ix1st/dt ds:
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Setting t .1�x3/D u, s.1�x2/D v and using (3.4) in (4.6), we obtain

� HA Œ.˛;x/;ˇ1;ˇ2I
1;ˇ2Ix1;x2;x3�D
.1�x2/

�ˇ1.1�x3/
�˛

� .˛/

�

Z 1
x.1�x3/

e�uu˛�1 1F1

�
ˇ1I
1I

x1u

.1�x2/.1�x3/

�
du:

(4.7)

Finally, using the known result in Srivastava et al. [15, p. 665, Eq. (3.6)]:

2�1

�
.a;x/Ib

cI
´

�
D

1

� .a/

Z 1
x

e�t ta�1 1F1.bIcI´t/dt

in (4.7), we are led to the desired result (4.5). �

5. DERIVATIVE FORMULA AND RECURRENCE RELATIONS OF � HA

Differentiating, partially, both sides of (2.2) with respect to x1, x2 and x3,m, n and
p times, respectively, we obtain a derivative formula for the incomplete Srivastava’s
triple hypergeometric function � HA given in the following theorem.

Theorem 5. The following derivative formula for � HA holds true:

@mCnCp

@xm1 @x
n
2@x

p
3

� HA Œ.˛;x/;ˇ1;ˇ2I
1;
2Ix1;x2;x3�D
.˛/mCp.ˇ1/mCn.ˇ2/nCp

.
1/m.
2/nCp

� � HA Œ.˛CmCp;x/;ˇ1CmCn;ˇ2CnCpI
1Cm;
2CnCpIx1;x2;x3�:

(5.1)

Next we give recurrence relations for the incomplete Srivastava triple hypergeo-
metric function � HA .

Theorem 6. The following recurrence relation for � HA holds true:

� HA Œ.˛;x/;ˇ1;ˇ2I
1;
2Ix1;x2;x3�D �
H
A Œ.˛;x/;ˇ1;ˇ2I
1�1;
2Ix1;x2;x3�

C
˛ˇ1x1


1.1�
1/
� HA Œ.˛C1;x/;ˇ1C1;ˇ2I
1C1;
2Ix1;x2;x3� (5.2)

Proof of Theorem 6. Using the well-known contiguous relation for the function
0F1 (see [3, p. 12]):

0F1.�I
 �1Ix/� 0F1.�I
 Ix/�
x


.
 �1/
0F1.�I
C1Ix/D 0

in the integral representation (3.1), we are led to the desired result. �

Theorem 7. The following recurrence relation for � HA holds true:

.
2�ˇ2�1/�
H
A Œ.˛;x/;ˇ1;ˇ2I
1;
2� (5.3)

D .
2�1/�
H
A Œ.˛;x/;ˇ1;ˇ2I
1;
2�1��ˇ2�

H
A Œ.˛;x/;ˇ1;ˇ2C1I
1;
2�;
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where the variables which are not explicitly mentioned are assumed to be unchanged
in value.

Proof of Theorem 7. Using the well-known contiguous relation for the function
1F1 (see [2, p. 124, Eq.(6)]):

.c�b�1/ 1F1.bIcIx/D .c�1/ 1F1.bIc�1Ix/�b 1F1.bC1IcIx/

in the integral representation (3.1), we are led to the desired result. �

6. CONCLUDING REMARKS AND OBSERVATIONS

In our present investigation, with the help of the incomplete Pochhammer symbols
.�Ix/� and Œ�Ix�� , we have introduced the incomplete Srivastava triple hypergeomet-
ric function � HA , whose special cases when x2 D 0 reduces to the incomplete Appell
functions of two variables (see [6]) and when x2D 0, x3D 0 or x1D 0 reduces to the
incomplete Gauss hypergeometric function (see [15]), respectively, and investigated
their diverse properties such mainly as integral representations, derivative formula,
reduction formula and recurrence relation. The special cases of the results presen-
ted here when x D 0 would reduce to the corresponding well-known results for the
Srivastava’s triple hypergeometric function HA (see, for details, [10–14, 17]).
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