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Abstract. As an improvement of existing relationships among collections of sets, closure oper-
ators and posets, a particular, so called sharp partial closure operator (SPCO) is introduced. It
is proved that there is always a unique SPCO corresponding to a given partial closure system.
Moreover, an SPCO has the greatest domain among all partial operators corresponding to a given
system. If it is a function, an SCPO is a classical closure operator. Dealing with partial closure
systems, we introduce principal ones, corresponding to principal ideals of a poset and accord-
ingly, we define principal SPCO’s. Finally, we prove a representation theorem for posets in terms
of principal SPCO’s and principal partial closure systems.
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1. INTRODUCTION

Connection among closure systems (Moore’s families), closure operators and com-
plete lattices is a well known topic in basics of order theory and lattices.

There is an analogue relationship among partial closure (centralized) systems, par-
tial closure operators and posets. Still, the analogy is not full, since the correspond-
ence among partial closure systems and partial closure operators is not unique, as in
the case of lattices.

Closure operators and systems appear as a well known basic tool in the research of
ordered sets, topology, universal algebra, logic, ... Among numerous relevant books,
we mention [1, 11] as related to our work. Some particular papers dealing more
closely with various aspects of closure systems and connections to ordered structures
are given in References. Namely, papers [3, 4] give surveys on closure systems over
finite sets, their properties and properties of the corresponding lattices. In [2], the
lattice of particular completions of a finite poset is analyzed. Completions of a poset
are also a subject of [8]. Extensive research of generalizations of closure systems
and related posets, together with the corresponding properties is done by M. Erné
(e.g., [5,6]). In [7], the lattice of all Dedekind-MacNeille completions of posets with
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the fixed join-irreducibles is investigated. The number of closure systems on partic-
ular cardinalities is investigated in [9], and in [10], the lattice itself of such systems
is described. Apart from implicit analysis connected with the corresponding collec-
tions of sets, there is not much research of closure operators which are not functions.
In [12] a partial closure operator is defined as a special case of the definition in this
work: there it is defined on downward-closed subsets (order-ideals) of a lattice (in our
work we deal generally with arbitrary sets). In the mentioned paper, partial closure
operators are used in developing the semantic foundations of concurrent constraint
computing. Our present work is based on our paper [13], moreover it is an extension
of this previous one.

In this paper, we present an improvement of existing relationships among col-
lections of sets, closure operators and posets. In order to make the correspondence
among partial closure systems and partial closure operators unique, we introduce a
particular, so called sharp partial closure operator (SPCO). This is a partial operation
on the power set, fulfilling closure like axioms, plus additional one, called sharpness.
We prove that there is always a unique SPCO corresponding to a given partial clos-
ure system. Moreover, an SPCO has the greatest domain among all partial operators
corresponding to a given system. In addition, if an SCPO is a function, then it is a
classical closure operator. Dealing with collections of subsets as a counterpart of op-
erators, we analyze partial closure, or centralized systems (point closures). Among
these we introduce so called principal ones, corresponding to principal ideals of a
poset. Accordingly, we define principal SPCO’s. Finally, we prove a representation
theorem for posets in terms of principal SPCO’s and principal partial closure systems.

By these results we establish bijective correspondences among posets, principal
SPCO’s and principal partial closure operators.

2. PRELIMINARIES

We start with well known notions and basic properties of closure systems and
closure operators, pointing to our notation.

As it is known, a closure system (Moore’s family) F on a nonempty set S is a
collection of subsets of S , which is closed under arbitrary set intersections.

A closure operator on a nonempty set S is a unary operation X 7! X on the
power set P.S/, which for all X;Y � S fulfils properties

X �X; X � Y implies X � Y ; X DX:

As usual, if X � S and X DX , then X is a closed set. The family of closed sets FC

is the range of a closure operator.
Recall that the range of a closure operator on S is a closure system on the same

set. On the other hand, if F is a closure system on S , then the map x 7!
T
fY 2 F j
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x 2 Y g , for x 2 S , is a closure operator on S . This correspondence among closure
systems and corresponding operators is unique.

A closure system is a complete lattice under inclusion, and as a converse, the
collection of principal ideals of a lattice is a closure system, which is, when equipped
by inclusion, order isomorphic with the lattice itself. Still, the closure system of
principal ideals is not the only closure system isomorphic to a given lattice.

3. PARTIAL CLOSURE OPERATORS AND SYSTEMS

Our aim is to establish a particular relationship among collections of sets, operat-
ors and posets. This relationship should be analogue (as much as possible) to the one
among closure operators, closure systems and complete lattices. We use the relevant
known results in this field, and the basic definitions and properties are those given in
[13]. Still, our present approach brings some new requirements, which enable essen-
tial improvements of the mentioned relationship.

