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Abstract. In this paper we introduce a function space with some generalization of bounded vari-
ation and study some of its properties, like embeddings, decompositions and others.
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1. INTRODUCTION

Around two centuries ago C. Jordan introduced the notion of a function of bounded
variation and established the relation between these functions and monotonic ones
when he was studying convergence of Fourier series. Later on the concept of bounded
variation was generalized in various directions by many mathematicians, such has, L.
Ambrosio, R. Caccioppoli, L. Cesari, E. Conway, G. Dal Maso, E. de Giorgi, S. Hud-
jaev, J. Musielak, O. Oleinik, W. Orlicz, F. Riesz, J. Smoller, L. Tonelli, A. Vol’pert,
N. Wiener, among many others. It is noteworthy to mention that many of these gen-
eralizations where motivated by problems in such areas as calculus of variations,
convergence of Fourier series, geometric measure theory, mathematical physics, etc.
For many applications of functions of bounded variation in mathematical physics see
the monograph [6]. For a thorough exposition regarding bounded variation spaces
and related topics, see the recent monograph [1].

In 1992 N. Merentes [4] generalized the concept of bounded p-variation in the
sense of Riesz defining the notion of bounded (p,2)-variation. We say that a function
f :la,b] — R has bounded (p,2)-variation in [a, b] if the number

VR (f) = VB, (fla.b])

n—1
_ fb)—fdp)  flep)—flapl|? 1
- Sgpj; bj —d; ci=aj | (bj—aj)r~!

is finite, where p > 1 and the supremum is taken on the set of all block partitions of
la,b].
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The set of all bounded (p,2)-variation functions is denoted by RV(, 2)([a,b])
which has an algebra structure. Moreover, it was shown that all functions that have
bounded (p, 2)-variation also has bounded second-variation. In this work we gener-
alize this concept to obtain the bounded (p,2,«)-variation functions in the sense of
Riesz and obtain some characterizations of this new space.

2. PRELIMINARIES

Before introducing the bounded variation space we will need some auxiliary res-
ults.

Definition 1. A function f :[a,b] —> R is said to be an «-Lipschitz function if
there exists a constant M > 0 such that

|f(x) = O] = Ma(x) —a(y)]

for all x,y € (a,b) with x # y. We define the space a-Lip[a,b] as the space of all
a-Lipschitz functions. This space is normable, via the norm

. =0
I/ la-tip := 1 f (@) +§";§; le(x) —a(y)|

We now introduce the concepts of « absolutely continuous function and «-
derivative.

Definition 2. A function f : [a,b] — R is said to be absolutely continuous with
respect to « if, for every & > 0, there exists some § > 0 such thatif {(a;,b;)}
are disjoint open subintervals of [a,b], then

n
J=1

n n
> la(bj)—a(aj)| <8 implies > |f(bj)— fla))] <e.
j=1 j=1
All functions in «-ACla, b] are bounded and form an algebra of functions under point-
wise defined standard operations.

Definition 3. Suppose f and « are real-valued functions defined on the same open
interval I and let xo € I. We say that f is a-differentiable at x if the following limit
exists

i L= f(x0)
m ———

x=xo o(x) —ar(xo)

If the limit exists we denote its value by f, (xo), which we call the a-derivative of f
at xgp.
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3. RV(p,2,a)la,b] IS A NORMED SPACE

We want to recall the so-called Popoviciu variation (introduced in 1933 by T.
Popoviciu in [5]) for a partition [T = {a = x; < X3 < --+ < X = b} and a function
f :la,b] — R s given by

Vary 1 (f.11,[a,b]) = ’"inh e Xjkt] = S =10 X k2]
where f[-,...,] is defined recju_r:ively in the following way:
f[xo] := f(x0),
S xo0,x1] ::M
X1—Xo
F[xo0,x1,%2] ::f[xl,XZ]_f[X(),xl]

X2 — X0
Sl x2,xk ] = flxos X, xg—1]
Xg — X0 '

flxo0,x1,...,xk] :

In the following we will consider a block partition IT of the interval [a, b]. Tt will be
taken in the following way

IT={a=x1,1 <X1,2<X1,3<X1,4=2X2,1 <X22<X23<X24
=X3,1 < <Xp—1,4 = Xn,1 <Xn2 < Xn3<Xp4a=>b}, (3.1)
in place of the regular partition.

