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Abstract. Let R be a commutative ring with identity and M an R-module. A proper submodule
N of M is called strongly prime [resp. strongly semiprime], if (N + Rx) : M)y C N [resp.
((N 4+ Rx): M)x € N] for x,y € M implies that x € N or y € N [resp. x € N]. Strongly
prime and strongly semiprime submodules are studied, in this paper.
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1. INTRODUCTION

Throughout this paper all rings are commutative with identity and all modules are
unitary. Also we consider R to be a ring and M a unitary R-module. If N is a
submodule of M, then (N : M) ={t € R|tM C N}.

Recall from [12] that a proper submodule N of M is said to be strongly prime
[resp. strongly semiprime], if (N + Rx): M)y € N [resp. (N + Rx): M)x C N]
for x,y € M implies that x € N or y € N [resp. x € N].

If N is a strongly prime [resp. strongly semiprime] submodule of M and (N :
M) = I, then we say that N is an [-strongly prime [resp. [-strongly semiprime]
submodule of M.

A proper submodule N of M is prime if the condition ra € N,r € Randa e M
implies that either « € N or rM C N. In this case, if P = (N : M), we say that N
is a P-prime submodule of M, and it is easy to see that P is a prime ideal of R (see,
for example, [2-8, 10, 11, 13]).

In [11], another notion of strongly prime submodules was introduced. It is easy
to see that for modules over commutative rings with identity, the strongly prime
submodules introduced in [11] coincide with the prime submodules. However, the
strongly prime submodules in this paper are special cases of prime submodules (see
1(2)).

In [12, Proposition 1.1], it is shown that:

(1) Every strongly prime submodule is strongly semiprime and also prime.
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(2) Every maximal submodule is strongly prime.

A characterization of strongly prime submodules is given in (1), and there we
prove that the converse of (1) is also correct, see also (2). The converse of (2) is
studied in (3), (1), and (6).

Prime submodules have been the subject of numerous publications in the past.
So the relations between prime submodules and strongly prime submodules will be
helpful in connecting the previous papers on the prime notion for modules to this
new notion of prime. Especially there are a few papers studying the form of the
elements of the intersection of prime submodules (for example, [3,7, 10, 13]). This is
a motivation for studying the equality of the intersection of prime submodules with
the intersection of strongly prime submodules in this paper (see (7) and (3)).

The Generalized Principal Ideal Theorem (GPIT) states that if R is a Noetherian
ring and P is a minimal prime ideal over an ideal I generated by n elements of R,
then 2t P < n. The module version of GPIT related to prime submodules has been
studied in [6] and slightly in [5]. In [12, Theorem 2.3], it is proved that the module
version of GPIT related to strongly prime submodules is true for every Noetherian
flat module. This shows that the behavior of height of strongly prime submodules
is closer to prime ideals in comparing with prime submodules, and strongly prime
submodules behave better than prime submodules for studying the dimension theory
in modules.

In[12, Theorem 1.7], it is claimed that any intersection of strongly prime submod-
ules is a strongly semiprime submodule. We show that this claim is incorrect (see (1)
and (4)).

The existence of strongly prime submodules are studied in (1), (4), (3), (9). The
results (2) and (5) are devoted to studying the existence of strongly semiprime sub-
modules. In (3) and (3) we show that strongly prime submodules exist rarely in
injective modules, although (9) shows that they are found frequently in projective
modules. We apply the notion of strongly prime submodules and show that if there
exists a non-zero module over a primary ring that is both projective and injective,
then the ring has only one prime ideal (see (6)).

2. STRONGLY PRIME AND STRONGLY SEMIPRIME SUBMODULES

Let I be an ideal of R. A submodule N of M is called I -maximal, it (N : M) =1
and the submodule N is maximal with respect to this property, that is, if L is a
submodule of M containing N with (L : M) = I, then L = N (see [2] and [10, p.
1810]).

One can easily see that if N is /-maximal and / is a prime [resp. maximal] ideal,
then N is a prime [resp. maximal] submodule (see [10, Lemma 3.2]).

The following result is a generalization of [12, Proposition 1.1]. This result also
shows that strongly prime submodules are exactly /-maximal submodules, where /
is a prime ideal of R.
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Proposition 1. Let N be a submodule of M. Then the following are equivalent:

(1) N is a strongly prime submodule of M.

(2) N is a strongly semiprime submodule and also a prime submodule of M.
(3) N is a strongly semiprime submodule of M and (N : M) is a prime ideal.
4) N is (N : M)-maximal and (N : M) is a prime ideal of R.

Proof. ()= (b)). See [12, Proposition 1.1].

