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Abstract. In this work, we define (amply) generalized supplemented lattices and investigate
some properties of these lattices. In this paper, all lattices are complete modular lattices with
the smallest element 0 and the greatest element 1. Let L be a lattice, 1D a1_a2_ : : :_an and
the quotient sublattices a1=0, a2=0,. . . , an=0 be generalized supplemented, then L is general-
ized supplemented. If L is an amply generalized supplemented lattice, then for every a 2 L, the
quotient sublattice 1=a is amply generalized supplemented.
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1. INTRODUCTION

Throughout this paper, all lattices are complete modular lattices with the smallest
element 0 and the greatest element 1. Let L be a lattice, a;b 2 L and a � b. A
sublattice fx 2 Lja � x � bg is called a quotient sublattice, denoted by b=a. An
element a0 of a lattice L is called a complement of a if a^a0 D 0 and a_a0 D 1. A
latticeL is said to be complemented if each element inL has at least one complement.
An element c of L is said to be compact if for every subset X of L such that c �_X
there is a finiteF �X such that c�_F . A latticeL is said to be compactly generated
if each of its elements is a join of compact elements. An element a of L is said to
be small or superfluous if a_ b ¤ 1 holds for every b ¤ 1 and denoted by a� L.
The meet of all the maximal elements .¤ 1/ of a lattice L is called the radical of
L and denoted by r.L/. An element c of L is called a supplement of b in L if it is
minimal for b_ c D 1. a is a supplement of b in lattice L if and only if a_ b D 1
and a^ b � a=0. L is called a supplemented lattice if every element of L has a
supplement in L. We say that an element b of L lies above an element a of L if
a � b and b � 1=a. L is said to be hollow if every element .¤ 1/ is superfluous
in L, and L is said to be local if L has a greatest element .¤ 1/. An element a of
L is called a weak supplement of b in L if a_ b D 1 anda^ b� L. L is called a
weakly supplemented lattice, if every element of L has a weak supplement in L. An
element a 2 L has ample supplements in L if for every b 2 L with a_b D 1, a has
a supplement b0 in L with b0 � b. L is called an amply supplemented lattice, if every
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element of L has ample supplements in L. It is clear that every supplemented lattice
is weakly supplemented and every amply supplemented lattice is supplemented.

More information about (amply) supplemented lattices are in [1, 2] and [3]. More
results about (amply) supplemented modules are in [4, 6] and [7]. The definitions of
(amply) generalized supplemented modules and some properties of them are in [5].
We generalize some properties of (amply) generalized supplemented modules.

In this paper, we constitute relationships between generalized supplemented quo-
tient sublattices and generalized supplemented lattices by Corollary 1, Theorem 3 and
Corollary 2. We also constitute relationships between amply generalized supplemen-
ted quotient sublattices and amply generalized supplemented lattices by Proposition
3 and Proposition 5.

2. GENERALIZED SUPPLEMENTED LATTICES

In this part, generalized supplement elements and generalized supplemented lat-
tices are defined and some properties of them are given.

Definition 1. Let L be a lattice and a 2 L. An element b 2 L is called a general-
ized supplement or Rad-supplement of a in L if a_bD 1 and a^b � r.b=0/. In this
fact, a has a generalized supplement .or Rad-supplement/ in L. L is said to be gen-
eralized supplemented or Rad-supplemented if every element of L has a generalized
supplement or Rad-supplement in L.

It is clear that every supplement element is generalized supplement in a lattice, also
supplemented lattices are generalized supplemented but a generalized supplemented
lattice need not to be supplemented. We give an example about this in the next part.

Lemma 1 ([3], Theorem 1.5). Let L be a lattice and a;b 2 L. Then the quotient
sublattices.a_b/=b and a=.a^b/ are isomorphic.

Lemma 2. Let L be a lattice and c be a generalized supplement of b in L.
.a/ If a � b and a_ c D 1 then c is a generalized supplement of a in L.
.b/ r.c=0/D c^ r.L/.

Proof. .a/ Since c is a generalized supplement of b in L, b_ c D 1 and b^ c �
r.c=0/. Since a � b, a^ c � b^ c � r.c=0/. Thus c is a generalized supplement of
a in L.
.b/ r.c=0/ � c^ r.L/ is clear. Let x be a maximal element .¤ c/ in c=0. Since

1
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c_b
b_x
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c_b_x
b_x

Š
c

c^.b_x/
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c
.c^b/_x
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, b_x is a maximal element .¤ 1/
of L. Hence r .L/ � b_x and c^ r .L/ � c^ .b_x/D .c^b/_x D x. Since c^
r .L/� x for every maximal element .¤ c/ in c=0, c^ r .L/� r .c=0/ and r.c=0/D
c^ r.L/. �

Theorem 1. Let L be a lattice and b be a maximal element .¤ 1/ in L. If c is
a generalized supplement of b in L then b ^ c D r.c=0/ and r.c=0/ is the unique
maximal element .¤ c/ of c=0.
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Proof. Since b is maximal .¤ 1/ in L, by Lemma 1, b^ c is a maximal element
.¤ c/ in c=0. Because of definition of the radical, r.c=0/ � b ^ c, and c being
generalized supplement of b in L, b ^ c � r.c=0/. Hence b ^ c D r.c=0/ is the
unique maximal element in c=0. �

Theorem 2. Let L be a lattice and 1¤ b 2 L. If c is a generalized supplement of
b in L and r.L/� L, then there exists a maximal element m .¤ 1/ in L such that
b �m.

