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ON K-CIRCULANT MATRICES INVOLVING THE FIBONACCI
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Abstract. Let k be a nonzero complex number. In this paper we consider a k-circulant matrix
whose first row is (Fy, Fa, ..., Fy), where Fy, is the n'" Fibonacci number, and investigate the
eigenvalues and Euclidean (or Frobenius) norm of that matrix. Also, the upper and lower bounds
for the spectral norm of the Hadamard inverse of that matrix are obtained.
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1. INTRODUCTION

In this paper, k is a nonzero complex number and C"**” denotes the set of all complex
matrices of order n. Any n'" root of k and any primitive n’ h root of unity are denoted
by ¥ and w, respectively. Symbols A;,j =0,n—1, |C|, |C| g, ||C|2 and C°!
stand for the eigenvalues, the determinant, the Euclidean norm, the spectral norm
and the Hadamard inverse of C € C"*", respectively. Namely, for C = [c,-, j] eCm

n
ICle=( Z |ci,j |2)%, ||C||2=\/ max A;(C*C), where C* is the conjugate
1<i<n

i,j=1
o—1_| .—1
transpose of C, and C —[ci,j] .
Definition 1. A matrix C of order n with the first row (cg,c1,¢2,...,¢n—1) 18

called a k-circulant matrix if C has the following form:

Co C1 C2 o Cp—2 Cp—1
kcn—1  co c1 v Cp—3  Cp—2
kcp—2 kep—1 co 0 Cp—a Cp—3
c=|"" R (1.1
kc‘z kC3 kC4 Co C1
kCl k(,’z kC3 kcn_l Co

(© 2018 Miskolc University Press



506 BILJANA RADICIC

We shall write C =circy{i(co.c1,¢2,...,¢cn—1)} if @ matrix C has the form (1.1).
The designation for the order of a matrix can be omitted if the dimension of a matrix
is known. Circulant matrices are k-circulant matrices for k = 1 and skew circulant
matrices are k-circulant matrices for k = —1.

The Fibonacci numbers { Fy } satisfy the following recursive relation:
Fp=Fp2+F—1, n=2, (1.2)
with initial conditions Fp =0 and F; =1.

2

Let @ and B be the roots of the equation x*—x—1=0 i.e.

1++/5 1-+/5

o= , B=
2 2

Binet’s formula for the Fibonacci numbers is:

Cam—pr 1 ((1+5) (1-5)"
tr () (%) e

Let us mention that the Lucas numbers {L,} satisfy the same recursive relation (as
the Fibonacci numbers) but with initial conditions Lo=2 and L; =1 and

Ln=a”+ﬂ”=<1+‘/§) +<1_ﬁ) (15)

Lafp=—1,a+p=1 and a—B=+5  (1.3)

2 2
is Binet’s formula for the Lucas numbers.
The following identities hold for the Fibonacci numbers:
[_ Lopt1— (_l)n ]

n n
ZF[:Fn+2—1 and ZFizanFn—{-l - 5

(1.6)

More information about these numbers can be found in [2,3,8-10,12, 14, 15].

In [4, 13] the authors investigated the determinants and inverses of circulant (of skew
circulant) matrices whose first rows are (F1, F>,..., Fy) and (L1,L>,...,Ly). The
paper [5] is devoted to k-circulant matrices with the Fibonacci and Lucas numbers,
and an upper bound estimation of the spectral norm for such matrices was given in
that paper.

The motivation for this paper is the paper [17] in which the authors investigated k-
circulant matrices with the generalized r-Horadam numbers { H; ,, } which are defined
as follows:

Hypnto= f(r)Hrn+1+g(r)Hry, n>0,
where r e RT, Hro=a,H,1=b,a,beRand f2(r)+4g(r) > 0, and presented the
upper and lower bounds for the spectral norms of such matrices.
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Theorem 1 (Theorem 5. [17]). Let H =circ{y(Hro, Hr1..... Hrn—1)}.
a)If |k| > 1, then

n—1 n—1 n—1

Y HY <|H|2< (a2(1—|k|2)+|k|22H§,.) (l—a2+ ZH,%,.) (1.7)
i=0 =0 i=0

b)If |k| < 1, then

k| (1.8)

n—1
S HZ <|H|2 <
i=0

Also, in [17], the formulae for the eigenvalues and determinant of a k-circulant matrix
with the generalized r-Horadam numbers were derived.

Theorem 2 (Theorem 7. [17]). Let H =circ{x(Hyo.Hr1,...,Hrn—1)}. Then
the eigenvalues of H are:
_ kHpn+(g(kHyn—1—b+af (r)yo~/ — Hro
gr)Wo/)2+ f(r)yo=/ -1

A L j=0n—1. (19)

Theorem 3 (Theorem 8. [17]). Let H =circ{x(Hro.Hr1,...,Hrn—1)}. Then
the determinant of H is:

_ (Hpo—kHpp)" —(g(r)kHypn—1—b+af(r))"k

I (1—ka™)(1—kp") ’

(1.10)

where o and B are the roots of the equation x>— f (r)x—g(r)=0.