()= (c)). Note that for every prime submodule N of M, the ideal (N : M) is
prime.

((c)= (d)). To show that N is (N : M )-maximal, suppose that L is a submodule
of M containing N with (L : M) = (N : M). Let x be an arbitrary element of L. As
NC(N+Rx)CL,wehave (N:M)C((N+Rx):M)Z(L:M)=(N:M),
thatis, (N + Rx): M) = (N : M). Then (N + Rx) : M)x = (N : M)x € N, and
since N is a strongly semiprime submodule, x € N. This shows that L = N, whih
completes the proof.

((d)= (a)). Let P = (N : M). Since N is P-maximal and P is a prime ideal,
by [10, Lemma 3.2], N is a prime submodule; so if (N + Rx) : M)y C N, for
xeMandy e M\ N, then (N + Rx): M) C (N : M) and evidently (N : M) C
((N+Rx):M).Hence (N+Rx):M)=(N:M)= P andsince N is P-maximal,
x€(N+Rx)=N,andsox € N. O

Example 1. Let P be a maximal ideal of R and F a free R module with rank F >
1.

(1) F contains a P -strongly prime submodule.
(2) F contains a P-prime submodule that is not strongly prime.

Proof. Let F = @®;eq R, and assume that i € «.

(1) Weshow that N = P & (@iea, i #io R) is a P-strongly prime submodule of F.
Obviously PF C @jcq P € N, thatis P C (N : F), and as P is a maximal ideal of R,
we have (N : F) = P. Now let L be a submodule of F containing N with (L : F) =
(N : F). Since (L : F) = P is a maximal ideal, L is a P-prime submodule of F. If
N # L, thenlet {x;};cq € L\ N, and so x;, ¢ P. Obviously {(1 —8;y;)x;}ica € N C
L, and thus X;,{8iyi }iea = {Xi}ica —{(1 =8iyi)Xi}iea € L, and since L is a P-prime
submodule of M, we have e;, = {J;,i }ica € L. Also evidently for each j € o, j #ip.
we have e; = {;;}ica € N C L. Therefore L = F, which is a contradiction. This
shows that N is a P-strongly prime submodule submodule of F.

(2) By [4, Corollary 2.9(i)] if M is a flat module and PM # M, then PM is a
P -prime submodule of M. So the submodule PF is a P-prime submodule of F' and
note that PF C N and (N : F) = P, hence PF is not a strongly prime submodule
of F. O

Recall that an ideal I of R is semiprime if / = +/I. Strongly semiprime submod-
ules of a module are characterized in the following.
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Proposition 2. A submodule N of M is strongly semiprime if and only if (N : M)
is a semiprime ideal, and N is (N : M )-maximal.

Proof. (=>). To show that (N : M) is a semiprime ideal, on the contrary, let
re (N:M)\(N:M). Suppose that 1 < n is the smallest positive integer with
r*e(N:M),andletz € r”_lM\N. Then Rz € r"~'M CrM, andso (N + Rz):
M) ((N+rM): M). Hence:

(N+Rz): M)z ((N+rM): M)rn_lM
=" V(N +rM): M)M <" Y(N +rM) C N,

and as N is a strongly semiprime submodule, z € N, which is impossible.

To show that N is (N : M )-maximal, suppose that L is a submodule of M con-
taining N with (L : M) = (N : M). Let x be an arbitrary element of L. Then
(N+Rx) M)S((L+Rx):M)=(L:M)=(N:M). Then (N +Rx): M)x C
(N :M)x C N,ansox € N, because N is a strongly semiprime submodule. This
shows that L = N, and thus N is (N : M )-maximal.

(<) Suppose ((N + Rx): M)x C N, where x € M.Letry,ry € (N + Rx): M).
Then riraM Cri(N+ Rx) SN+ Rrix SN+ ((N+ Rx): M)x C N, and so
riry € (N : M). Consequently (N + Rx) : M)?> C (N : M), and so (N + Rx) :
M)YC J(N:M)=(N:M)Z((N+ Rx): M), which implies that N + Rx = N,
by our assumption. Thus x € N. g

The following corollary shows that if {/N;};cy is a family of distinct P-strongly
prime submodules of M with || > 1, then N;eq N; is never a strongly semiprime
submodule. This corollary rejects [12, Theorem 1.7], which claims that any intersec-
tion of strongly prime submodules is a strongly semiprime submodule.

Corollary 1. Let {N;}ieq be afamily of P-strongly prime submodules of M. Then
NieaN; is a strongly semiprime submodule if and only if N; = N; foralli,j € a.