Proof. If b � r.L/, then it is clear. Let b — r.L/. Then r.c=0/ D c ^ r.L/ ¤ c
by Lemma 2 .b/. Hence there exists an element x � c such that x is a maximal
element .¤ c/ in c=0. Let m D b _ x. By Lemma 1 and modularity 1

m
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c
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D

c
x

and so m is a maximal element .¤ 1/ in L such that
b �m. �

Lemma 3 ([3], Lemma 7.8 (i)). Let L be a lattice. Then a_ r.L/ � r.1=a/ for
every a 2 L.

Lemma 4 ([3], Exercise 7.3). Let L be a lattice and a 2 L. Then r.a=0/� r.L/.

Lemma 5. Let L be a lattice and c be a generalized supplement of b in L. Then
for a � b, a_ c is a generalized supplement of b in 1=a.

Proof. Since c is a generalized supplement of b inL, b_cD 1 and b^c � r.c=0/.
Then b_ .a_c/D 1 and by Lemma 3 and Lemma 4, .a_c/^b D a_ .b^c/� a_
r.c=0/� a_ r..a_ c/=0/� r..a_ c/=a/. Hence a_ c is a generalized supplement
of b in 1=a. �

Corollary 1. Let L be a lattice. If L is generalized supplemented and a 2L, then
1=a is also generalized supplemented.

Proof. Clear from Lemma 5. �

Lemma 6 ([3], Lemma 12.3). Let L be a lattice. Then for every a;b;c 2 L,
Œ.b_ c/^a�� Œb^ .a_ c/�_ Œc^ .a_b/�.

Lemma 7. Let L be a lattice and a;b;c 2 L. If a=0 is generalized supplemented
and a_b has a generalized supplement in L, then b has a generalized supplement in
L.

Proof. Let c be a generalized supplement of a_ b in L and d be a generalized
supplement of .b_ c/^a in a=0. Clearly, 1D a_b_ c D b_ c_d , .b_ c/^d �
r.d=0/, b^.c_d/� Œc^.b_d/�_ Œd ^.b_c/�� r.c=0/_r.d=0/� r..c_d/=0/.
Hence c_d is a generalized supplement of b in L. �

Theorem 3. Let L be a lattice a;b 2 L and a_b D 1. If a=0 and b=0 are gener-
alized supplemented, then L is generalized supplemented.
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Proof. Let c be arbitrary in L. a_ .b _ c/ D 1 has a generalized supplement 0
in L. Since a=0 is generalized supplemented, by Lemma 7, b_ c has a generalized
supplement in L. And since b=0 is generalized supplemented, c has a generalized
supplement in L. So, L is generalized supplemented. �

Corollary 2. If 1D a1_a2_ : : : _an and the quotient sublattices a1=0;a2=0; : : : ;

an=0 be generalized supplemented, then L is generalized supplemented.

If a < b and a � c < b implies that c D a, then a is said to be covered by b. If 0
is covered by a for some element a of L, then a is called an atom. A lattice L is said
to be semiatomic if 1 is a join of atoms in L. [3]

Lemma 8 ([3] , Theorem 6.7). Every modular compactly generated complemented
lattice is semiatomic.

Proposition 1. Let L be a modular compactly generated lattice. If L is general-
ized supplemented, then the quotient sublattice 1=r.L/ is semiatomic.

Proof. Clearly, 1=r.L/ is a modular compactly generated lattice. Let a 2 1=r.L/.
Since L is generalized supplemented, a has a generalized supplement b in L. Then
we have a_ .b_ r.L// D 1 and a^ .b_ r.L// D r.L/. Hence 1=r.L/ is comple-
mented and by Lemma 8, 1=r.L/ is semiatomic. �

Proposition 2. LetL be a lattice. IfL is generalized supplemented and r.L/�L,
then L is weakly supplemented.

Proof. Clear. �

3. AMPLY GENERALIZED SUPPLEMENTED LATTICES

In this section, we define amply generalized supplemented or amply Rad-supple-
mented lattices and we give some properties of them.

Definition 2. Let L be a lattice. We say an element a of L has ample generalized
supplements in L if for every b of L with a_b D 1, a has a generalized supplement
b0 in L with b0 � b. L is called amply generalized supplemented or amply Rad-
supplemented if every element of L has ample generalized supplements in L.

It is clear that every amply generalized supplemented lattice is generalized supple-
mented. But the converse is not always true (see Example 1). Every amply supple-
mented modular lattice is amply generalized supplemented.

