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Abstract. In this paper, we introduce a new concept of Morita context rings which we call special
Morita context rings. We determine the conditions under which this kind of rings are quasipolar.
We use special Morita context rings to extend some results of quasipolar rings. Then many of the
main results of quasipolar rings are special cases of our results for this general setting. Several
basic characterizations and properties of these rings are given.
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1. INTRODUCTION

Throughout this paper all rings are associative with identity and modules are unital.
The commutant and second commutant of a 2 R are defined by comm.a/ D fx 2
R j xaD axg, comm2.a/D fx 2 R j xy D yx for all y 2 comm.a/g, respectively.
U.R/, J.R/ and Nil.R/ will denote the set of all invertible elements, the Jacobson
radical of R and the set of all nilpotent elements, respectively. An element a in a
ring R is called quasinilpotent if 1� ax 2 U.R/ for any x 2 comm.a/. The set
of all quasinilpotent elements of R will be denoted by QN.R/ ([9]). Set J #.R/ D

fx 2 R j 9 n 2N such that xn 2 J.R/g. Obviously, J.R/ � J #.R/ �QN.R/ and
Nil.R/� J #.R/�QN.R/.

The notion of a quasipolar ring was introduced by Harte in his 1991 study on quas-
inilpotent in rings. An element a 2 R is called quasipolar provided that there exists
an idempotent p 2 R such that p 2 comm2.a/, aCp 2 U.R/ and ap 2 QN.R/.
A ring R is quasipolar in case every element in R is quasipolar. Any idempotent
p satisfying the above conditions is called a spectral idempotent of a. Koliha [11]
introduced the concept of a generalized Drazin inverse in a complex Banach algebra.
An element a of R is generalized Drazin invertible [12] in case there is an element
b 2R satisfying ab2D b, b 2 comm2.a/ and a2b�a 2QN.R/. Such b, if it exists,
is unique; it is called a generalized Drazin inverse of a and will be denoted by agD .
Koliha and Patricio [12] proved any quasipolar element a 2 R has a unique spectral

c 2018 Miskolc University Press
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idempotent denoted by a� , and a is quasipolar if and only if a is generalized Drazin
invertible. Quasipolar rings have been studied by several authors [2, 4, 7, 12, 22].

Recall some definitions. A ring is called strongly clean if every element is the sum
of an idempotent and a unit which commute (see [16]). Following [1], an element
a 2 R is said to be strongly �-regular if an 2 anC1R\RanC1 for some n 2N. An
element a2R is called pseudopolar if there exists p2Dp 2 comm2.a/ such that aC
p 2 U.R/ and ap 2 J #.R/ ([21]). An element a of R is (pseudo) Drazin invertible
([21]) [5] in case there is an element b 2 R satisfying ab2 D b, b 2 comm2.a/ and
(a2b� a 2 J #.R/) a2b� a 2 Nil.R/. Such b, if it exists, is unique; it is called a
(pseudo) Drazin inverse of a and will be denoted by (apD) aD . In 1958, Drazin
showed that a is strongly �-regular if and only if a has a Drazin inverse. Wang
and Chen proved that a is pseudopolar if and only if a is pseudo Drazin invertible.
By definitions, we conclude that any strongly �-regular element is pseudopolar, any
pseudopolar element is quasipolar and any quasipolar element is strongly clean.

Morita contexts appeared as a key ingredient in the work of Morita that described
equivalences between full categories of modules over rings with identities. Morita
context rings form a very large class of rings generalizing matrix rings. One of the
fundamental results in this direction says that the categories of left modules over
the rings A and B are equivalent if and only if there exists a strict Morita context
connecting A and B . Other applications, though not stated in an explicit form, can
be found in various places. A Morita context .A;B;M;N; ;�/ consists of two rings
A and B , two bimodulesAMB , BNA and a pair of bimodule homomorphisms

 WM
N
BN ! A and � WN

N
AM ! B

which satisfy the following associativity:

 .m˝n/m0 Dm�.n˝m0/ and �.n˝m/n0 D n .m˝n0/ (1.1)

for any n;n0 2 N , m;m0 2M . These conditions insure that the set of generalized

matrices
�
a m

n b

�
; a 2 A, b 2 B , m 2M , n 2 N will form a ring, called the ring

of the Morita context. A Morita context
�
A M

N B

�
with AD B DR, M DN , and

 D � D ' is called a special Morita context. Throughout S denotes the ring of a
special Morita context ŒR;M;'�.

The main purpose of this paper is to study quasipolarity of special Morita con-
texts which are a natural generalization of (generalized) full matrix rings

�
Ks.R/

or M2.RIs/
�
M2.R/. One of the motivations to study the concept of special Morita