Proof. (=). Let B="N;eqN;. Note that (B: M) =N;jeq(N; : M) =P =(N;:
M) for each j € «. Since B is strongly semiprime, by (2) it is (B : M )-maximal and
B C Nj with (B: M) = (N;: M), so Nj = B for all j € «, which completes the
proof.

(<=). Is evident. ]

Corollary 2. For a ring R, the following are equivalent:

(1) Spec(R) is a chain.
(2) Every strongly semiprime submodule of any R-module M is strongly prime.

Proof. (1) = (2)). Every two prime ideals of R are comparable, so /(N : M)
is an intersection of a chain of prime ideals, thus it is a prime ideal. By (2), (N : M) =
V(N : M), thus it is a prime ideal. Now by (1), N is a strongly prime submodule.
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((2) => (1)). Let P and Q be two prime ideals of R. Then /PN Q = /P N
/O =PnNQ,thatis, PN Q is a semiprime ideal, and so by our assumption it is
a prime ideal. Now if P € Q and Q & P, then consider p€ P\ Q andg € Q \ P.
Thus pge PNQ,butpg PNQ,andg & PN Q. ([l

Recall that a commutative ring is primary if its zero ideal is primary (see [,
Chapter 4]). The set of zero-divisors of Ris Z(R) ={r e R|30#s € R, rs = 0}.
Also
N(R)={reR|dneN, r"=0}.

A characterization of primary rings is given in the following lemma.

Lemma 1. The following are equivalent:
(1) Z(R) S N(R).
(2) Z(R) = N(R), and it is a prime ideal.
(3) R is a primary ring.

Proof. (1) = (2)). We know that Z(R) is a union of prime ideals, and N (R) is
the intersection of all prime ideals. Let Z(R) = U;¢q P;, where each P; is a prime
ideal, and let ip € a. Then U;eq P; = Z(R) € N(R) C Piy, € Uieq Pi.

((2) = (3) and ((3) = (1)) are obvious. ]

Proposition 3. Let R be a primary ring, M a divisible R-module and N a sub-
module of M. Then the following are equivalent:

(1) N is a maximal submodule.

(2) N is a strongly prime submodule.

(3) N is a strongly semiprime submodule.

(4) N is a maximal submodule and (N : M) is the unique prime ideal of R.

Proof. (1) = (2) = (3))) see [12, Proposition 1.1].

((4) = (1)). Is obvious.

((3) = (4)). Let N be a strongly semiprime submodule of M and L a proper
submodule of M containing N. We show that (N : M) = (L : M).

On the contrary, let 7 € (L : M))\ (N : M). By (2), (N : M) is a semiprime ideal,
s0 Z(R) S N(R)C /(N :M)= (N :M); and hence r € R\ Z(R). Since M is
divisible, M =rM C L C M, which s a contradiction. Thus (N : M) = (L : M), and
by (2), N is (N : M )-maximal, therefore N = L, and so N is a maximal submodule
of M. This also implies that (N : M) is a maximal ideal.

Ift € (N : M)\ Z(R), then as M is divisible, M =tM C N, which is impossible.
Hence (N : M) € Z(R) € N(R) C P for each prime ideal P of R, and as (N : M)
is maximal, (N : M) = P, the ring R has a unique prime ideal (N : M). 0

Note 4. The following corollary shows that in a divisible module over an integral
domain (particularly in a vector space), even the intersection of two distinct maximal
(strongly prime) submodules is not strongly semiprime, because it is not a maximal
submodule. The following result is also a generalization of [12, Proposition 1.3].
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Corollary 3. Let R be an integral domain and N a submodule of M. Then the
following are equivalent:

(1) M is an injective module and N is a maximal submodule.

(2) M is a divisible module and N is a strongly prime submodule.

(3) M is a divisible module and N is a strongly semiprime submodule.
(4) N is a maximal submodule and R is a field.

Proof. (1) = (2) = (3)) and ((4) = (1)) are obvious.
((3) = (4)). The proof is given by (3). O

Example 2. Let R be the field of real numbers and consider M = R?. By (3), the
strongly prime submodules of M are exactly the maximal submodules of M, and
we know that the maximal submodules of M are exactly the lines passing through
the origin. Hence although M is a Noetherian module over a Noetherian ring, it
has infinitely many minimal strongly prime submodules. Note that according to [11,
Theorem 4.2], a Noetherian module over a Noetherian ring has finitely many minimal
prime submodules.