Definition 4. Let f be a real-valued function defined on [a,b], IT be a block
partition of [a,b] and « be an increasing function. Let
[0 %5,3] = falxjios xjal]”
lor(xj,4) — e (xj,1) P71

. | fe
0(p,2,<x)(f’n) - Z
Jj=1

where £)— f@)
— f(a
fa[a,b]:m

and
V(Rp’z,a) (ﬁ [avb]) = V?p,z,a)(f) = S}'ljpo—(Rp’z’a) (f; H)’

where the supremum is taken on all block partitions of [a,b]. To the number
V?p s a)(f, [a,b]) we call the Riesz (p,2,a)-variation of the function f in [a,b]. If
V?p 5 a)(f, [a,b]) < oo, then we say that f has bounded Riesz (p,2,a)-variation.
The set of all functions is denoted by RV, 5 4 ([, b]).
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Remark 1. When p = 1 we observe that BV (5 o)[(a,b)] = RV(q 2,q)([a,b]).

In the following result we will show thatif f has Riesz bounded (p, 2, «)-variation,
then f has bounded «-second variation.

Theorem 1. We have RV(,, 5 o)([a.b]) < BV (2 o)[(a,D)], with
V2,0 (fi1a.b]) < (a(b) —Oé(a))ijlV?p,z,a)(ﬁ [a. b]). (3.2)

Proof. Let II be a block partition of type (3.1). Using the Holder inequality we
obtain
JalXj4. %3] = falxj2.x),1] p=1
el ial = fabbia 5l
j=1  le(xja)—alx )l 7

1 il

iz n 2

) ) p
Z | falx),a.Xj,3] — falx)2. xj,1]| Z | (xj,4) —a(xj1)]

o (xj,4) — e (xj,1) P71 =

R » 21

= (Vow(£labD)” @b)—a@) 7.
Since the obtained inequality holds for all block partitions we obtain the desired
inequality (3.2). O
Remark 2. We know (see [3]) that if f € BV (3 o)[(a,D)], then there exists the
right and left a-derivative f, (o) and f,—(xo) on each xo € (a,b) and f,, (a) and
fa—(b). The last result allow us to conclude that this is also true if f €

RV(p,2,a)([@,b]). In particular, there exists f 0; +(a) which we write as f(a).

Lemma 1. Let f :[a,b] —> R be a function such that f € RV(, 5 4)([a.b]) and

V'(qp ) a)(f, [a,b]) = 0. Then there exists A, € R such that f(x) = Aa(x) + u for
all x € [a,b].

Proof. Since V(p s a)(f [a,b]) = 0 we have that 0(p s 0l)(f, IT) = 0 for all block
partitions IT of [a,b]. Let us consider the particular partition given by [Ty =
{a <x <x<b},

fO) - fx)  fx)-f@]|”
ab)—a(x) alx)—ala)

Jb)—fx)  f(x)=f@]?
ab)—a(x) ax)—ala)
Direct calculations show that

CfB) - f@ . f@ab) - b))
SO = =@ T ek —a)

1
@) —a@T

UFP,Z,a)(f’ ITo) =

where

’
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and now taking A and u in the following manner

5= f(b)—f(a) and 4= S@a(d)— f(b)a(a)
ab)—ala)’ K= a(b)—ala)
we have the desired result. O

Remark 3. The set RV(,, 5 o)([a,b]) can be equipped with a linear space structure
considering the operator [ +> H S 1RV(p2.a)(a,b]) H defined in the space
RV(p,2,a)([a,b]) given in the following way:

|7 1RV 2. (. BD | = 1 £ @]+ fa@] + (Voo (£labD) . (B3)
for f € RV(p,2,a)([a.b]).
Theorem 2. The operator [ +— Hf | RV(p,z’a)([a,b])” is a norm in the space
RV(p,z,a)([a,b])-