context rings is to construct nontrivial examples for quasipolar rings (see Examples 1,
2, 3). In the present paper we use special Morita context rings to extend some res-
ults of quasipolar rings (e.g. [2, Theorem 2.10], [10, Theorem 22], [19, Theorem 15,
Theorem 18 and Theorem 22] and [21, Theorem 1.4]).
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This paper is organized as follows. In Section 2, the forms of the Jacobson radical
and the center of special Morita contexts are determined and some properties of this
class of rings are investigated. Furthermore, we define (uniquely) weakly quasipolar
rings and determine the relation between quasipolar rings and pseudopolar rings (or
equivalently, uniquely strongly �-rad clean rings). In particular, we show that R is
quasipolar if and only if R is uniquely weakly quasipolar (Theorem 2). This gives
an affirmative answer to the question in [12, Remark 4.8] and [11, Lemma 2.4]. In
Section 3, criteria are obtained for a single element of S to be quasipolar for a local
ring R. As a result, we see that (in Proposition 5) S is quasipolar if and only if S is
weakly quasipolar where M is uniquely bleached and R is local. In Section 4, we
determine when a special Morita contexts over a commutative local ring is quasipolar.
It is shown that S is quasipolar if and only if x2�xCw D 0 is solvable for every
w 2 Im' where R is commutative local and Im' � J.R/. This extend and improve
many known results such as [10, Corollaries 11 and 12] and [19, Theorem 18]. In
particular, we prove that if R is commutative local and Im' is nilpotent, then S is
quasipolar. This yields the main result of [19] (see Example 1). Several equivalent
conditions on quasipolar special Morita context rings over a (commutative) local ring
are obtained.

In this paper, the ring of integers modulo n is denoted by Zn, and we writeMn.R/

and C.R/ for the rings of all n�n matrices over the ring R and the set of all central
elements of R, respectively. For elements a;b in a ring R, we use the notation a �
b to mean that a is similar to b, that is, b D u�1au for some u 2 U.R/. We set�
M W J.R/

�
D fm 2M j '.m

N
n/ 2 J.R/ for all n 2M g and

�
J.R/ WM

�
D fm 2

M j '.n
N
m/ 2 J.R/ for all n 2M g.

2. PRELIMINARY RESULTS

In this section, we decide the forms of the Jacobson radical and the center of spe-
cial Morita contexts. We introduce (uniquely) weakly quasipolar rings and investigate
relations between quasipolar rings and pseudopolar rings (or equivalently, uniquely
strongly �-rad clean rings). We prove thatR is quasipolar if and only ifR is uniquely
weakly quasipolar (Theorem 2). As a result we obtain an affirmative answer to the
question in [12, Remark 4.8] and [11, Lemma 2.4].

The Jacobson radical formula of a Morita context was determined by Sands in his
1973 study on Radicals and Morita contexts (see [17]):

Theorem 1. Let R be a ring. Then

J.S/D

�
J.R/

�
M W J.R/

��
M W J.R/

�
J.R/

�
D

�
J.R/

�
J.R/ WM

��
J.R/ WM

�
J.R/

�
:

Corollary 1. Let R be a ring and Im' � J.R/. Then

J.S/D

�
J.R/ M

M J.R/

�
:
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Proposition 1. Let R be a ring and Im' � J.R/. If J.R/ is nilpotent, then J.S/
is nilpotent.

Proof. Assume that
�
J.R/

�t
D 0 for some t 2N. By direct calculation one sees

that�
J.S/

�t
�

" �
J.R/

�t
CIm' M

M
�
J.R/

�t
CIm'

#
�

�
Im' M

M Im'

�
DW T .

Further, we have

T 2 D

�
Im' Im' �M

Im' �M Im'

�
, and so T 2t D

" �
Im'

�t �
Im'

�t
�M�

Im'
�t
�M

�
Im'

�t
#
D 0:

Therefore
�
J.S/

�2t2
D 0, that is, J.S/ is nilpotent, as desired. �

The following lemma is verified by direct calculation.

Lemma 1. Let R be a ring. Then

C.S/D

��
a 0

0 b

�
j a;b 2 C.R/ and amDmb;bmDma for all m 2M

�
.

Lemma 2. Let R be a ring and Im' � J.R/. Then
�
u m

n v

�
is invertible in S if

and only if u;v 2 U.R/.

Proof. Since units always lift modulo the Jacobson radical, it is clear by Corol-
lary 1. �

Lemma 3. LetR be a local ring and let ˛2D ˛ 2 S . Then there exist ˇ; 2U.S/

such that ˇ˛ D
�
� 0

0 �

�
.

Proof. Write ˛ D
�
e m

n f

�
where e;f 2 R and m;n 2M . Since ˛2 D ˛, we

have

e D e2C'.m˝n/; mD emCmf; nD neCf n; f D f 2C'.n˝m/:

If e 2 U.R/, then we see that�
1 0

�ne�1 1

��
e m

n f

��
1 �e�1m

0 1

�
D

�
e 0

0 f �'.ne�1˝m/

�
:

Similarly, if f 2 U.R/, then there exist ˇ; 2 U.S/ such that ˇ˛ D
�
� 0

0 �

�
.

Now assume that e;f 2 J.R/. Then ˛ 2 J.S/, and so it is zero. We complete the
proof. �
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In view of [18, Theorem 4], we have the following result.

Corollary 2. Let R be a local ring and let ˛2 D ˛ 2 S . Then there exists a

ˇ 2 U.S/ such that ˇ˛ˇ�1 D
�
� 0

0 �

�
.

Let M be an R-R-bimodule and let a 2 R. la WM !M and ra WM !M de-
note, respectively, the abelian group endomorphisms ofM given by la.m/D am and
ra.m/Dma for all m 2M .

Lemma 4. Let ˛ D
�
x 0

0 y

�
;X D

�
a m

n b

�
2 S . Then X 2 comm.˛/ if and

only if a 2 comm.x/, b 2 comm.y/, m 2 ker.lx � ry/ and n 2 ker.ly � rx/.