For an ideal I of R, a primary decomposition / = N?_, Q; will be called coprime,
if either n = 1 or Q;’s are coprime; equivalently when /Q;’s are coprime. When
this is the case, because of the Second Uniqueness Theorem (see [ 1, Theorem 4.10]),
I has a unique minimal primary decomposition. For example, in any semilocal ring
R, for each n € N, the ideal ($(R))" has a coprime primary decomposition. Also
evidently each ideal of an Atrinian ring or a Noetherian domain of dimension one
has a coprime primary decomposition. Let S = K[x1,x2,x3,---], where K is a
field and x1, x2, x3,--- are independent indeterminates and let / = S(x1 —c1)"!'(x; —
c2)"2(x1 —c3)"3 - (x1 — )", where c1,¢2,¢3,-++,cy are distinct element of K,
and ny,np,n3, -+ ,ny, € N. Then the ideal I of S has a coprime primary decompos-
ition. Indeed NYL, S(x1 —¢;)" is a coprime primary decomposition of /. Thus in
the non-Noetherian infinite dimensional ring R = S/1, the zero ideal has a coprime
primary decomposition.

Theorem 1. Let the zero ideal of R have a coprime primary decomposition. If M
is a divisible R-module, then every strongly prime submodule of M is maximal.

Proof. If the zero ideal of R is primary, then the proof is given by (3). Now sup-
pose that 0 = N?_, Q; is a coprime primary decomposition of the zero ideal. Con-
sider the natural ring homomorphism ¢ : R — (R/ Q1) X (R/Q2) x--- X (R/Q#n),
o(r)=(r+Q1.r+Q2,---.,r + Qy). Since 0 = N?_, Q; and Q;’s are coprime, by
[1, Proposition 1.10], ¢ is a ring isomorphism. Hence without loss of generality, we
can assume that R = R; x R, x--- X R, where each R; is a primary ring. Put
M, =(1,0,---,0M, M, = (0,1,0,--- ,0)M,--- , M, = (0,0,---,0,1) M. One can
easily see that M7 is an Rj-module with the multiplication
r1((1,0,-++,0)m) = (1,0,---,0)((r1,0,---,0)m) for each r; € Ry and m € M. Sim-
ilarly each M; is an R;-module and M =~ M| x M x--- x My as R-modules. So we
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can assume that M = My X M5 x--- x M, is a divisible R1 X Ry X --- X R,-module,
and each M; is an R;-module. Evidently for each r; € Ry, we have:
(1) ry € Z(Ry) if and only if (r1,1,1,---,1) € Z(R).
(2) riM; = M, if and only if (r1,1,1,--- , )M = M.
Therefore as M is a divisible R-module, M; is a divisible Ri-module. Similarly
M; is a divisible R;-module, for eachi > 1.
Let T be a submodule of M. It is easy to see that:

(3) T =T1 xTyx---xT,, where each T; is a submodule of M; as an R;-module.
@ (T:M)=(T1: M) x(Tp: Mp) x---x(Ty, : My).

Let N be a strongly prime submodule of M. Then by (3), N = N1 X N X+ X Ny,
where each N; is a submodule of M; as an R;-module. We show that there exists a
1 < j <n such that N; is a strongly prime submodule of M; and N; = M; for each
i#]J

By [9, p. 6, Exercise 1.2], the prime ideals of R are of the form Ry x Ry X --- X
Rj—1x Pj xRjy1x-+x Ry, where P; is a prime ideal of R;. Thus as by (4) and
1), (N :M)=(Ny: My)x(Ny:Mp)x---x(Ny: My)is aprime ideal of R, there
exists a 1 < j <n such that (N, : M;) is a prime ideal of R; and (N; : M;) = R; for
eachi # j. Hence N; = M; for each i # j. Now we show that N; is a strongly prime
submodule of M;.

Let L; be a submodule of M; containing N; with (N; : M;) = (L; : M;). Con-
sider L=M{xMyx--xMj_1xL;jxMjy1x---xMy,.By@4),(N:M)=(L:M),
and since N is a strongly prime submodule of M and N C L, by (1), wehave N = L,
which implies that N; = L;. Thus again by (1), N; is a strongly prime submodule of
M;. Now as R; is a primary ring, by (3), N; is a maximal submodule of M;. Hence
by 3), N =M1 xMyx---xMj_1 xN;jxM;jyqx---x M, is a maximal submodule
of M. U

The set of all prime [resp. strongly prime] submodules of an R-module M is
denoted by Spec(M) or Specr(M) [resp. SSpec(M ) or SSpecr(M)]. Evidently if
M is finitely generated, then SSpecg(M) # @.

Proposition 5. Let the zero ideal of R have a coprime primary decomposition
and dim R > 0. Then there does not exist any non-zero finitely generated divisible
R-module. Particularly there does not exist any non-zero finitely generated injective
R-module.