Proof. Letus take f such that Hf | RV(p’z,a)([a,b])H = 0. From (3.3) this means
that | f(a)| =0, |f,(a)] = 0 and V?p,z,a)(f) = 0. Since V'(qp,Z,a)(f) = 0 from
Lemma 1 we deduce that

Sx)=Aa(x)+u, A,peRr

Since f,(x) = A for x € [a,b] we conclude that f, is a constant function which is
null at x = @ and thus A = 0, from which we get that f = 0 since f(a) = 0.
It is straighforward to see that for A € R we have that

V?p,Z’(x)(A’f) = |A|pv?p’2’a)(f)

and now by the definition of the operator (3.3) implies the homogeneity of the oper-
ator under consideration.
Let us now prove the triangle inequality. We now introduce the following notation

AL() = Jalxjanxjs] = falxj2 X)),
Let f,g € RV(p,2,0)([a,b]) and IT be a block partition of [a,b] as in (3.1), then
n J
R _ |Aa(f +8)I”
(EUEAZIUEDY loe(xj,4) —ar(xj,1) 1271

j=1
|ALC) + M)

n
o la(xja) =P

_ - 1AL + Al
< ;

a(xj4) —o(x;)|P!

|AL(S)
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1|4 ALt
NS || (N + 4@
j=1

a(xj4) —o(x; )P
n
<

|AL(f) + A(g)|P~! 1AL()]
i o) —ag)] P o (xj.a) —(xj0)| 7
LA + A ()P 1A%(2))

(»=12 p=1
i=t1lo(xj4)—alx;1)| » loe(xj,4) —a(xj)| 2

p—1

+

"oal )+l || |ALH)IP
= ; lor(xj,4) —a(xjq) P71 ; la(xj4) —a(xj) P71

p—1 1

P

N =

LAY + Alg)lP . 1AL (9)I?
* ; loe(xj4) —o(xj1) P71 ; lor(xj,4) —o(xjq) P71

We therefore have
1 1
R P R P R
("(p,z,a)(f +g&.11 )) = ("(p,z,a)(ﬁ n )) + (“(p,z,a)(g AT ))

and since this is true for all partitions, we have
VR oy (f + 8@ b)) <VE o (flab) +VE 5 o (g.[a. b))

and now it easily follows the triangle inequality. U

N

4. EMBEDDING WITH RV, 5 ) ([a,b])

We will show that if p < ¢, then there exists an embedding between the spaces
RV(p.2,a)([a.D]) and RV, 2 o) ([a,b]). We will need this fact to show completeness
of RV(p,2,0) ([a.b]).

Theorem 3. If 1 < g < p < oo, then RV, 5 o)([a.b]) = RV(42,a)([a.D]), with
1_1
|/ 1RV 2.0 ([a.bD | < max {1, (@(®) — @) 7} | f | RV(p2,0([a.bD] .

for f € RV(p2.a)([a.b).
Proof. Let f € RV(p2.4)([a,b]) and IT be a block partition of [a,b] as in (3.1).
Let us consider

i 3 A4 (/)1
Og2.0 (1D _,; j(x7,4) — ()[4

" .

|AL ()| p—aq

- . —Dgq loe(xj,4) —a(xj)| 7 .
j=1la(xja)—a(x;1)| 7
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Applying the Holder inequality we obtain

" N 11014 SN, N
KEURERE ; loe(xj,4) —a(xj1)]P~! ; (s 4) = )]
= 0020 (A1) @) —a@) 7",
from which
(Vi (£labD|* = @) —a(@)a™7 [V, o (£la.b) |7

whence

|/ 1RV 2.0 ([a.bD | < max {1, (@(®) ~ (@) 7} | f | RV(p.0([a.bD] .
for f € RV(p,2,)([a.b]). O

Remark 4. The proof of the above theorem remains valid if ¢ = 1.

Corollary 1. For p > 1 we have RV, 5 o)([a.b]) = BV (3 o)[(a.b)], with

| £ 1BV ml@. )] < max {1, (@(®) —a@) 7 }| £ 1RV 20 bD].

The following corollary follows from the previous results and from results from [2].

Corollary 2. If1 <g < p < 00, then

RV(p,2.0)a,.b] = RV(4 2 a)la.b] = V(2 o)la,b] = a-Lipla,b] —
s RV(p,a)[a,b] — RV(g.a0) [a,b] — a-AC[a,b] — V]a,b] — BJa, b].