Proof. It is straightforward. �

Corollary 3. Let ˛ D
�
1 0

0 0

�
2 S and ˇ D

�
0 0

0 1

�
2 S . Then

comm.˛/D

��
a 0

0 b

�
j a;b 2R

�
D comm.ˇ/:

Lemma 5. Let R be a ring. Then
�
a m

n b

�
7!

�
b n

m a

�
is an automorphism of

S .

Remark 1. If R is isomorphic to a ring S by f , then a 2 R is quasipolar if and
only if f .a/ is quasipolar in S .

Lemma 6. Let R be a local ring. Then
�
a 0

0 b

�
2QN.S/ if and only if a;b 2

J.R/ if and only if
�
a 0

0 b

�
2 J.S/.

Proof. If R is a local ring, then J.R/DQN.R/, and so the proof is clear. �

Wang and Chen prove that ([21, Theorem 1.4]) if there exists p2 D p 2 comm.a/
such that aCp 2 U.R/ and akp 2 J.R/ for some k 2 N, then p is unique if and
only if p 2 comm2.a/. We extend this result as the following.

Theorem 2. Let R be a ring and assume that p2 D p 2 comm.a/, aCp 2 U.R/
and ap 2Rqnil for some a;p 2R. Then p 2 comm2.a/ if and only if p is unique.

Proof. If p 2 comm2.a/, then p is unique by [12, Proposition 2.3]. For the con-
verse, suppose p is unique and let xa D ax for some x 2 R. Set c WD xp�pxp,
b D .aCp/�1.1�p/. Then ab2 D b, 1�p D ab D ba, pC c DW e is an idem-
potent, ep D e and pe D p. We show that aC e 2 U.R/ and ae 2QN.R/. Since
.aC e/.bCp/D 1CapCpx.1�p/.bCp/D 1CpaCpxb D 1Cp.aCxb/ is
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invertible if and only if 1C.aCxb/pD 1Cap is invertible, and ap 2QN.R/, aCe
is a right invertible element. Further, as .bCp/.aCe/D 1CapCpx�pxp D 1C
apCpxab D 1Cap.1Cxb/ is invertible if and only if 1C .1Cxb/ap D 1Cap is
invertible, aCe is a left invertible element. Hence aCe is invertible. Let yaeD aey
for some y 2 R. We prove that 1Caey 2 U.R/. We know that 1Caey 2 U.R/ if
and only if 1CayeD 1Cayep 2U.R/ if and only if 1CpayeD 1Capye 2U.R/
because ep D e. Furthermore, pyeap D pyepa D pyea D pyae and appye D
apye D apeye D paeye D pyaee D pyae, we conclude that 1Capye 2 U.R/ as
pa 2QN.R/. Thus e D pC c D p, and so c D 0 because p is unique. That is, we
have xp D pxp. Analogously, it can be shown that px D pxp. Therefore xp D px,
and so p 2 comm2.a/. The proof is completed. �

Definition 1. Let R be a ring. Then a 2 R is called weakly quasipolar provid-
ing that there exists an idempotent e 2 comm.a/ such that aC e 2 U.R/ and ae 2
QN.R/. If this representation is unique, then a 2 R is called uniquely weakly qua-
sipolar. A ring R is called (uniquely) weakly quasipolar if any element of R is
(uniquely) weakly quasipolar.

Remark 2. Lemma 2.4 in [11], Koliha proved that every weakly quasipolar element
is quasipolar in a Banach algebra. But it is not true in a ring. LetRDZ2Œt1; t2; : : :�.t1/
be a ring of polynomials in countably many indeterminates, localized at the prime
ideal .t1/ (for details see [5, Example 2.4.3]). Let � be the map which satisfies
�.ti /D tiC1. ThenRŒŒxI��� is the skew formal power series local ring overR. Con-

sider A D
�
t2 0

0 t1

�
2M2

�
RŒŒxI���

�
where t1 2 J

�
RŒŒxI���

�
, t2 2 U

�
RŒŒxI���

�
.

We directly see that A is weakly quasipolar with E1 D
�
0 x

0 1

�
, E2 D

�
0 0

0 1

�
.

Therefore A is not quasipolar.

By Theorem 2, we have the following result.

Corollary 4. Let R be a ring. The following are equivalent for a 2R.
(1) a is uniquely weakly quasipolar.
(2) a is quasipolar.

3. NONCOMMUTATIVE CASES

The goal of this section is to investigate quasipolarity of special Morita contexts
over local rings. We begin with the following definition.

Definition 2. We say that a bimodule RMR is called (bleached) cobleached provided
that for any a 2 J.R/, b 2 U.R/, both la� rb and lb� ra are (surjective) injective on
M . Further, a bimodule RMR will be called uniquely bleached if, for every j 2 J.R/
and u 2 U.R/, la� rb and lb � ra are surjective as well as injective.
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Huang, Tang and Zhou [10, Corollary 6] proved that if Ks.R/ is quasipolar, then
R is cobleached where R is local. Our next result shows that the latter assumption is
superfluous.

Theorem 3. Let R be a ring. If S is quasipolar, then M is cobleached.