Let us also mention that, in [16], the authors considered circulant matrices with the
generalized r-Horadam numbers and obtained the determinants and inverses of such
matrices.

In the present paper, we consider the matrix
F =circ{g(F1,F2,..., Fy)} (1.11)

and improve the result in relation to the eigenvalues of (1.11) which can be obtained
from (1.9) because the authors did not consider the case when the denominator is
equal to zero. Also, we determine the Euclidean norm of (1.11) and derive the upper
and lower bounds for the spectral norm of the Hadamard inverse of (1.11). The results
are presented in the next section.
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2. RESULTS

Let us recall that ¥ is any n*” root of k and w is any primitive n'# root of unity. Also,

throughout this section, o and B are the roots of the equation x2—x —1 = 0. In order
to obtain the eigenvalues of (1.11), we need the following lemma.

Lemma 1 (Lemma 4. [1]). The eigenvalues of C =circ{;(co,c1,¢2,...,Cn—1)}
are:
n—1 o o
A=Y (o /), j=0n—1. (2.1)
i=0
Moreover, in this case:
1n—l
R A T i=0,n—1. 2.2
ci n;),(vfw )7 i=0,n 22)

Theorem 4. Let F be the matrix as in (1.11). Then the eigenvalues of F are given
by the following formulae:

—j_1
DIfyw™) =, then

I 1—(—1)";32"]
Ai=— — =, 2.3
=G5 &3
2) If yo~/ = %, then
1 [1=(=1)"a?" ]
Ai=—|——F———np|, 2.4
J vg- Vg nﬂ ( )

3)If Yo/ ;éé and Yo ~) # %, then
 kFppi =1+ kFpyo/
S o

2.5)

Proof. Based on Lemma 1 and (1.4), it follows:
1) Suppose that Yo~/ = é Then,

o
51—0

O = R 1—(Eyn
SO MR R s S
o 0]

G NG

n—1 n—1
=3 Rty = LS gy
i=0 P
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2) Suppose that Yo~/ = % Then,

p
B 1 n—1 N n—ll B 1 1_(%)n
BRI NP2V AP PRl Il R

e
“ilv |

3) Suppose that Yo~/ # é and Yo~/ # % Then, A; follows from (1.9).

n—1 o 1 n—1 ; ; 1 ;
b= 3 o) = %;[a gt )

The previously obtained result will be illustrated by the following example.

Example 1. Let
F=circ{9_4ﬁ(1,1,2,3,5,8)}

ie.

i 1 1 2 3 5 8 ]
8(9—4/5) 1 1 2 3 5
5(9—45) 8(9—4+/5) 1 1 2 3

F=1 3045 50-4v5) 809-4v5) 1 1 2

2(9—4+/5) 3(9—45) 5(9-45) 8(9—45) 1 1

9—4v5  2(9—45) 3(9—43) 5(9—4v5) 8(9—4+5) 1

Sincen =6andk =9—45ie. ¥ =—Pand w = % —i—iﬁ, based on Theorem 4,
it follows that

*: Yo = é, s0 Ag is obtained based on 1) of Theorem 4: Ao =—29 + 15+/5;
*: Yo~/ 75% and Yo~/ # %, for j =1,5, so A, for j = 1,5, are obtained based
on 3) of Theorem 4: A1 5=—1 [51 —235+i/3(29— 13J§)], Aoa=T-35F
iv/3(29—134/5), \3=72—32/5

n—1
Bearing in mind that | F' |= l_[ Aj, it follows that

j=0

| F |=—238300041216 — 106571018240+/5.
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Let us remark, in relation to the previous example, that the determinant of F =
circ{9_4ﬁ(1, 1,2,3,5,8)} is not possible to obtain using the result of Theorem 3.

The next theorem is devoted to determining the Euclidean norm of (1.11). The fol-
lowing formula will be needed.

For all x,

iy i x—nx"+(n—1x"t!
$ -

d—x)2 (2.6)

i=1
Theorem 5. Let F be the matrix as in (1.11). Then the Euclidean norm of F is:

) e

Proof. From the definition of the Euclidean norm, using (1.4), (1.5), (1.6) and
(2.6), we obtain:

(IF1le)
= > 1fil?

i,j=1
:nFl [(n = D)+ kPP FF + [(n—2) + 2k ] F3 + -+ [1 + (n = D |k[*] F;?

n—1
_Z(” DFZ + kP Y iFR,

i=1
I SY AR e
i=0 i=1
n—1
-1 [ [Lont1 = (D" + (KP=1) Y i[2+2 —2(p) ! +ﬂ2"+2]}

i—l

||F||E=\/;{ (L2111 (kR = 1) [~Lan+ =D Lan 1 +5

(9]

k12 =1 _ 2n 1 2n+2
_g[LZn—H_(_l)n] | |5 (o 2" —na +a(2n )o
P G e UG ey ﬂ2”+(2n—1)ﬂ2”+2)
4 B
k|2 —
=§[L2n+1—(—1)”]+—| |5 1(—11052"4—(71— o2 4 ( H"