Proof. Let M be a non-zero finitely generated divisible R-module. According to
the proof of (1), we can assume that R = Ry X Ry X -+ X Ry, where each R; is a
primary ring, and M = My X M3 x+--x My is an Ry X Ry X -+ X Ry-module, where
each M; is a non-zero finitely generated divisible R;-module, and so SSpecg, (M;) #
@. Then (3) implies that R; has a unique prime ideal P;, and hence the prime ideals
of R are exactly I/’\, =R XRyxX---XRi_1 X P; XxRjy1 XX Ry, forl <i <n.
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Evidently P; Z 7’7 for any i # j. This shows that dim R = 0, which is a contradic-
tion. g

Let S = R\ Z(R). Then S is a multiplicatively closed subset of R, and the ring Rg
is called the total quotient ring of R. Since S contains no zero divisors, the natural
map R — Ry is injective, so Rg is a ring extension of R, and evidently Rg is an
R-module.

Lemma 2. Let N be a submodule of M with (N : M) = P.

(1) N is a maximal submodule if and only if N is a strongly prime submodule
and P is a maximal ideal of R.

(2) If P is a maximal ideal, then there exists a P -strongly prime (maximal) sub-
module of M containing N.

Proof. (1) The proof is evident by (1).

(2) Note that M/N is a vector space over the field R/ P, so it has a maximal
subspace, say M /N. Then M is a maximal submodule of M containing N, and as
P=(N:M)ZT(M: M), wehave P = (M : M). O

Corollary 4. Let the zero ideal of R have a coprime primary decomposition, and
let K be the total quotient ring of R. Then the following are equivalent:

(1) dim R=0.

(2) There exists a P-strong prime R-submodule of K, for each minimal prime
ideals P of R.

3) K=R.

Proof. Evidently K is a divisible R-module. Let 0 = N7_, Q; be a coprime

primary decomposition of the zero ideal and /Q; = P;. Then the minimal prime
ideals of R are exactly Py, Pp,---, Py, also Z(R) = U7_, P;.

((a@) = (b)). AsdimR =0, the ideals Py, P5,---, Py are all of the maximal ideals
of R. Obviously each P; is a proper submodule of K as an R-module. We show that
(P; : K) = P;, and so by (2)(2), there exists a P;-strongly prime R-submodule of K,
which completes the proof.

Leta/s € K, wherea € Rand s € R\ Z(R). As s ¢ Z(R) = U!_, P;, itis a unit
element of R, and hence for each p; € P;, we have p;(a/s) = (s"!p;a)/l € P;.
Consequently P; K C P;, thatis P; € (P; : K), and since P; is a maximal ideal,
Pl' = (Pl' : K)

((b) = (c)). By our assumption there exists a P;-strongly prime submodule N;
of K as an R-module, and (1) implies that N; is a maximal submodule of K. Hence
foreach 1 <i <n, theideal P; is a maximal ideal R, and so the ideals Py, P2,---, Py,
are all of the maximal ideals of R. Now let b/t € K, where b € R and t € R\ Z(R).
Ast ¢ Z(R) = U?_, P;, it is a unit element of R, and hence b/t = (t~'h)/1 € R.
Consequently K = R.
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((c) = (a)). Since K = R, the R-module K is a non-zero finitely generated
divisible module, and so by (5), dim R = 0. O

Recall from [13] that an R-module M is said to be special, if for each maximal
ideal 91 of R, every a € 9t and any m € M, there exist c € R\M and k € N
such that cakm = 0. Semi-simple modules (direct sum of simple modules), locally
Artinian modules (modules in which every cyclic submodule is Artinian) and semi-
Artinian modules (modules of which every homomorphic image has a nonzero simple
submodule) are special (see [13, Section 3]).

Proposition 6.

(1) Every strongly prime submodule of a special module is a maximal submodule.
(2) dim R = 0 if and only if every strongly prime submodule of any R-module
is maximal.

Proof. (1) Let N be a strongly prime submodule of M and )t a maximal ideal of
R containing (N : M). Consider m € M \ N, and a € 9. Since M is special, there
existc € R\ and k € N such that ca¥m =0.Then cakm € N andas N isa prime
submodule and ¢ & (N : M)andm ¢ N, wehavea € (N : M), and so (N : M) = 9N.
This shows that (N : M) is a maximal ideal of R, and so by (2)(1), N is a maximal
submodule of M.

(2) Letdim R = 0. By [13, Theorem 3.5], every module over a zero dimensional
ring is special, so the proof is given by part (1).

For the ’if part’ it is enough to consider R as an R-module. g

Example 3.

(1) Consider the Z-module M = Z/nZ, where n is a positive integer. Evidently
each semiprime ideal of Z is an ideal generated by a square free integer.
It is easy to see that strongly semiprime submodules of M are of the form
kZ/nZ, where k is a square free integer with k|n.

