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Abstract. This paper investigates the bounded input bounded output (BIBO) stability in a class
of control system of nonlinear difference equations with several time delays. The proofs are
based on our studies on the boundedness of the solutions of a general class of nonlinear Volterra
difference equations with delays.
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1. INTRODUCTION

Time delays play an important role in control systems, since a delay naturally
appears when a system wants to measure or react to information. Stability or sta-
bilization of a system is one of the central question which is investigated in control
theory [10–12]. Because of its simplicity, the bounded input bounded output (BIBO)
stability of control systems is widely investigated. The sufficient conditions for BIBO
stability of control systems without delays are obtained in [18,19] by using Liapunov
function techniques. More recently many researchers have focused their interest on
the BIBO stability of nonlinear discrete and continuous feedback control systems
with or without delays [1, 2, 5–9, 13–15, 17].

In this paper we consider a class of discrete control systems with multiple time
delays. We search for delayed feedback controls such that the corresponding closed
loop system be BIBO stable. We rewrite the closed loop system as an equivalent
nonlinear Volterra difference equation (VDE) with delays. The BIBO stability results
are based on our theorem which formulate sufficient conditions for the boundedness
of the solutions of delayed VDEs. The results presented in this manuscript extend
the methods introduced in [1] for nonlinear differential equations with a single delay
and boundedness of ordinary VDEs presented in [3].

The structure of the manuscript is the following. Section 2 contains the precise
problem statement, the definitions of BIBO stability and local BIBO stability, and we
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rewrite our closed loop control equation as an equivalent VDE. Section 3 formulates
sufficient conditions for the boundedness of a general class of nonlinear VDEs with
multiple delays. Section 4 contains our BIBO stability results for cases when the
nonlinearity has a sub-linear, linear or super-linar estimates.

In the rest of this section we introduce some notations which will be used through-
out this paper. R, RC, Rd and Rd�d denote the set of real numbers, nonnegat-
ive real numbers, d -dimensional real column vectors and d � d -dimensional real
matrices, respectively. The maximum norm on Rd is denoted by k � k, i.e., kxk WD
max1�i�d jxi j, where x D .x1; : : : ;xd /T . The matrix norm on Rd�d generated by
the maximum vector norm will be denoted by k � k, as well. Let ZC and N be the set
of nonnegative and positive integers, respectively. L1.ZC;Rd / will denote the set
of bounded sequences r WZC! Rd with norm krk1 WD supn2ZC kr.n/k. Let � > 0
be a fixed integer, S.Œ��;0�;Rd / denotes the set of finite sequencesn

 W f��;��C1; : : : ;0g ! Rd
o

and k k� WD max
���n�0

k .n/k. For a given sequence x and an integer n the forward

difference operator is defined by �x.n/ WD x.nC1/�x.n/.

2. PROBLEM STATEMENT

In this paper we consider the nonlinear discrete control system with several delays

�x.n/D g.n;x.n��1.n//; : : : ;x.n��`.n///Cu.n/; n 2ZC;

y.n/D Cx.n/; n 2ZC:
(2.1)

Here x.n/ 2 Rd is the state vector, u.n/ 2 Rd is the input vector and y.n/ 2 Rd1 is
the output vector of the system (2.1), C 2 Rd1�d is a constant matrix, �i W ZC!
ZC, i D 1; : : : ;` are bounded delay functions, and the nonlinear function g W ZC�
Rd � : : :�Rd„ ƒ‚ …

`

! Rd satisfies

kg.n;x.1/; : : : ;x.`//k � b.n/'

�
max
1�m�`

kx.m/k

�
; n 2ZC; x

.1/; : : : ;x.`/ 2 Rd ;

(2.2)
where b.n/ > 0 for all n 2 ZC, and ' W RC ! RC is a monotone nondecreasing
mapping.

Our general problem (2.1) satisfying condition (2.2) includes, e.g., linear control
systems

�x.n/D A1.n/x.n��1.n//C�� �CA`.n/x.n��`.n//Cu.n/; n 2ZC;
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and nonlinear control systems of the form

�xi .n/D

dX
jD1

aij .n/x
p
j .n��j .n//Cui .n/; n 2ZC; i D 1; : : : ;d;

where x.n/ D .x1.n/; : : : ;xd .n//T , u.n/ D .u1.n/; : : : ;ud .n//T , p > 0; or a poly-
nomial difference system

�xi .n/D
X̀
jD1

aij .n/x
qij1

1 .n��j .n// � � �x
qijd

d
.n��j .n//Cui .n/

for n 2ZC; i D 1; : : : ;d , where qijk 2 RC for i;k D 1; : : : ;d and j D 1; : : : ;`; or the
scalar nonautonomous control system of the form

�x.n/D
a.n/xp.n��1.n//

b.n/Cxq.n��2.n//
Cu.n/; n 2ZC;

where p;q > 0. In all the above cases assumption (2.2) holds under natural conditions
with '.t/D tp with some p > 0.