Proof. Let u 2U.R/, j 2 J.R/, and let .lu�rj /.m/D 0 wherem 2M . Consider

˛ D

�
u 0

0 j

�
2 S . Take E D

�
0 0

0 1

�
. Then E˛ D ˛E, ˛CE is invertible and

˛E is quasinilpotent. Since ˛ is quasipolar, by Theorem 2, E must be unique and

E 2 comm2.˛/. Note that
�
0 m

0 0

�
2 comm.˛/. SoE commutes with

�
0 m

0 0

�
,

which implies mD 0. As required. �

Proposition 2. Let R be a local ring. Then ˛ 2 S is strongly clean if and only if

either ˛ 2 U.S/, or I2�˛ 2 U.S/, or ˛ is similar to
�
a 0

0 b

�
.

Proof. “)” Assume that ˛ D
�
x y

´ t

�
is strongly clean. Then there exists an

idempotent E 2 S such that ˛ �E 2 U.S/ and E 2 comm.˛/. By Corollary 2,

there exists ˇ 2 U.S/ such that ˇ�1Eˇ D
�
e 0

0 f

�
. Since R is local and E2 D

E, we have e2 D e;f 2 D f 2 f0;1g. If E D 0, then ˛ 2 U.S/. If E D I2, then

I2 � ˛ 2 U.S/. It follows that ˛ is similar to
�
a 0

0 b

�
where a, b 2 R because

E 2 comm.˛/.
“(” If ˛ 2U.S/ or I2�˛ 2U.S/, then it is strongly clean. Hence we can assume

that ˛ is similar to ˇ D
�
a 0

0 b

�
. Since R is local, there exist e2 D e;f 2 D f 2 R

such that a�e;b�f 2 U.R/, e 2 comm.a/ and f 2 comm.b/. Therefore ˇ�F 2

U.S/ and ˇF D Fˇ where F D
�
e 0

0 f

�
. That is, ˇ is strongly clean. It is well

known that if x is strongly clean and x � y, then y is strongly clean. Thus ˛ is
strongly clean, as asserted. �

Proposition 3. LetR be a local ring. Then the following statements are equivalent

for ˛ D
�
x 0

0 y

�
2 S .

(1) ˛ is quasipolar.
(2) Both lx � ry and rx � ly are injective.

(3) comm.˛/D
��

a 0

0 b

�
j a;b 2R

�
.
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Proof. (1)) (2) Suppose that .lx � ry/.m/ D 0 for some m 2M and ˛CE 2

U.S/ where E D E2 D
�
a b

c d

�
2 comm2.˛/ and ˛E 2QN.S/. By Lemma 4,

we get
�
1 0

0 0

�
;

�
0 m

0 0

�
2 comm.˛/. Then b D 0 D c, a2 D a and d2 D d

becauseE2DE 2 comm2.˛/. SinceR is local, a;d 2 f0;1g. In view of Corollary 3,
comm.E/ is the set of all diagonal matrices in S . We conclude that mD 0; that is,
lx � ry is injective. Similarly, we see that rx � ly is injective. So holds (2).

(2)) (1) If x;y 2 U.R/ or x;y 2 J.R/, then we easily see that ˛ is quasipolar in

S . Let x 2 J.R/ and y 2 U.R/. Write E D
�
1 0

0 0

�
. Then E2 D E 2 comm.˛/

and ˛CE 2 U.S/. Let X D
�
a b

c d

�
2 comm.˛/. According to Lemma 4, b 2

ker.lx � ry/ and c 2 ker.rx � ly/. By (2), we have b D 0 D c. Hence we get

E 2 comm2.˛/ by Corollary 3. As ˛E D
�
x 0

0 0

�
2 J.S/ by Theorem 1, we have

˛E 2QN.S/. That is, ˛ is quasipolar in S .

(2)) (3) Let X D
�
a m

n b

�
2 comm.˛/. By Lemma 4, we have m 2 ker.lx �

ry/ and n 2 ker.rx � ly/. By assumption, we get m D n D 0, and so comm.˛/ D��
a 0

0 b

�
j a;b 2R

�
.

(3)) (2) Suppose that .lx � ry/.n/D xn�ny D 0 for some n 2M . This gives

that X D
�
0 n

0 0

�
2 comm.˛/. By (3), we have nD 0 and so lx � ry is injective.

Similarly, it can be proved that rx� ly is injective. Therefore we complete the proof.
�

Remark 3. As is well known, if ab is quasipolar and .ab/gD D c, then so is ba
and .ba/gD D bc2a [15] (or see [6]). In particular, if a is quasipolar and agD D c,
then u�1auD b is quasipolar for any u 2 U.R/ and bgD D u�1cu.

Proposition 4. Let R be a local ring. Then ˛ 2 S is quasipolar if and only if

˛ 2 U.S/, or ˛ 2 QN.S/, or ˛ is similar to
�
a 0

0 b

�
where la � rb , lb � ra are

injective.

Proof. “)” Assume that ˛ D
�
x y

´ t

�
is quasipolar with spectral idempotent

E D

�
p m

n q

�
. Then, by Corollary 2, there exists ˇ 2 U.S/ such that ˇ�1Eˇ D�

e 0

0 f

�
. SinceR is local andE2DE, we have e2D e;f 2D f 2 f0;1g. IfE D 0,
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then ˛ 2 U.S/. If E D I2, then ˛ 2QN.S/. It follows that ˛ is similar to
�
a 0

0 b

�
where a, b 2 R because E 2 comm2.˛/. In view of Proposition 3, la� rb , lb � ra
are injective, as asserted.

“(” It is clear from Proposition 3 and Remark 3. �

Remark 4. Clearly, if a 2 U.R/[QN.R/, then it is weakly quasipolar. In this
case, we say that a is trivial weakly quasipolar. If a is not in U.R/\QN.R/, we say
that a is non-trivial weakly quasipolar.