(2) More generally let R be a Dedekind domain and consider the cyclic R-
module M = R/I, where I is a proper ideal of R. If the prime factoriza-
tion of [ is P! P;--- Py, then the strongly semiprime submodules of M

are Plﬂ ! Pzﬂ 2 ---P,ﬁm /1, where each f§; is either O or 1, and at least for one
1<i<m, B =1.

(3) Each strongly prime submodule of the Z-module M = Z /nZ is of the form
PZ/nZ, where p is a prime factor of n, so they are exactly the maximal
submodules of M.

The following result guarantees the existence of an [ -strongly semiprime submod-
ule in a finitely generated module M, for any semiprime ideal / containing Ann M.

Theorem 2. Let B be a submodule of a finitely generated R-module M. If (B :
M) C I, where I is a proper semiprime ideal of R, then there exists an I -strongly
semiprime submodule of M containing B.
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Proof. Let T ={C <M |BCC, (C:M)C I} ByZorn’s Lemma J has a
maximal element, say N. We prove that N is an [ -strongly semiprime submodule of
M.

According to [9, Ex. 2.2., p. 13], if M is finitely generated and / an ideal of R,
then \/(IM : M) = \/Ann(M) + I. Hence:

(N+IM): M)_(I— —)_\/(1— —)—\/Ann(%)—i-l
_ SN M +I=1.

So N +IM € 7, and since N is a maximal element of 7, we have N = N +IM.
Hence I C(N+IM): M)=(N:M)< I,andthus (N : M) =1.

Now suppose that L is a submodule of M containing N with (L : M) = (N : M).
Then as N is amaximal element of 7, evidently L = N. Hence by (2), N is a strongly
semiprime submodule of M. O

Corollary 5. Let B be a submodule of a finitely generated R-module M. Then
there exists a /(B : M)-strongly semiprime submodule of M containing B.

The following result is a generalization of [5, Lemma 4] or [ 10, Theorem 3.3].

Lemma 3. Let B be a submodule of M and P a prime ideal of R. Then B is
contained in a P -strongly prime submodule, if one of the following holds:

(1) M is a finitely generated R-module and (B : M) C P.
(2) M is a special R-module and B is a P-prime submodule of M.

Proof. (1) By (2), there exists a P-strongly semiprime submodule N of M con-
taining B, and since (N : M) = P is a prime ideal, (1) implies that N is a P-strongly
prime submodule of M.

(2) Follow the proof of (6)(1) to see that if B is a P-prime submodule of a special
module, then P is a maximal ideal. Now by (2)(2), B is contained in a P-strongly
prime and containing B. 0

Lemma 4. [2, Theorem 2.8] If M is a finitely generated module, then every P -
prime submodule of M is an intersection of P-maximal submodules of M.

Let B be a proper submodule of an R-module M. The intersection of all prime
submodules of M containing B is denoted by rad(B) or radg(B). If M has no
prime submodules containing B, then we consider rad(B) = M. Also according to
[12], the intersection of all strongly prime submodules of M containing B is denoted
by s-rad(B) or s-radg(B). If M has no strongly prime submodules containing B,
then we say s-rad(B) =

The following result shows that s-rad(B) coincides with rad(B), for finitely gen-
erated or special modules.
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Proposition 7. s-rad(B) = rad(B), for every submodule B of M, if M is a
finitely generated or a special module.

Proof. By (3), rad(B) = M if and only if s-rad(B) = M. Now suppose that
rad(B) # M. As each strongly prime submodule is a prime submodule, rad(B) C
s-rad(B).

First suppose that M is a finitely generated module. For proving the converse
inclusion, note that by (4), every P-prime submodule of M is an intersection of P-
maximal submodules of M and by (1), the P-maximal submodules of M are exactly
the P-strongly prime submodules of M. Hence every P-prime submodule of M is
an intersection of strongly prime submodules. This shows that s-rad(B) C rad(B),
when M is finitely generated.

Now assume that M is a special module. From the proof of (6), for any P-prime
submodule N of M, the ideal P is maximal.

It is well-known that in a vector space the zero subspace is an intersection of
maximal subspaces, so for the vector space M/N over the field R/P, we have
N/N = NjeaM;, where each M; is a maximal subspace of M/N. Then for each
i €ea, M; = N; /N, where N; is a maximal submodule of M containing N. Hence
N = N;eaN;, that is, every prime submodule of M is an intersection of strongly
prime submodules, and this completes the proof. O

Example 4. By (3), the Z-module Q of all rational numbers has no strongly prime
submodules, although the zero submodule is a prime submodule. Hence s-rad(0) =
Q and rad(0) = 0, that is, s-rad(0) # rad(0). This example and also the following
result show that (7) does not hold in general.