For a nonempty set S , let C WP .S/!P .S/ be a partial mapping satisfying:

Pc1: If C.X/ is defined, then X � C.X/.
Pc2: If C.X/ and C.Y / are defined, then X � Y implies C.X/� C.Y /.
Pc3: If C.X/ is defined, then C.C.X// is also defined and C.C.X//D C.X/.
Pc4: C.fxg/ is defined for every x 2 S .

As defined in [13], a partial mapping C fulfilling properties Pc1–Pc4 is a partial
closure operator on S .

As usual, if X � S and C.X/ D X , then we call X a closed set. The family of
closed sets FC is called the range of a partial closure operator C . The exact domain
of a partial closure operator C on S is denoted by Dom.C/:

Dom.C/ WD fX jX � S and C.X/ is definedg:

Let C be a partial closure operator on S . If C.X/ is defined, then it is straightfor-
ward to check that, equivalently to the same property of a closure operator (which is
not partial),

C.X/D
\
fY 2 FC jX � Y g: (3.1)

We say that a partial closure operator C on S is sharp, if it satisfies the condition:

Pc5: Let B � S . If
T
fX 2 FC j B �Xg 2 FC , then C.B/ is defined and

C.B/D
\
fX 2 FC j B �Xg (sharpness).

We also say that a partial operator on S , fulfilling properties Pc1–Pc5 is an SPCO
on S .

Notice that if in Pc5 there does not exist a set X 2 FC such that B � X , then
straightforwardly C.B/ is not defined (because of B � C.B/).
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Observe also that a closure operator C on S (i.e., an operator which is a function)
trivially fulfils condition Pc5, which reduces to the condition (3.1).

Remark 1. By (3.1) the converse implication in the condition Pc5 is always valid.

A partial closure operator C on a set S is complete, if it satisfies:
Pc6: If fXi j i 2 I g is a chain and C.Xi / is defined for every i 2 I , then also

C.
S
Xi / is defined.

In addition, C is algebraic if it is complete and satisfies the following:
Pc7: If C.X/ is defined, then

fC.Y / j Y �X , C.Y / is defined and Y is finiteg is a directed set, (3.2)

and C.X/D
[
fC.Y / j Y �X , C.Y / is defined and Y is finiteg: (3.3)

We note that the condition Pc5 can not be derived from the conditions Pc1–Pc4, as
shown by the following example.

Example 1. Let C be a partial mapping defined on fa;b;cg with

C W

�
fag fbg fcg fa;b;cg

fag fbg fa;b;cg fa;b;cg

�
:

It is straightforward to check that C satisfies conditions Pc1–Pc4, but the property
Pc5 does not hold because C.fa;bg/ is not defined.

From the same example, it follows that Pc5 can neither be derived from the above
conditions, to which Pc6 and Pc7 are added.

Further, neither of the conditions Pc6 and Pc7 can be derived from Pc1–Pc5, as
shown by the following example.

Example 2. Let C be a partial mapping defined on N by

C.X/D

�
X; if X is a finite subset of NI
E1; if X is an infinite subset of E1I

where E is the set of all even natural numbers and E1 D E [f1g. This is a sharp
partial closure operator, but it is not complete. Indeed, consider the family fXi j i 2

Ng, where Xi D f1;2; : : : ; ig. This family is a chain and C.Xi / is defined for every
i 2N, but C.

S
i2NXi /D C.N/ is not defined.

The constructed example does not satisfy Pc7 either. Indeed, C.E/ D E1, but
there does not exist a finite subset of even numbers that contains 1, hence we cannot
represent C.E/ as the union of closures of all finite subsets of E.

Next we deal with the set counterpart of partial closure operators.
A partial closure system (in the literature known also as a centralized system, e.

g. [5, 6]) is a family F of subsets of a nonempty set S satisfying:

For every x 2 S ,
T
.X 2 F j x 2X/ 2 F . (3.4)
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We say that the set
T
.X 2 F j x 2 X/ is a centralized intersection for x 2 S .

Observe that from the above definition it follows that a partial closure system F on
S also satisfies

S
F D S:

The following is a refinement of a theorem from [13].

Theorem 1. The range of a partial closure operator on a set S is a partial closure
system.

Conversely, for every partial closure system F on S , there is a unique sharp partial
closure operator on S such that its range is F .

Proof. The first part of this theorem was proved in [13], still we repeat it here for
the sake of completeness.