Theorem 4. LetR be a local ring. Assume that ˛ is non-trivial weakly quasipolar
with E2 DE 2 S . The following are equivalent.

(1) E is unique.
(2) E 2 comm2.˛/.

(3) ˛ is similar to
�
a 0

0 b

�
where la� rb , lb � ra are injective.

Proof. By Theorem 2, we conclude that (1), (2).

(2)) (3) By assumption, we get ˛ is quasipolar. Then ˛ is similar to
�
a 0

0 b

�
where la� rb , lb � ra are injective by Proposition 4.

(3)) (1) In view of Proposition 4, ˛ is quasipolar, and so E is unique. �

Theorem 5. LetR be a local ring. For any u 2U.R/ and j 2 J.R/, the following
are equivalent.

(1) ru� lj is injective and lu� rj is an isomorphism.

(2) For each m 2M , ˛ D
�
u m

0 j

�
is quasipolar in S with ˛� D

�
0 n

0 1

�
for some n 2M .

Proof. (1)) (2) Letm 2M . Since lu� rj is an isomorphism, there exists n 2M

such that un�nj D�m. Write E D
�
0 n

0 1

�
. This gives E 2 comm.˛/. As

.˛CE/

��
u�1 �u�1.mCn/.j C1/�1

0 .j C1/�1

��
D

��
u�1 �u�1.mCn/.j C1/�1

0 .j C1/�1

��
;

.˛CE/ D I2, we have ˛CE 2 U.S/. We show that E 2 comm2.˛/. Let X D�
x y

´ t

�
2 comm.˛/. This implies that ´D 0, tj D jt , ux D xu and uy�yj D
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xm�mt because ru� lj is injective. We conclude that

u.yCxn�nt/� .yCxn�nt/j D uy�yj Cuxn�unt �xnj Cntj

D uy�yj Cxun�unt �xnj Cnjt

D xm�mtCxun�unt �xnj Cnjt

D xm�mtCx.un�nj /C .nj �un/t

D xm�mtCx.�m/Cmt

D 0:

Therefore XE D EX because lu � rj is injective. Finally, we show that ˛E 2

QN.S/. Assume A D
�
a b

c d

�
2 comm.˛E/. Then I2C˛EA 2 U.S/ because

˛E D

�
0 nj

0 j

�
, as desired.

(2)) (1) IfmD 0, then lu�rj , ru�lj are injective. It remains to prove that lu�rj
is surjective. That is, for eachm 2M , there exists n 2M such that un�nj Dm. Let

m 2M . We write ˛D
�
u m

0 j

�
. By (2), there exists an idempotent E D

�
0 n

0 1

�
such that E 2 comm2.˛/, ˛CE 2 U.S/, and ˛E 2QN.S/. Since ˛E D E˛, we
get u.�n/� .�n/j Dm. �

By a similar method of the proof of Theorem 5, we can derive the following.

Theorem 6. LetR be a local ring. For any u 2U.R/ and j 2 J.R/, the following
are equivalent.

(1) lu� rj is injective and ru� lj is an isomorphism.

(2) For any m 2M , ˛ D
�
u 0

m j

�
is quasipolar in S with ˛� D

�
0 0

n 1

�
for

some n 2M .

According to Theorems 5 and 6, the following result is immediate.

Corollary 5. Let R be a local ring. The following statements are equivalent.

(1) M is uniquely bleached.

(2)
�
R M

0 R

�
or
�
R 0

M R

�
is quasipolar.

Proposition 5. Let R be a local ring and M is cobleached. Then the following
are equivalent.

(1) ˛ 2 S is quasipolar.
(2) ˛ 2 S is weakly quasipolar.

Proof. (1)) (2) It is clear.
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(2)) (1) Assume that E2 D E 2 comm.˛/, ˛CE 2 U.R/ and ˛E 2QN.S/.
If E is zero or identity in S , then ˛ is quasipolar. Hence, we deduce that E is similar
to the diagonal matrix by Corollary 2. Thus, we have ˛ is similar to the diagonal
matrix. Since M is cobleached, we get that ˛ is quasipolar by Theorem 4. �

4. COMMUTATIVE CASES

Let R be a commutative ring and ˛ D
�
a m

n b

�
2 S . In this section, we assume

that ' satisfying symmetry; that is, '.m˝n/D '.n˝m/ for allm;n2M . We define

det.˛/D ab�'.m˝n/ and t r.˛/D aCb, and r˛D
�
ra rm

rn rb

�
for r 2R. Note

that if R is commutative and M is right R-module, then M is left R-module where
rm WDmr for all r 2R, m 2M . Therefore, M is uniquely bleached.

Lemma 7. Let R be a commutative ring and let ˛;ˇ 2 S . The following hold:
(1) det.˛ˇ/D det.˛/det.ˇ/.
(2) ˛ 2 U.S/ if and only if det.˛/ 2 U.R/.
(3) If ˛ � ˇ, then det.˛/D det.ˇ/ and t r.˛/D t r.ˇ/.
(4) ˛2� t r.˛/˛Cdet.˛/I2 D 0.
(5) det.I2C˛/D 1C t r.˛/Cdet.˛/.

Proof. It is straightforward. �

Theorem 7. Let R be a commutative ring and let ˛ 2 S . Then det.˛/, t r.˛/ 2
J.R/ if and only if ˛ is quasinilpotent in S .