Theorem 3. For a ring R, the following are equivalent:
(1) dim R=0.
(2) s-rad(B) = rad(B), for every R-module M and any B < M.
(3) s-rad(0) = rad(0), for every R-module M.

Proof. ((i) = (ii)) is given by (7), and ((ii)) = (iii)) is obvious.

((iii)) = (i)). Let P be a prime ideal of R. We show that P is a maximal ideal of
R. First we prove that s-radg,p(0) = radg,p(0), for every R/P-module M’.

Evidently, we can consider M’ as an R-module, by the natural pull back homo-
morphism R — R/ P, that is, we define rx = (r + P)x, foreachr € R and x € M’.
Let N’ be a prime submodule of M’ as an R/ P-module. It is easy to check that:

(1) (*) N'/N’ is a prime submodule of M’/ N’ as an R-module.

(2) (xx) If for N C N < M’, N/N' is a strongly prime submodule of M’/ N’
as an R-module, then N is a strongly prime submodule of M’ as an R/ P-
module.

By our assumption and (x), N'/N’ is an intersection of strongly semiprime sub-
modules of M’/N’ as an R-module. Now by (x%), N’ is an intersection of strongly
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semiprime submodules of M’ as an R/P-module. Consequently s-radg/p(0) =
radg,p(0), for every R/ P-module module.

Now suppose that K is the quotient field of R/ P. Itis easy to see that for the R/ P-
module K, we have Specg,p(K) = {0}, and so s-radg,p(0) = radg,p(0) = 0 for
the R/ P-module K. Thus by (4), R/ P is a field. O

Let S be a multiplicatively closed subset of R. For any N < Mg, we consider
N¢={xeM]|x/leN}.

Lemma 5. [8, Proposition 1] Let M be an R-module and S a multiplicatively
closed subset of R.
(1) If N is a P-prime submodule of M with P NS = &, then Ng is a Ps-prime
submodule of Ms as an Rg-module and (Ng)¢ = N.
) If T is a Q-prime submodule of Ms as an Rgs-module, then T€ is a Q°€-
prime submodule of M, (T)s =T and QNS = @.

The following result is a generalization of [12, Theorem 1.5 and Corollary 1.6].

Proposition 8. Let M be an R-module, S a multiplicatively closed subset of R,
and N a P -strongly prime submodule of M with P NS = &.

(1) Ng isa Pg-strongly prime submodule of Mg as an Rg-module and (Ng)¢ =
N.

(2) If P is a maximal element of {I | I is an ideal of R with I NS = &}, then
Ng is a maximal submodule of Mg.

(3) If M is a finitely generated module, then Ng is a maximal submodule of Mg if
and only if P is a maximal element of the set {1 | I is an ideal of R with I N
S =g}

(4) Let T be a Q-strongly prime submodule of Mg as an Rg-module, where M
is finitely generated or a special module, or Q€ is a maximal ideal of R. Then
T€ is a Q€-strongly prime submodule of M.

Proof. (i) As N is a strongly prime submodule, it is a prime submodule, and so ac-
cording to (5)(i), Ns # Mg and (Ng)¢ = N. Then Ny is a strongly prime submodule
of Mg, by [12, Theorem 1.5].

(ii) Let 99T be a maximal ideal of Rg containing Pg. Then P = (Pg)¢ C 91¢ and
M NS = . Now since P is a maximal element of the set {/ | I is an ideal of R with I N
S = @}, we have P =90¢, and so Pg = (IM°)s = M. Thus Pg is a maximal ideal
of Rg, and by part (i), Ng is a Pg-strongly prime submodule, so by (2)(1), Ng is a
maximal submodule of Mg.

(iii) Let Ng be a maximal submodule of Mg, and suppose

A={I D P|Iisanideal of R with I NS = &}.

By Zorn’s lemma A has a maximal element, say 2. By (3), N is contained in an
ON'-strongly prime submodule N of M. Part (i) implies that N is a strongly prime
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submodule of Mg containing Ng, and since Ng is a maximal submodule, Ng = N g
and so N = (Ng)¢ = (Ng)* = N'. Thus P = (N : M) = (N': M) = 9, which
implies that P is a maximal element of {/ | / is an ideal of R with I N S = @}.

(iv) Since T is a Q-prime submodule, (5),(ii), implies that 7€ is a Q¢-prime sub-
module of M.