Proposition 3. Let L be a lattice. If L is amply generalized supplemented, then
the quotient sublattice 1=a is also amply generalized supplemented for every element
a of L.

Proof. Let a 2 L and x;y 2 1=a with x _y D 1. Since L is amply generalized
supplemented, there exists an element y0 of L such that y0 � y;x_y0 D 1 and x^
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y0 � r.y0=0/. Then x^.a_y0/D a_.x^y0/� a_r.y0=0/� r..a_y0/=a/. Hence
a_y0 is a generalized supplement of x in 1=a with a_y0 � y. �

Proposition 4. Let L be a lattice, a;b 2 L and a_b D 1. If a and b have ample
generalized supplements in L, then a^b has ample generalized supplements in L.

Proof. Let .a^ b/_ c D 1 with c 2 L. We clearly see that b _ .a^ c/ D 1 and
a_ .b^c/D 1. Since a_ .b^c/D 1 and a has ample generalized supplements in L,
then there exists an element x ofL such that x � b^c, a_xD 1 and a^x � r.x=0/.
Since b _ .a^ c/ D 1 and b has ample generalized supplements in L, then there
exists an element y of L such that y � a^ c, b_y D 1 and b^y � r.y=0/. Since
x � b and a_x D 1, b D b^ 1D b^ .a_x/D .a^ b/_x. Similarly, we see that
a D .a^ b/_y. Then 1 D a_ b D Œ.a^ b/_y�_ Œ.a^ b/_x� D .a^ b/_x _y.
Since a^x � r.x=0/ and b^y � r.y=0/, then .a^b/^.x_y/D .a^x/_.b^y/�
r.x=0/_ r.y=0/ � r..x_y/=0/. Hence x_y is a generalized supplement of a^b
in L with x_y � c. �

Proposition 5. Let L be a lattice and a be a supplement element in L. If L is
amply generalized supplemented, then the quotient sublattice a=0 is amply general-
ized supplemented.

Proof. Clear. �

Theorem 4. Let L be a lattice. If L is amply generalized supplemented, then
for every a 2 L, there exist x;y 2 L such that x is a generalized supplement in L,
aD x_y and y � r .L/.

Proof. Let b be a generalized supplement of a in L and x be a generalized supple-
ment of b in L with x � a. Since b is a generalized supplement of a in L, a_b D 1
and a^ b � r.b=0/. Since x is a generalized supplement of b in L, x_ b D 1 and
x^b� r.x=0/. Let yD a^b. This case yD a^b� r.b=0/� r.L/. Since x_bD 1
and x � a, aD a^1D a^ .x_b/D x_ .a^b/D x_y. �

Lemma 9. Let L be a lattice and a;b 2 L such that a � b. Then the following
assertions are equivalent.
.a/ b lies above a in L.
.b/ a_x D 1 for every element x 2 L with b_x D 1.

Proof. .a/) .b/ Let b lies above a in L. Then b � 1=a. Let b _ x D 1 with
x 2 L. Then b_a_x D 1, and since a_x 2 1=a and b� 1=a, then a_x D 1.
.b/) .a/ Let b_x D 1 with x 2 1=a. By hypothesis, a_x D 1 and since x � a,

x D a_x D 1. Thus b lies above a. �

Lemma 10. Let L be a lattice. If every element of L lies above an element x in L
such that x=0 is generalized supplemented, then L is amply generalized supplemen-
ted.
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Proof. Let a_ b D 1. By hypothesis, a lies above an element x in L such that
x=0 is generalized supplemented. Since a� 1=x, by Lemma 9, b _ x D 1. Let
y be a generalized supplement of b ^ x in x=0. This case 1 D b _ x D b _ y and
b^y � r.y=0/. Hence y is a generalized supplement of b in L with y � a. �

Corollary 3. Let L be a lattice. If a=0 is generalized supplemented for every
a 2 L, then L is amply generalized supplemented.

Proof. Clear from Lemma 10, because every element a ofL lies above a inL. �

We can prove this Corollary directly as follows:
Let a;b 2 L with a_ b D 1. Since a^ b 2 b=0, by assumption, there is a gener-

alized supplement c of a^ b in b=0. That is, c 2 b=0, .a^b/_ c D b and a^ c D
a^b^c � r .c=0/. Since a_bD 1 and .a^b/_cD b, 1D a_bD a_.a^b/_cD
a_ c. Hence c is a generalized supplement of a in L with c � b. Thus L is amply
generalized supplemented.

Example 1. Let ˝ be family of all the submodules of Z-module Q. ˝ is a lat-
tice with �. This case, for K;L 2 ˝, K _L D supfK;Lg D K CL, K ^L D
inf fK;Lg D K \L. ˝ is generalized supplemented but not supplemented [7] .
Since Z is a Dedekind domain, Q is a quotient field of Z and Z is not local,˝ is not
amply generalized supplemented.
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