Let C be a partial closure operator on a set S and FC be its range.
For x 2 S , let Fx WD fX 2 FC j x 2 Xg. We need to show that

T
Fx 2 FC . If

X 2 Fx , then X D C.X/ and x 2 X , therefore fxg � X and C.fxg/ � C.X/D X ,
hence C.fxg/�

T
Fx . Since we have C.fxg/ 2 Fx , it follows that C.fxg/D

T
Fx

and condition (3.4) holds.
For the other direction, let F be a partial closure system on a set S . We define

partial mapping C WP .S/!P .S/ as follows:

C.X/ WD
\
fY 2 F jX � Y g

if intersection on the right-hand side is in F , otherwise C.X/ is not defined.
If, for some X � S , the closure C.X/ is defined, then it is easy to see that C has

properties Pc1–Pc3. The property Pc4 holds because, for x 2 S , C.fxg/ is defined
by (3.4). Hence, C is a partial closure operator on S . Now we show that C is sharp,
i.e., that also Pc5 holds. Let B � S and assume that\

fX 2 FC j B �Xg 2 FC :

Then, by the definition of C , this partial operator fulfills Pc5 and the range of C is
F .

It remains to show that the SPCO defined in this way is the unique partial mapping
with the range F satisfying properties Pc1–Pc5. Assume that there exists another
partial mapping K W P .S/! P .S/ satisfying Pc1–Pc5 and that the range of K
is also F . We prove that FC D FK . Namely, we show that for X � S , K.X/ is
defined if and only if C.X/ is defined. If K.X/ is defined, by Remark 1,

T
fY 2

FK j X � Y g 2 FK and K.X/ D
T
fY 2 FK j X � Y g. Since FK D FC ,

T
fY 2

FK jX � Y g D
T
fY 2 FC jX � Y g and hence

T
fY 2 FC jX � Y g 2 FC and by

the condition Pc5, C.X/ is defined and C.X/DK.X/. If we suppose that C.X/ is
defined, similarly we obtain that K.X/ is defined and C.X/DK.X/.

defined, we need to prove that
T
fY 2 F jX � Y g belongs to F . Since the range

of operator K is F , for every Y 2 F there exists U 2 P .S/ such that K.U / D Y .
Therefore, we need to show that such that C.Y / is defined (that is, C.Y / 2 F ) there
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exists U � S such that C.Y /DK.U /, we have fC.Y / jX �C.Y /g D fK.U / jX �
K.U /g and then K(U)g=K(X).
S , and they agree on these subsets. This completes the proof.

�

Example 3. Let Cs be a partial mapping defined on fa;b;cg with

Cs W

�
fag fbg fcg fa;bg fa;cg fb;cg fa;b;cg

fag fbg fa;b;cg fa;b;cg fa;b;cg fa;b;cg fa;b;cg

�
:

This partial mapping is an SPCO on the set fa;b;cg. Note that the range FCs
here is

equal to the range FC of the partial closure operator from Example 1. This implies
that there is no 1-1 correspondence between partial closure operators and partial clos-
ure systems. However, as proven in Theorem 1, there is a bijective correspondence
between SPCO’s and partial closure systems.

By the above, it is clear that for a given partial closure system F on S , there is
a collection of partial closure operators on S whose range is F , among which, by
Theorem 1, precisely one is sharp. In addition, the latter is maximal in the following
sense.

Proposition 1. Let F be a partial closure system on S . The sharp partial closure
operator has the greatest domain among all partial closure operators whose range is
F . In addition, if D is a partial closure operator and C the sharp closure operator
with the same domain, then C.A/DD.A/, for all A� S for which D is defined.

Proof. Let D be an arbitrary partial closure operator whose range is F , and let
C be the sharp one with the same range F . Now, if A � S and D.A/ is defined,
i.e., A 2Dom.D/, then C.D.A//DD.A/, since the ranges of C andD coincide by
assumption.

We have that
D.A/D

\
.X 2 F j A�X/ 2 F :

By the Pc5, it directly follows that C.A/ is defined and C.A/D
T
.X 2 F j A�

X/. Hence, C.A/DD.A/: �

The sharp partial closure operator is a natural generalization of the closure oper-
ator, as follows.

Theorem 2. If the range F of a sharp partial closure operator C on a set S forms
a complete lattice with respect to set inclusion, then C is a function. Conversely, if
C is a closure operator on S , then it is sharp.

Proof. Let X � S . We have X �
S
fC.fxg/ j x 2 Xg, and since the range F is a

complete lattice, the supremum of the collection fC.fxg/ j x 2Xg exists and contains
its union, which implies that

W
fC.fxg/ j x 2Xg 2F . If X � Y for a set Y such that

Y �F , then
W
fC.fxg/ j x 2Xg � Y . Indeed, for every x 2X , C.fxg/� Y . Hence,
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fY 2 F j X � Y g D

W
fC.fxg/ j x 2 Xg. By Pc5 we have that C.X/ is defined,

so C is a function and C.X/D
W
fC.fxg/ j x 2Xg.