We assume that the uncontrolled system, i.e., (2.1) with u � 0 has unbounded
solutions. Our goal is to find a positive diagonal matrix D and a positive integer k
such that the delayed feedback law of the form

u.n/D�Dx.n�k/C r.n/ (2.3)

guarantees that the closed-loop delayed system

�x.n/D g.n;x.n��1.n//; : : : ;x.n��`.n///�Dx.n�k/C r.n/; n 2ZC;

y.n/D Cx.n/; n 2ZC;

x.n/D  .n/; n 2 f��;��C1; : : : ;0g

(2.4)

is BIBO stable. Here r.n/ is the reference input, D D diag.�1; : : : ;�d /, �i > 0 for
i D 1; : : : ;d ,  2 S.Œ��;0�;Rd / is the initial sequence associated to the equation
where

� WDmax
�

max
1�j�`

k�j k1;k

�
; (2.5)

The assumed diagonal form of the feedback law (2.3) is one of the simplest possible
choice. In its implementation it is important to know how large delay can be. In The-
orem 2 and 3 we give sufficient conditions on how to select the feedback gain D and
the time delay k to guarantee the boundedness of the solutions. Our conditions (see
(4.1) and (4.13) below) show that the larger the delay the smaller gain can guarantee
the boundedness of the solution.

Following [16], we introduce the next definition of BIBO stability.
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Definition 1. The closed loop system (2.4) is said to be BIBO stable if there exist
positive constants �1 and �2 D �2.k k� / such that every solution of the system (2.4)
satisfies

ky.n/k � �1krk1C�2; n 2ZC

for every reference input r 2 L1.ZC;Rd /.

Later we need the notion of local BIBO stability (see similar definition in [1] for
the continuous case).

Definition 2. The closed loop system (2.4) is said to be locally BIBO stable if
there exist positive constants ı1, ı2 and � satisfying

ky.n/k � �; n 2ZC

provided that k k� < ı1 and krk1 < ı2.

Our approach is the following. We associate the linear system

�´.n/D�D´.n�k/; n 2ZC (2.6)

with the constant delay k 2N and the initial condition

´.n/D  .n/; �k � n� 0 (2.7)

to (2.4). Then the state equation in (2.4) can be considered as the nonlinear perturba-
tion of (2.6), and by the variation of constants formula (see, e.g., Lemma 4 in [4]) we
get

x.n/D ´.n/C

n�1X
jD0

W.n�j �1/ Œg.j;x.j ��1.j //; : : : ;x.j ��`.j ///C r.j /�

(2.8)
for n2ZC, where ´.n/ is the solution of (2.6)-(2.7) andW is the fundamental matrix
solution of (2.6), i.e., the solution of the IVP

�W.n/D�DW.n�k/; n 2ZC; (2.9)

W.n/D

�
0; �k � n� �1,
I; nD 0.

Here I 2 Rd�d is the identity matrix and 0 2 Rd�d is the zero matrix. Since D is a
diagonal matrix, it is easy to see that W.n/ is a diagonal matrix too for all n 2ZC.

We can rewrite the equation (2.8) as a VDE

x.nC1/D ´.nC1/C

nX
jD0

W.n�j /g.j;x.j ��1.j //; : : : ;x.j ��`.j ///

C

nX
jD0

W.n�j /r.j /; n 2ZC;
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and so it is equivalent to

x.nC1/D

nX
jD0

f .n;j;x.j ��1.j //; : : : ;x.j ��`.j ///Ch.n/; n 2ZC;

(2.10)
where

h.n/ WD ´.nC1/C

nX
jD0

W.n�j /r.j /; (2.11)

and
f .n;j;x.1/; : : : ;x.`// WDW.n�j /g.j;x.1/; : : : ;x.`// (2.12)

for 0� j � n; x.i/ 2 Rd ; 1� i � ` . The equation (2.10) is a nonlinear VDE with
several delay functions.

3. BOUNDEDNESS OF THE SOLUTIONS OF VDES WITH DELAYS

In this section we give a general result for the boundedness of the solutions of
nonlinear VDEs with multiple delays which is a natural extensions of the results
presented in [3] for nonlinear VDEs without delays.