Proof. Assume that det.˛/, t r.˛/ 2 J.R/ and let ˛ D
�
a m

n b

�
2 S . By

Lemma 7(4), we have ˛2 D t r.˛/˛�det.˛/I2 2 J.S/, and so ˛ 2QN.S/. Con-
versely, suppose that ˛ 2 QN.S/. To prove that det.˛/ 2 J.R/, let y 2 R. It

is easy to check that ˇ˛ D ˛ˇ D det.˛/I2 where ˇ D
�
b �m

�n a

�
2 S . Since

˛ 2QN.S/, we have that I2Cyˇ˛ 2 U.S/, and so 1Cydet.˛/ 2 U.R/. There-
fore, we get det.˛/ 2 J.R/. Let x 2 R. Then we have I2C x˛ 2 U.S/, and so
det.I2C x˛/ D 1C xtr.˛/C x

2det.˛/ 2 U.R/ by Lemma 7(2). This gives that
1Cxtr.˛/ 2 U.R/; thus, t r.˛/ 2 J.R/. The proof is completed. �

Corollary 6. Let R be a commutative ring. Then the following statements are
equivalent.

(1) ˛ 2QN.S/.
(2) det.˛/, t r.˛/ 2 J.R/.
(3) ˛2 2 J.S/.
(4) ˛k 2 J.S/ for some k � 2.
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Remark 5. Let R be a commutative ring. Then we conclude that

QN.S/D J #.S/D f˛ 2 S j ˛2 2 J.S/g:

Recall that an element a in a ringR is called strongly �-rad clean if there exists an
idempotent e 2 comm.a/ such that a�e 2U.R/ and .ae/k 2 J.R/ for some integer
k.

Corollary 7. Let R be a commutative local ring. The following are equivalent.
(1) ˛ is pseudopolar in S .
(2) ˛ is quasipolar in S .
(3) ˛ is weakly quasipolar in S .
(4) ˛ is strongly �-rad clean in S .

Proof. (1)) (2), (2)) (3) and (4)) (3) are clear. By Remark 5, we deduce
that (3)) (4) and (2)) (1). According to Proposition 5, we have (3)) (2). �

Theorem 8. Let R be a commutative local ring and let ˛ 2 S . Then the following
statements are equivalent.

(1) ˛ is quasipolar in S .
(2) ˛ 2 U.S/, or ˛ 2QN.S/, or x2� t r.˛/xCdet.˛/D 0 is solvable.

Proof. (1) ) (2) Let ˛ 2 S be quasipolar. We may assume that ˛ … U.S/ and

˛ … QN.S/. Then ˛ is similar to ˇ D
�
a 0

0 b

�
where a 2 U.R/, b 2 J.R/ by

Proposition 4. According to Lemma 7(3), t r.˛/D t r.ˇ/ and det.˛/D det.ˇ/. This
gives x2� t r.˛/xCdet.˛/D x2� t r.ˇ/xCdet.ˇ/. Since a2� t r.ˇ/aCdet.ˇ/D
0, the equation x2� t r.˛/xCdet.˛/D 0 is solvable in R.

(2) ) (1) If ˛ is invertible or quasinilpotent in S , then ˛ is quasipolar. Let

˛ D

�
a11 a12
a21 a22

�
2 S and suppose x2� t r.˛/xCdet.˛/D 0 has roots a;b 2 R.

Since ˛ … U.S/\QN.S/, we get det.˛/ D a11a22� '.a12˝ a21/ D ab 2 J.R/
and t r.˛/ D a11C a22 D aC b 2 U.R/ by Theorem 7. So one of a;b must be in
U.R/ and the other must be in J.R/. By Lemma 5 and Remark 1, we can assume

that a 2 U.R/, b 2 J.R/ and a11 2 U.R/. Let ˇ D
�

1 0

a21.a�a22/
�1 1

�
. By

Lemma 7(2), ˇ 2 U.S/ and easy calculation shows that ˇ�1˛ˇ is an formal triangu-

lar matrix in
�
R M

0 R

�
. Therefore ˛ is quasipolar from Corollary 5 and Remark 3.

We complete the proof. �

Now we extend [19, Theorem 15] as follows.

Theorem 9. Let R be a commutative local ring and let ˛ 2 S . Then the following
statements are equivalent.
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(1) ˛ is non-trivial strongly clean in S .
(2) det.˛/ 2 J.R/, t r.˛/ 2 1CJ.R/ and x2� t r.˛/xCdet.˛/D 0 is solvable.

Proof. (1)) (2) It is clear by Proposition 2 and Lemma 7.
(2)) (1) Since det.˛/2J.R/ and t r.˛/2 1CJ.R/, we deduce that ˛ …QN.S/\

U.S/. By Theorem 8, ˛ is quasipolar, and so ˛ is strongly clean. �

Remark 6. According to Theorem 9, ˛ 2 S is non-trivial strongly clean if and only
if it is non-trivial quasipolar in S where R is commutative local.

Theorem 10. Let R be a commutative local ring. Then the following are equival-
ent.

(1) S is quasipolar.
(2) For every ˛ 2 S with det.˛/ 2 J.R/, one of the following holds:

(i) t r.˛/ 2 J.R/,
(ii) x2� t r.˛/xCdet.˛/D 0 is solvable in R.