5. RV(p,2,0)([a.b]) IS A BANACH SPACE

Theorem 4. The space (RV(p,z,a)([a,b]), H | RV(p,2,0)([a.b]) H) is a Banach space.

Proof. Let (fx)ren be a Cauchy sequence in RV, 5 o)([a,b]). Given & > 0 there
exists Ny € N such that

”fq—fr | RV(p,z,a)([%b])H <é€
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if g,r > Ng, from which we get the following system of inequalities

| fq(a) = fr(a)] <.

|(f@)a(@) = (fr)a(@)] <e,

V?p,z,a)(fq — fp) <eP.

From Corollary 2 we conclude that ( f;)ren is @ Cauchy sequence in a-Lip[a, b], thus
we have

| fg = fr | e-Lipla.b]| < eK
with K = max {1, (e(b) — (@) 7 |, hence

(g = fr)x) = (fg = fOD)| _

() —a(y) oK

| fq(a)— fr(a)| + sup
xX#y

and so
| fa(x) = fr(x)| < Ke(1 +a(b) —a(a)), x€la,b].

This tell us that for each x € [a,b] (fx(x))ren is a Cauchy sequence in R. Since R
is a complete space, we can define f : [a,b] — Ras x — f(x) :=limg_, oo fr(x).
We are about to prove that:

(i) fe RV(p,Z,ot)([a»b]), and

(i) (fx)ken converges to f in the RV(, 5 4)([a,b])-norm.
(i) Let IT be a block partition of [a, b] as in (3.1) Since (fx)reN is a Cauchy sequence
in RV(, 2 ) ([a,b]) the norm sequence (H Ji | RV(p,2,0)([a.b]) H)kelN is bounded, that

is, there exists M > 0 such that “f | RV(p,Z’a)([a,b])H < M for k € N. From this
fact we have

{Z S0~ f(53)  f2)— f(0)

olalye) —elys)  aly2)—elx)

y4 1 »
la(xj,4) —a(x),)[P!
i) = filga) | febo) = filbe) ’

a(xj4) —a(x;3) a(xj2)—a(x;1)

Jj=1

P 1
lor(xj.4) — e (xj,1) P71

1
< fim [V, 50 (fe[a.B) ]
< kli)ngo | fi | RV(p.2,0)([a.B]) ||

<M
1

for all partitions I7, then (V?p,Z,a)(f)) r <M and thus f € RV(, 5 «)([a,D]). Using

embedding we may observe that f,(a) exists.
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(ii) One more time let us consider I7 to be a block partition of [a,b] as in (3.1).
Letg,r > N, then

(fa—S)(xja) = (fa = f)(xi3)  (fg = fr)(xj2) = (fg = fr)(x,0 |°

(xj,4) —0(x},3) a(xj,2) —a(x)1)
y 1

lor(xj,4) — e (xj,1) [P
= V?p,z,a)((fq — fr).la.b]) < eP.
Letting r — oo the above expression becomes
Xn: (fa— i) = (fa— N xj8)  (fa— i) = (fg— N0 7
a(xj,4) —a(x;,3) o (xj,2) —a(xj,1)
1

X -
loe(xj,4) —a(xj,1)|?

n

2

j=1

Jj=1

P

This holds for any partition of [a, b], therefore V?p 2.0) (fg—f)<e? wheng > N,.
Leth e RT besuchthata <a+h <s <t <b, then

‘(fq_f)(f)—(fq_f)(s) _fg=Na+h)—(fg—f)a)
a(t)—a(s) ala+h)—ala)

P 1
e —a @)
= Vo= 1) <e”

if ¢ > N,. Letting h — 0 we have

Uy = NO~ Uy~ H6) ,
R

r 1

O —am)P T =

from which
p
< &Pla(t)—a(s)|? 1.