Suppose now that C is a closure operator. Then its range forms a complete lattice
with respect to a set inclusion [1]. Let B � S . The closure C.B/ is defined because
C is a function, and it is obvious that it satisfies Pc5. �

As shown in paper [13], a completion of a partial closure system to a closure
system is equivalent to Dedekind MacNeille completion. Here we present a comple-
tion of any nonempty collection of subset of S to a partial closure system. Clearly,
by adding all singletons of S , we get a partial closure system, but then the exist-
ing centralized intersections may not be preserved. Therefore, we introduce another
completion, as follows.

For an arbitrary nonempty collection F of subsets of a set S , we define an exten-
sion bF �P .S/ as follows:bF WD F [f

\
x2Y

Y 2 F j x 2 Sg:

Example 4. Let
S D fa;b;c;d;e;f;gg and
F D ffbg;fcg;feg;fa;b;cg;fb;c;d;e;f g;fe;f;ggg.
Then bF D F [ffe;f gg.

The following is a straightforward consequence of the definition of bF .

Proposition 2. For an arbitrary nonempty collection F of a set S , the extensionbF is a partial closure system on S which preserves all intersections and centralized
intersections existing in F .

Recall that the collection of all principal ideals of a complete lattice L is a clos-
ure system which is, when ordered by inclusion, order isomorphic with L under the
mapping i.x/ D #x, x 2 L. In addition, this closure system consists of closed sets
under the corresponding closure operator.

However, it is clear that not every closure system is isomorphic with a collection
of all principal ideals of a complete lattice L.

The analogue statement is true for posets and related partial closure operators and
partial closure systems.

In the following we introduce a special type of partial closure systems which are
isomorphic to collections of all principal ideals in posets.

We say that a partial closure system F on a nonempty set S is principal if ¿ … F

and for every X 2 F we haveˇ̌̌
X n

[
fY 2 F j Y ¨Xg

ˇ̌̌
D 1: (3.5)

Our main motivation for the above definition, as already mentioned, are principal
ideals in a poset.
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Proposition 3. Let .S;6/ be a poset. Then the family f#x j x 2 Sg of principal
ideals is a principal partial closure system.

Proof. It is easy to see that condition (3.4) holds and that ¿ … f#x j x 2 Sg D F .
Let us show that for every #x 2 F we have j#x n

S
f#y 2 F j #y ¨ #xgj D 1:

Obviously, x 2 #x n
S
f#y 2 F j #y ¨ #xg. Suppose that there is element an

´ ¤ x such that ´ 2 #x n
S
f#y 2 F j #y ¨ #xg. It follows that ´ < x, therefore

#´ 2 f#y 2 F j #y ¨ #xg, which is a contradiction with ´ …
S
f#y 2 F j #y ¨

#xg. �

Let F be a principal partial closure system on a set S . In order to prove the op-
posite connection of principal partial closure systems and principal ideals in a poset,
we introduce a mapping:
G W F ! S defined by

G.X/D x; where x 2X n
[
fY 2 F j Y ¨Xg: (3.6)

The mapping is well defined by the definition of the principal partial closure sys-
tem.

Proposition 4. If F is a principal partial closure system on a set S then the map-
ping G W F ! S defined by .3:6/ is a bijection.

Proof. First, let X1;X2 2 F such that G.X1/ D G.X2/. Therefore, there exists
x 2 S such that fxg DX1 n

S
fY 2F j Y ¨X1g DX2 n

S
fY 2F j Y ¨X2g. Since

F is a partial closure operator, a set T D
T
fZ 2 F j x 2 Zg is in F . Hence, T �

X1\X2. Since x 2 T , we have that T … fY 2F j Y ¨X1g. By T �X1\X2 �X1,
it follows that T DX1. Similarly, we have T DX2 and thenX1DX2, which implies
that the mapping G is injective.

Now, let x 2 S and denote Xx D
T
fX 2 F j x 2Xg. Since F is a partial closure

system, we have Xx 2 F , and we shall show that G.Xx/ D x. We have x 2 Xx

and x …
S
fY 2 F j Y ¨ Xxg because Xx is the smallest set (with respect to set

inclusion) in F that contains x. Since jXx n
S
fY 2 F j Y ¨Xxgj D 1, it follows

that fxg DXx n
S
fY 2 F j Y ¨Xxg. Hence G is also a surjective mapping. �

Using the introduced bijection G, an order on S can be naturally induced by the
set inclusion in a principal partial closure system F on S , as follows: for all x;y 2 S ,

x 6 y if and only if G�1.x/�G�1.y/: (3.7)

It is straightforward to check that 6 is an order on S . Therefore, as a consequence
of Proposition 4, we get the following.