Proof. (1)) (2) Suppose that ˛ 2 S with det.˛/ 2 J.R/. By .1/, there exists an
idempotent ˛ 2 S such that E 2 comm2.˛/ and ˛CE 2 U.S/ and E˛ 2QN.S/.
If E D I2, then ˛ 2QN.S/ and so t r.˛/ 2 J.R/ by Theorem 7. So we can assume
that ˛ … QN.S/. Since det.˛/ 2 J.R/, ˛ … U.S/ by Lemma 7(2). According to
Theorem 8, the equation x2� t r.˛/xCdet.˛/D 0 is solvable in R.

(2)) (1) Let ˛ 2 S . If det.˛/ 2 U.R/, then ˛ 2 U.S/ and so ˛ is quasipolar.
Let det.˛/ 2 J.R/. If t r.˛/ 2 J.R/, then ˛ is quasipolar by Theorem 7. Hence we
assume that t r.˛/ 2 U.R/. This gives ˛ … U.S/ and ˛ …QN.S/. By Theorem 8, ˛
is quasipolar and so S is quasipolar. �

Lemma 8. Let R be a ring and let u 2 U.R/\C.R/. Then a 2 R is quasipolar
ring if and only if ua is quasipolar in R.

Proof. “)” It follows from [3, Lemma 2].
“(” Assume that au D sC q where s is strongly regular, s 2 comm2.au/, q 2

QN.R/ and sq D qs D 0 by [7, Corollary 2.17]. Then we get a D u�1sCu�1q.
It can be shown that u�1s 2 comm2.a/ and u�1su�1q D u�1qu�1s D 0 because
u 2 C.R/. Since s is strongly regular, there exists t 2 comm2.s/ such that s D s2t .
Multiplying by u�1 yields u�1s D u�1s2t D

�
u�1s

�2
ut . This gives that u�1s is

strongly regular inR. To prove u�1q 2QN.R/, let xu�1qD u�1qx. As u is central,
we deduce that u�1xq D qu�1x D u�1qx, and so 1Cu�1qx 2 U.R/ because q 2
QN.R/, as asserted. �

Theorem 11. Let R be a commutative local ring. The following are equivalent.
(1) S is pseudopolar.
(2) S is quasipolar.
(3) S is weakly quasipolar.
(4) S is strongly �-rad clean.
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(5) S is strongly clean.

Proof. It suffices to show that (5)) (2). Let ˛ D
�
a m

n b

�
2 S . We can further

assume that ˛ … U.S/\QN.S/. Then we have det.˛/ 2 J.R/ and t r.˛/ 2 U.R/.
Case I. Let '.m˝n/ 2 J.R/. Then we may assume a 2 U.R/ and b 2 J.R/ by

Lemma 5. We write a�1˛ D
�
1 p

q j

�
where a�1nD q, a�1mD p and a�1b D j .

Note that a�1I2 is central invertible in S by Lemma 1. Since j 2 J.R/ and j C
�
�

'.p˝q/
�
DWw 2 jCIm', we have det.a�1˛/2J.R/ and det.I2�a�1˛/2J.R/.

This implies a�1˛ is non-trivial strongly clean. Thus x2� t r.a�1˛/Cdet.a�1˛/D
0 is solvable by Theorem 9, and so a�1˛ is quasipolar, and so ˛ is quasipolar by
Lemma 8.

Case II. Let '.m˝n/DW u 2U.R/. Now we prove that t2� t �wD 0 is solvable

for all w 2 J.R/. Let w 2 J.R/ and write ˇD
�

0 u�1m

nw 1

�
. Since det.ˇ/D 0�

'.u�1m˝nw/D �u�1w'.m˝n/D �u�1wuD �w 2 J.R/ and det.I2�ˇ/D
1� t r.ˇ/Cdet.ˇ/D �w 2 J.R/, ˇ is a non-trivial strongly clean element, and so
t2� t �wD 0 is solvable by Theorem 9. Hence t2� tC det.˛/

tr.˛/2
D 0 is solvable. This

gives that x2� t r.˛/xCdet.˛/D 0 is solvable. Consequently, ˛ is quasipolar. We
complete the proof. �

Remark 7. According to the proof Theorem 11, we deduce that if S is strongly
clean and Im'\U.R/¤¿, then x2�x�w D 0 is solvable for all w 2 J.R/.

Theorem 12. Let R be a commutative local ring with Im' � J.R/ and let ˛ 2 S .
Then the following are equivalent.

(1) S is quasipolar.
(2) x2� .1Cj /xCw D 0 is solvable for any j 2 J.R/ and w 2 j CIm'.
(3) x2�xCw D 0 is solvable for any w 2 Im'.

Proof. (1)) (2) Let ˛ D
�
1 �m

n j

�
where j 2 J.R/, w D j C'.m˝n/. By

(1), ˛ is quasipolar. Since det.˛/D jC'.m˝n/2 J.R/ and t r.˛/D 1Cj 2U.R/,
we have that x2� .1Cj /xCw D 0 is solvable by Theorem 10(2).

(2)) (1) Let ˛ D
�
a m

n b

�
2 S . If a;b 2 J.R/ or a;b 2 U.R/, then ˛ 2 J.S/

or ˛ 2 U.S/, and so ˛ is quasipolar. Hence, by Lemma 5, we may assume that

a 2U.R/ and b 2 J.R/. Then we conclude that a�1˛D
�
1 p

q j

�
where a�1nD q,

a�1mD p and a�1b D j . Since j 2 J.R/ and j C
�
�'.p˝q/

�
DWw 2 j CIm',

by assumption, we get x2� .1C j /xCw D 0 is solvable. This gives that a�1˛ is
quasipolar, and so ˛ is quasipolar by Lemma 8.
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(1)) (3) Similar to the proof of (1)) (2).