(fa =)= (fg— ) / /
el U@+ (D@
Since fg4, f € RV(p2,a)([a,b]) < a-Lipla,b], we have

L ‘ (fg =)@ —(fg—S)(s)
a(t) —a(s)

<ela(b)—a(@)| 7 + | f;— f | a-Lipla,b]|
<egla(b) —oz(a)|pT_1 +¢K = Ke

(f)a(@) — () (@)] < ela(B)—a(a)| 7

if ¢ > N, where
R = max K, (a(b)—a(a))"%l}
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since || fg — f | e-Lipla,b]|| = lim; o0 || fg — fr | @-Lip[a,b]| < Ke. Finally, for
q > N, we obtain
1
| fa@ = F @]+ 1()a (@ = (@] + [V, 5 0y (fa = £labD | = (R +2)e,
in other words
|fa—=F |RV(p2.a)(la. b)) | < (K +2)e
if ¢ > N¢ which means that (fx)ren converges to f € RV(, 5 o)([a,b]) in the norm
H | Rv(p,z,a)([a»b])”- U
6. RV(p2,)([a.D]) 1S A BANACH ALGEBRA

We are going to show that RV, > o)([a,b]) is closed under the multiplication of
functions.

Theorem 5. Let f,g € RV(p.2 o)([a.b]). Then fg € RV(p 2 q)([a.b]).

Proof. Let IT be a block partition of [a,b] as in (3.1). Let us consider

. . & (f9)alxjanxj3] = (fDalxj2.x)1]]”
R S TERy [

n

_ 3 [l xi3] = (e 2.zl "
Jj=1

o (xj,4) —oe(xj,1) [P

X |(fQalxja. %3] — (fQalXj2.x1]|. (6.1
Observe that the term ‘(fg)a[xL4,xj~’3] — (fg)a[x]~,2,x]-,1]| =: T can be written as
T =|f(xj,4)8alxj4. %3]+ 8(xj3) falXj4, X)3]
— J(xj2)8alX) 2. X)j,1] = &(x),1) falx) 2. xj 1]
and now adding and subtracting appropriate terms and grouping the terms we obtain
T =|f(xj,4)(8alx)4. %3] — alXj2, Xj1]) + &(x),3) (fa[x) 4. %) 3] = falX)j2, Xj,1])
+ (f(xj,4) = f(xj2))8alX)j2. X)j,1] 4+ (8(x/,3) — (x),1) falX)j2. Xj1]l. (6.2)
From Corollary 2 we have
RV(p,z,a)([a,b]) > a-Lip[a,b] and RV(p,z,o,)([a,b]) > Bla,b].

This let us write
ISl <1 floos 1823 < lI2ll0o

fEO—f _ . gE)-gm) _
2 —al) = Lipg (/) 2 @) —a) = Lipg (2).

and
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for all £, n € [a, b]. Using these estimates we obtain

| f(xj,a) = f(xj2)18alX)2, xj1]| + 18 (xj,3 — g (xj, DI fa[x),2, Xj,1]]
_ G0 = f(xG2)] 1glx)2) — g (1)
la(xj,4) —a(xj2)|  (x)2) —o(xj1)]
|f(xj2) = S D)] 18 (x3) —g(x).1)

|l (xj2) —oe(xj,0)] e(x),3) —oe(xj1)]

< (Lipe /) (Lipg &) ((xj,4 —(xj2) + ar(x)3) —a(x),1)))

replacing all this into (6.2) we have

lloe(xj,4) —o(xj,1)]|

loe(xj,4) —a(x,1)]

|(f2)alxja.xj3] — (f&)alx)2.xj1]]
<1/ oo | 8alx) 4. Xj,3] — alxj2. Xj1]| + 18 lloo | foe[X/.4. X),3] = falxj2. x)1]]
+ (Lipg /) (Lipg &) (0t (xj,4) —ar(xj2) + a(x),3) —a(x;,1))) -

Now replacing this last estimate into (6.1), separating summations and fixing expo-
nents to apply the Holder inequality we have

i |(f2)alxja.xj3] — (f&)a [xj,Z:xj,al_l
(p—1)2
j=1 la(xj,4) —a(xj)| 7

y |galxja. %3] — galx)2, xj 1]

O 2y (8D < [ f o

p=1
|l (xj,4) —a(xj0)] 2

g 2.7 3] — el
+ 112 llo Z }(fg)a[x],4’x],3] (fg)a[):;_Zl;;Jl]’
J=1 la(xj.a) —a(xj1)| 7

8 | falxja,x),3] = falx)2,%)1]|

=1
la(xj,a) —a(xj1)| 7

n ) 1 ) o qp—1
+ (Lipg /) (Lipe &) Z |8)alraxsa (fg)a[if’_zl’: Al
j=1 |l (xj,4) —a(x;1)| 7

8 loe(xj,4) —a(xj2) +a(x)3) —a(x)1)] .

r—1
loe(xj,4) —a(xj1)] ?