_nIBZn + (l’l _ 1)'82714-2)
|k|? —

= % [Lans1—(=D"]+

1
|:_nL2n +(

!
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n
5
Therefore,

k12—1 5 1-2n
[L2n+1—(—1)"]+| |5 |:_L2n+(n_1)L2n+1+§+ 7 (—1)"]-

| Flle= \/é {n[Lons1—(=1)"]+ (k|2 =1)[-Lop + (1 — 1) Lops1 + 3 + 22 (=1)"]}.
O
The upper and lower bounds for the spectral norm of the Hadamard inverse of (1.11)
will be given by the following theorem. We use the well - known inequalities
ICIE
N

which hold for any matrix C of order n, and the following lemma.

<IClz2 = lClE. (2.8)

Lemma 2 ([7]). Let M = [mi,j] and N = [ni,j] be matrices of order m x n. Then

[MoN|2<ri(M)oci(N), (2.9)

where M o N = [m; jn; ;] is the Hadamard product (or Schur product),

n

Z|m,~,j 1> and c¢i(N)= max

1<j=<n

m

> lnij 2

=

nn= s,

i=1
More information about the Hadamard product can be found in [6, | 1].

Theorem 6. Let F be the matrix as in (1.11).
1) If k| = 1, then

5n
= < |IFTY < +/n(1+ (i —=1Dk|?), (2.10)
el L PERVCIRH ORI
2) If |k| < 1, then
5n
k| — < ||[F° !y <n. (2.11)
||\/L2n+1—(—1)" I I2

Proof. From the definition of the Euclidean norm, it follows that

n—1 n—1
Fo 3 = i) K2y i ! 2.12
IFo M = D =)y + KPP Y i 2.12)
i=0 i+1 i=1 i+1
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1) If |k| > 1, then

o112 n—1 . n—l. 1 n—1 1
”F ||EZZ(’1_Z)F2 +ZlF2 _nZFZ
i=0 i+1 i=1 i+1 i=0 i+1

Z 1 - Xn: 1 (n)2> n?
=n — >n — = (— _—
— F?~ ,:1F2 F,” — F,Fy41
_ 5n2

Lopy1— (="

||F°_1||E> 5n
Vi T\ Ly — (="

We conclude from (2.8) that

5n
Fo—l 5> e ——
o= =y

Now, we shall obtain the upper bound for the spectral norm of F°~!. Let R and S
be the following matrices:

Therefore,

- 1 1 1 1 -] r .
D 7 1 1 1 -1
1 1 1 1
k i R = o 1 1 -1
— 1 1 — 1 1
R=| &k v TR and S = rr or Lo 1
1 1 1 1
Lk kK 7o . B " I
Then,
n
_ 12— _ 2
(R = max |3 |rij|*= /140D
Jj=1
and

n
D lsijP=vn.

i=1

A=,

Since F°~1 = Ro S, based on Lemma 2, we can write

IF° 2 < ri(R)oci(S) = \/”(1 +(n—DIk[?).
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2) If |k| < 1, then

n—1 1 n—1 1 n—1 1
IFoNE = Y =i kP 5=+ Y ik =k Y
i=0 i+1 i=1 i+1 i=0"i+1
"1 "1 n n?
=nlk> )Y —5znlkl?)  — = k()= kPPm—7—
l.; F? l; F? Fy FnFpiq
5 2
) L —
L2n+1_(_1)n

Therefore,

Fol 5
IF g n___
\/ﬁ Lon+1 _(_1)n

We conclude from (2.8) that

5n
Fo Yy, >kl |——mMm .
1Fe e 2k |

Now, we shall obtain the upper bound for the spectral norm of F°~!. Let Q and W
be the following matrices:

1 r 1 1 1 7
A 1 1 T N R
A 1 1
Fy I3 ! ! 1 1 _2 Fn—
— k k 1 — 1
0 e £ 1 and W 1 1 1 ... s
k k k 1
B A R T S BT
Then,
n
_ 12—
ri(Q)= max Zlqz,Jl Vn
j=1
and
n
_ 2
c1(W)= max 2|w17j| Jn

Since F°~1 = Q o W, based on Lemma 2, we can write

IFe 2 <ri(Q)oci(W)=n.
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3. CONCLUSION

In this paper, we investigated the eigenvalues, the Euclidean norm and the upper and
lower bounds for the spectral norm of the Hadamard inverse of

F=circi{y(F1, Fa,..., Fp)},

where F,, is the n'# Fibonacci number and k is a nonzero complex number.
From the fact that the eigenvalues of an upper triangular matrix are the diagonal
entries, the eigenvalues of a semicirculant matrix (i.e. a k-circulant matrix for kK =0)

with the first row (F1, F>,..., Fy) are: A; =1, (j =0, n—1). The Euclidean norm of
such (semicirculant) matrix can be obtained from (2.7) i.e. in (2.7) k can be equal to
0. Semicirculant matrices are not Hadamard invertible.
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