(3) ) (1) Let ˛ D
�
a m1
n1 b

�
2 S . If a;b 2 J.R/ or a;b 2 U.R/, then ˛ 2

J.S/ or ˛ 2 U.S/, and so ˛ is quasipolar. Hence, by Lemma 5, we may assume

that a 2 U.R/ and b 2 J.R/. Then we conclude that a�1˛ D
�
1 m2
n2 j

�
DW ˇ

where a�1n1 D n2, a�1m1 Dm2 and a�1b D j . It is well known that ˇ is strongly
clean if and only if I2 � ˇ is strongly clean. Hence, we now consider I2 � ˇ D�

0 �m2
�n2 1�j

�
. We directly see that .1� j /�1.I2�ˇ/ D

�
0 m

n 1

�
where m D

�.1� j /�1m2 and nD�.1� j /�1n2. By (3), we have that x2�x�'.m˝n/D 0
is solvable, and so .1�j /�1.I2�ˇ/ is (non-trivial) quasipolar. In view of Lemma 8,
I2�ˇ is (non-trivial) quasipolar; hence ˇ is (non-trivial) quasipolar by Remark 6.
Therefore, by Lemma 8, we deduce that ˛ is quasipolar. �

The following theorem is a generalization of Theorem 22 in [19].

Theorem 13. Let R be a commutative local ring. If Im' is a nilpotent ideal of R,
then S is quasipolar.

Proof. We can assume that (Im'/t D 0 for some t 2N. In this case, we also note
that Im' � J.R/. By Theorem 12, it suffices to prove that x2�xCwD 0 is solvable
for any w 2 Im'. Let w D '.m˝n/ and f0.x/D x2�xCw D 0. We set

Wk D
n
wkx2�uxCw D 0 2RŒx� j u 2 1CJ.R/;w 2 J.R/

o
for any k � 0. Then we have f0.wCwx/Dwf1.x/ where f1.x/Dwx2CxCw 2
W1. Further, we see that f1.�wCwx/ D wf2.x/ where f2.x/ D w2x2� .2w2�
1/xCw2 2W2. By iteration of this process, we get fk�1.wkCwx/D wfk.x/ for
all k D 1; : : : ; t . Therefore,

ft .at / 2R;

) ft�1.at�1/ 2 wR;

) ft�2.at�2/ 2 w
2R;

:::

) f1.a1/ 2 w
t�1R;

) f0.a0/ 2 w
tRD 0:

So we see that x2�xCw D 0 is solvable. We complete the proof. �

We wind up the paper with some examples of special Morita contexts and quasi-
polar rings. In spite of the fact that it is difficult to find a pair of bimodule homo-
morphisms which satisfy the associativity rule, we supply the following examples.

Example 1. Let � D ŒM;N;A;B; ;�� be a Morita context rings. TakeM DN D
R D AD B and  D � DW ' is defined by a˝ b 7! sab (or a˝ b 7! s2ab) where
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s is central in R. Then S is a generalized matrix ring over R denoted by Ks.R/ (or
M2.RIs

2/) (for more details see [8, 10, 13, 14, 19, 20]). It is easy to see that S is
isomorphic to M2.R/ when s D 1. Therefore, we see that the special Morita context
rings are a natural generalization of generalized matrix ring.

Example 2. Let R be a local ring with Im' D 0. Then S is quasipolar if and only
if S is strongly clean and M is cobleached (if and only if M is uniquely bleached).

Proof. “) ” It is clear.
“( ” Assume that S is strongly clean andM is cobleached. Firstly, we prove that

M is bleached. Let m 2M , u 2 U.R/ and j 2 J.R/. Consider ˇ D
�
u m

0 j

�
2 S .

By assumption, ˇ is strongly clean. That is, there exists an idempotent E such that

ˇ�E is invertible and E 2 comm.ˇ/. Take E D
�
x y

´ t

�
. Since E2 D E and

ˇE D Eˇ, we directly see that x2 D x, t2 D t , xu D ux, tj D jt and uyCmt D
xmCyj , and hence x D 0, t D 1 and uy�yj D�m because R is local and ˇ�E 2

U.S/. Thus M is uniquely bleached. Let ˛ D
�
a m

n b

�
. It is enough to show that

˛ is weakly quasipolar by Proposition 5. Without loss of generality, we may assume
that a 2 U.R/ and b 2 J.R/. As M is bleached, there exist x;y 2 M such that

ux�xj D �m and jy �yu D n. Write E D
�
0 x

y 1

�
. This gives that E2 D E,

E 2 comm.˛/ and ˛E 2 J.S/, and so ˛ is weakly quasipolar. �

Example 3. We consider the special Morita context S D

�
R M

M R

�
where RD

Z4,M DZ2˚Z2 and ' WM˝M!Z4 is defined by '
�
.a;b/˝.c;d/

�
D 2.acCbd/.

This implies that ' satisfy the associativity conditions and Im' D f0;4g, and so Im'
is nilpotent ideal in R. Hence, by Theorem 13, S D ŒR;M;'� is quasipolar.
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