We consider the nonlinear VDE with several delays

x.nC1/D

nX
jD0

f .n;j;x.j ��1.j //; : : : ;x.j ��`.j ///Ch.n/; n 2ZC; (3.1)

with the associated initial condition

x.n/D  .n/; �� � n� 0; (3.2)

where � is a positive integer constant. We assume the following conditions.
(B1) For any fixed 0� j � n and j;n 2ZC

f .n;j; �; : : : ; �/ W Rd � : : :�Rd„ ƒ‚ …
`

! Rd :

(B2) For any 0� j � n and 1� i � d there exists an ai .n;j / 2 RC such that

jfi .n;j;x
.1/; : : : ;x.`//j � ai .n;j /'

�
max
1�m�`

kx.m/k

�
(3.3)

holds for x.1/; : : : ;x.`/ 2 Rd with a monotone non-decreasing mapping ' W
RC! RC, where f D .f1; : : : ;fd /T .

(B3) h.n/D .h1.n/; : : : ;hd .n//T 2 Rd for n 2ZC.
(B4) �i W ZC!ZC satisfies j�i .n/j � � for n 2ZC and i D 1; : : : ;`.
(B5)  2 S.Œ��;0�;Rd /.
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Clearly, problem (3.1)-(3.2) has a unique solution under the above conditions. The
next result formulates sufficient conditions implying the boundedness of the solu-
tions.

Theorem 1. Let  be fixed, (B1)-(B5) are satisfied and let x.nI / be the solution
of (3.1)-(3.2). Suppose there exist N 2 ZC, � 2 RC and v � � such that for i D
1; : : : ;d

NX
jD0

ai .N;j /'.�/Cjhi .N /j � v; (3.4)

NX
jD0

ai .n;j /'.�/C

nX
jDNC1

ai .n;j /'.v/Cjhi .n/j � v; n�N C1 (3.5)

and

jjx.nI /jj � �; n 2 f��; : : : ;N g : (3.6)

Then the solution is bounded by v, i.e.

jjx.nI /jj � v; n� ��: (3.7)

Proof. Consider the solution x.n/ D x.nI /, n 2 ZC of (3.1) with the initial
condition (3.2), and let � and N be such that (3.6) holds. Then, by using (B2), (3.4),
(3.6) and the monotonicity of ', we have for i D 1; : : : ;d

jxi .N C1/j �

NX
jD0

jfi .N;j;x.j ��1.j //; : : : ;x.j ��`.j ///jC jhi .N /j

�

NX
jD0

ai .N;j /'. max
���m�N

kx.m/k/Cjhi .N /j

�

NX
jD0

ai .N;j /'.�/Cjhi .N /j

� v;

Therefore kx.N C1/k � v, so (3.7) holds for nDN C1.
Now we show that (3.7) holds for any n�N C1. Assume, for the sake of contra-

diction, that there exists n0 �N C1 and i0 2 f1; : : : ;dg such that

jxi0.n0C1/j D jxi0.n0C1I /j> v; (3.8)

and
jxi .n/j D jxi .nI /j � v; N C1� n� n0; i D 1; : : : ;d: (3.9)
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Hence, from equation (3.1), we get

jxi0.n0C1/j �

NX
jD0

jfi0.n0;j;x.j ��1.j //; : : : ;x.j ��`.j ///j

C

n0X
jDNC1

jfi0.n0;j;x.j ��1.j //; : : : ;x.j ��`.j ///jC jhi0.n0/j

�

NX
jD0

ai0.n0;j /'. max
���m�N

kx.m/k/

C

n0X
jDNC1

ai0.n0;j /'. max
���m�j

kx.m/k/Cjhi0.n0/j:

Since ' is a monotone non-decreasing mapping, (3.5), (3.6) and (3.9) yield

jxi0.n0C1/j �

NX
jD0

ai0.n0;j /'.�/C

n0X
jDNC1

ai0.n0;j /'.v/Cjhi0.n0/j � v:

This contradicts to our hypothesis (3.8), so inequality (3.7) holds. �

4. MAIN RESULTS

Our main goal in this section is to formulate sufficient conditions which grantee
the BIBO stability of the closed loop system (2.4). We will assume that function ' in
(2.2) is a power function. Our first result is given for the case when g in (2.2) has a
sub-linear estimate, i.e., when '.t/D tp; with 0 < p < 1 in (2.2).

Theorem 2. Let g W Rd ! Rd be a function which satisfies inequality (2.2) with
'.t/ D tp; 0 < p < 1, t � 0. The feedback control system (2.4) with D D

diag.�1; : : : ;�d / and k 2N is BIBO stable if

kbk1 WD sup
n2ZC

b.n/ <1 and 0 < �i < 2cos
k�

2kC1
; i D 1; : : : ;d (4.1)

hold.