Applying in each summation the Holder inequality we obtain

p—1

1
02,00 S8 ) = 1 flloo [0 2,00 (S8 D] 7 [08, 2.y (8: )]

p—1

11800 [060.2.00(/&TD] 7 060 5.0/ 1D)]

N =
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p—1

+ (Lo /) (LiPa8) [0 5.0 (f8 | 7
x Xn: o(xj0) —(xz2) +ai3) a0l |
— lot(xj,4) — (1) 77!

Simplifying we have

[o{‘p,z,a)ug,n)]"? =1/ oo [ 065 2,00 (g,n)]; + 118 llo0 [ 062,00/ D]

1

N =

—a(xj2) +alx;3)—alx;1)?
e (xj,4) —a(xj,1) [P~ 1

+ (Uipy /) (Lingg) | 3 1250) 63)
j=1

Simplifying the last bracket in (6.3), for j = 1,...,n, we can observe that
|or(xj,4) —a(x)2) + a(x)3) —a(x;)]?
loe(xj,4) —oe(xj,1) P71
a(xja) —olx)j2) +olx)3) —o(x)1)
a(xja) —o(xj,1)

o) — ) P71
LB o) —ala) Falua) —atuol 64)
Js Js

Since x;,1 < Xj2 < Xxj,3 < X; 4 we have

p—1
loe(xj,4) —a(xj2) +a(x;3) —alx)1)]

a(xj3) —o(xj2) < a(xj4) —alx)1);
a(xj4)—a(x;2) > 0;
a(xj3)—a(x;1) > 0.
Substituting this into (6.4)
la(xj,4) —o(xj,2) +a(x)3) —alxj1)]?
o (xj,4) —e(xj,1) P!
< 2PN (a(xj4) —a(xj2) +a(x)j3) —a(x)1))

and now summing we obtain

D Ja(xja) —a(xj2) Foalx)z) —a(xq)]?
,Z; |l (xj.4) —o(xj,1)]P 1 < 2P(a(b) —a(a)).

Substituting this inequality into (6.3) we have
1 1

(082008 D] <1 oo [V 2,00 (815D |7 + 18l [ V.09 (o1 D]

+2(a(b) — (@) 7 (Lipg f ) (Lipg @),

N =
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this last inequality holds for all partition IT of [a, b], then

=

[V 2.y (f2: [a,b])]}) <1 oo [ V. 2. (80D

11800 [V 2.0 (£l 6D
+2((b) - (@) 7 (Lipg /) (Lipag) < 00, (65)
from which it follows that fg € RV(, » «)([a,D]). O
We now obtain the following corollary.
Corollary 3. Let f,g € RV(,.2 a)([a,D]), then
| /5 1RV 2.0 ([a D] < P | f | RV(p 20y (. BD | | 8 | RV(p 2.0y (. DD
+11/ lloo | € 1 RV(p,2.0 (@, 5]
+lglloo [ £ I RV(p2.a)([a.BD)]-
with P = 2max{(a(b) — (@), (a(b) —a(a))z"T_z}.
Proof. Note that
Lipe (f) < |If | a-Lipla,b]ll < || f | Ve.wla.b]|
< max {1, (@(b) = (@) 7 | | £ | RV(p 2.0l 0]

and similarly to g. Then (6.5) can be written as
1

[V 2 £ 0.5D] < 1 o [V 2y 0:BD]” + o [V (8D

1 p—1 2
+2(a(b)—a(a)? [max{l,(a(b) —a(a))T}]
X | £ 1RV(p2.w(a.bD | | & | RV(p,2.0)([a.B]) |-

N =
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