Corollary 1. Let F be a principal partial closure system on a set S , and 6 the
order on S , defined by .3:7/. Then, the function G defined by .3:6/ is an order
isomorphism from .F ;�/ to .S;6/. In addition, the collection of principal ideals in
.S;6/ is F .
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Proof. The function G is a bijection by Proposition 4, which is, by the definition
of 6 on S , compatible with the corresponding orders. In other words, if X;Y 2 F ,
we have that X � Y if and only if G.X/ 6 G.Y /. To prove that subsets in F are
principal ideals, for x 2 S , we use the denotation from Proposition 4, G�1.x/ =
Xx . We will prove that #x D Xx . If y 6 x, then G�1.y/ � G�1.x/ and since
y 2 G�1.y/, we have that y 2 G�1.x/. On the other hand, suppose that y 2 Xx .
Then, Xy �Xx and hence, y 6 x. by the definition of 6 on S , if y 2X , then either
y D x or y 2 X n fxg. Therefore, X D #x with respect to the order 6 . Since G is
a bijection, all the elements from F are in the form Xx for x 2 X , so all of them
coincides with the principal ideals of .S;6/. �

We can also start from a poset, and via principal ideals we get a partial closure
system, which induces the starting order, as follows.

Corollary 2. Let .S;6/ be a poset and F a partial closure system consisting of
its principal ideals. Then, the order on S defined by .3:7/ coincides with 6 .

Proof. By Proposition 3, principal ideals make a principal partial closure system.
The function G defined by (3.6) associates to every principal ideal its generator, and
by (3.7), inclusion among principal ideals induces the existing order 6 from the
poset. �

Finally, we introduce a partial closure operator which corresponds to a principal
partial closure system.

A partial closure operator C on S is principal if it satisfies
Pc8: If X D C.X/, then there exists unique x 2X such that

x …
S
fY 2 FC j Y ¨Xg.

It is easy to see that the axioms Pc5 and Pc8 are independent.
A connection among these notions can be explained as follows.
The range of a principal closure operator is a principal partial closure system and

the sharp partial closure operator obtained from a principal partial closure system, as
defined in Theorem 1, is principal.

Obviously, the empty set can not be closed under a principal partial closure oper-
ator. As an additional property, we prove that the range of a principal partial closure
operator consists of closures of singletons.

Proposition 5. Let C be a principal partial closure operator on S . If X 2 FC ,
then there exists x 2X such that C.fxg/DX .

Proof. If X is a closed set, then by Pc8 there exists a unique x 2 X such that
x …

S
fY 2 FC j Y ¨ Xg. From x 2 C.fxg/� C.X/D X it follows that C.fxg/D

X . �

The following is a Representation theorem of posets by SPCO’s and by the corres-
ponding partial closure systems.
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Theorem 3. Let .S;6/ be a poset. The partial mapping C WP .S/!P .S/ defined
by

C.X/D #.
_
X/; if there exists

_
X;

otherwise not defined, is a principal SPCO. The corresponding partial closure system
is principal and it is isomorphic with S .

Proof. It is straightforward to check that C is a partial closure operator. In order
to prove that it is sharp, suppose that B � S and that\

fX 2 FC j B �Xg 2 FC :

Then, there is a setZ � S , such that
T
fX 2FC jB �Xg D #.

W
Z/. Consequently,

for every b 2 B , b � #.
W
Z/. Suppose there is another upper bound of B , say x.

Then B � #x and C.#x/ D #x. Hence, #.
W
Z/ � #x and

W
Z � x. Therefore,

C.B/D #.
W
Z/D C.Z/.

It is easy to see that C is principal by the definition.
Closed elements are principal ideals of S , hence the corresponding partial closure

system is isomorphic with S . �

To sum up, we have bijective correspondences among:
� posets
� principal sharp partial closure operators
� principal partial closure systems.

Indeed, correspondences are witnessed by Theorem 3; they are bijective by Theorem
1, Propositions 3, 4 and Corollaries 1, 2.

In particular, if we deal with posets which are complete lattices, then the biject-
ive correspondence already exists among closure systems and closure operators. As
mentioned, every closure operator fulfils the sharpness property. Still, to every lattice
there correspond more closure operators and systems. If the closure operators and
systems are principal, then we get bijective correspondences as for posets.
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