If M is finitely generated or a special module, then according to (3), 7€ is con-
tained in a Q€¢-strongly prime submodule L of M. Then T = (T¢)s C Lgs and by
(5)(), (Ls : Mg) = Q. According to (1), T is Q-maximal, hence T = Lg and by
(5)(1), T¢ = (Ls)¢ = L. Then T€ is a Q¢-strongly prime submodule of M.

Now let Q¢ be a maximal ideal of R. If 7 is contained in a submodule U of M
with (T¢: M) = (U : M), then as Q¢ = (U : M) is a maximal ideal, U is a prime
submodule and (5)(i) implies that (Us : Mg) = Q. Evidently T = (T¢)s € Us and
QO =(T:Ms)=(Us : Mg), and as T is a strongly prime submodule, we have
T = Ug, which implies that 7¢ = U. This shows that T¢ is a Q¢-strongly prime
submodule of M. g

The following example shows that the contraction of a strongly prime submodule
is not necessarily strongly prime, in general.

Example 5. Let P be the zero ideal of Z. Then Zp = Q and Qp = Q. So
SSpecz,, (Qp) = {0}, although 0° = 0 ¢ SSpecz(Q), because SSpecz(Q) = 2,
by (3).

From (3) we can conclude that injective modules over a primary ring with more
than one prime ideal or particularly over an integral domain which is not field, have
no strongly prime submodules. The following result shows the opposite of this for
projective modules, the dual of injective modules.

Proposition 9. Let M be a non-zero a projective module, and P a prime ideal of
R. Then M has a strongly prime submodule containing PM if and only if PM # M.

Proof. Let PM # M. By [4, Corollary 2.9(1)] if M is a flat module and PM # M,
then PM is a P-prime submodule of M. Now by (5)(i), (PM)p is a Pp-prime
submodule of Mp. Particularly this shows that Mp # 0.

Now suppose that 91 is a maximal ideal of R containing P. By (Msm)p,, = Mp
and Mp # 0, we have Mgy # 0. We show that Mgy has a maximal submodule. Since
My is a non-zero projective module over the local ring Ryy, it is a non-zero free
Rop-module. Hence we can assume that My, is a direct sum of copies of Roy.

If Moy = Roy, then obviously Mgy has a maximal submodule (ideal in this case).
Now let Moy = Djeq Ron, where || > 1, and assume that iy € o, Consider T =
Mo & (@iea, i#io Rgm). Obviously MonMop C BieceIMon C T, that is Doy C (T :
Moy), and as Mgy is a maximal ideal of Roy, we have (T : Mgn) = Mgyn. Thus by
(2)(2), T is contained in an Mgy-strongly prime submodule M of Myy. Therefore
as (Mgy)¢ = M is a maximal ideal of R, by (8)(iv), M is an IM-strongly prime
submodule of M containing PM.
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The "only if” part is obvious. g

Recall that a ring R is semi simple, if and only if all R-modules are projective, if
and only if all R-modules are injective (see [ 14, Proposition 4.5]).

Corollary 6. Let the zero ideal of R have a coprime primary decomposition. If
there exists a non-zero R-module that is both projective and injective, then R has
finitely many prime ideals and dim R = 0.

Proof. Let M be a non-zero R-module that is both projective and injective. By
the proof of (1), we can assume that R = Ry X Ry X --- X Ry, where each R; is a
primary ring, and M = My x M5 x---x M, where each M; is a non-zero divisible
R;-module. We show that M is a projective Rq-module.

Let f1 : A1 — Bj be a surjective Rj-module homomorphism, and let g1 : M| —
B be an R;-module homomorphism. For each 2 <i < n, consider A; = B; =
0,and let A = A1 X Ay X--+X Ay to B = By X By Xx---x By. Define f: A —
B, f(ay.az,a3,-+,ay) = (f1(a1),0,0,---,0) and g : M — B, g(ay,az,-+-,ay) =
(g1(a1),0,0,---,0). Obviously f is a surjective R-module homomorphism and g is
an R-module homomorphism.

As M is a projective R-module, there exists an R-module homomorphism # :
M — A with foh = g. Consider 1 : A — Ay, mi(ay,az, - ,an) = ay, and £ :
My — M, li(a1) = (a1,0,---,0), and let by : My — A1, hy = myohofy. One can
easily see that A is an Rj-module homomorphism with fj oy = g1. This shows
that M, is a projective Rj-modules. Similarly M; is a projective R;-modules, for
each2 <i <n.

As M; # 0 for each 1 <i <n, we have Mp, # 0, for some prime ideal P; of
R;, and by the proof of (9), SSpecg, (M;) # @. Now as each M; is a divisible R;-
module, by the proof of (5), dim R = 0 and each R; has a unique prime ideal, and
therefore R has finitely many prime ideals. u
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