Proof. Let  D . 1; : : : ; d /T 2 S.Œ��;0�;Rd /, and ´.n/D .´1.n/; : : : ;´d .n//T

be the solution of the IVP (2.6)-(2.7). Then, for i D 1; : : : ;d; ´i is the solution of the
IVP

�´i .n/D��i´i .n�k/; n 2ZC (4.2)

with initial condition

´i .n/D  i .n/; �k � n� 0: (4.3)
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It is known (see, e.g., [4]) that condition (4.1) yields that there exists a positive con-
stant M and � 2 .0;1/ such that

j´i .n/j �Mk k��
n; n 2ZC; i D 1; : : : ;d; (4.4)

where k k� WD max���j�0 k .j /k. Hence every solution of (4.2) tends to zero as
n!1, and

k´k1 WD sup
n2ZC

k´.n/k �Mk k� <1: (4.5)

Let W.n/ D diag.w1.n/; : : : ;wd .n// be the solution of (2.9). Relation (4.4) yields
limn!1wi .n/D 0 for i D 1; : : : ;d , and

� WD max
0�i�d

1X
nD0

jwi .n/j<1: (4.6)

From (2.8), for all n 2ZC and i D 1; : : : ;d , we have

xi .nC1/D ´i .nC1/

C

nX
jD0

wi .n�j / Œgi .j;x.j ��1.j //; : : : ;x.j ��`.j ///C ri .j /� ;

(4.7)

where x.n/D .x1.n/; : : : ;xd .n//T , gD .g1; : : : ;gd /T and r D .r1; : : : ; rd /T . There-
fore (2.11) and (2.12) imply

fi .n;j;x
.1/; : : : ;x.`//D wi .n�j /gi .j;x

.1/; : : : ;x.`//

and

hi .n/D ´i .nC1/C

nX
jD0

wi .n�j /ri .j /:

Hence, by (2.2),

jfi .n;j;x
.1/; : : : ;x.`//j � jwi .n�j /j jgi .j;x

.1/; : : : ;x.`//j

� jwi .n�j /jb.j /'

�
max
���m�`

kx.m/k

�
;

so the conditions (B1)-(B5) hold with ai .n;j / WD jwi .n�j /jb.j /, 0� j � n.
By (4.1), (4.5), (4.6) and the definition of the infinity norm, we obtain

 WD max
1�i�d

sup
n2ZC

jhi .n/j

� max
1�i�d

sup
n2ZC

j´i .n/jC max
1�i�d

sup
n2ZC

nX
jD0

jwi .n�j /jkr.j /k
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� sup
n2ZC

k´.n/kCkrk1 max
1�i�d

1X
jD0

jwi .j /j (4.8)

D k´k1C�krk1 <1: (4.9)

By conditions (4.1) and (4.6) we get

˛ W D max
1�i�d

sup
n2ZC

nX
jD0

ai .n;j /

D max
1�i�d

sup
n2ZC

nX
jD0

jwi .n�j /jb.j /

� kbk1 max
1�i�d

1X
jD0

jwi .j /j

D �kbk1 <1: (4.10)

Now we show that the inequalities (3.4) and (3.5) are satisfied with

'.t/D tp; t � 0; N D 0; � WD k k� WD max
���n�0

kx.n/k (4.11)

and

v WDmax
�
2.�kbk1k k

p
� Ck´k1C�krk1/; .2�kbk1/

1
1�p ;k k�

�
: (4.12)

By using (4.9) and (4.10), it is clear that for i D 1; : : : ;d

ai .0;0/k k
p
� Cjhi .0/j � �kbk1k k

p
� Ck´k1C�krk1 � v;

therefore (3.4) holds with (4.11) and (4.12). We have v � .2�kbk1/
1

1�p , and so
(4.10) and the definition of ˛ yield

vp�1˛ �
˛

2�kbk1
�
1

2
:

Similarly, using v� 2.�kbk1k k
p
� Ck´k1C�krk1/ and the inequalities (4.9) and

(4.10), we obtain

1

v
.˛k kp� C/�

˛k k
p
� C

2.�kbk1k k
p
� Ck´k1C�krk1/

�
1

2
:

Thus

vp�1˛C
1

v
.˛k kp� C/� 1;

hence for all n� 1, we have for i D 1; : : : ;d

ai .n;0/'.jj jj� /C

nX
jD1

ai .n;j /'.v/Cjhi .n/j � ˛k k
p
� C˛v

p
C � v;
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consequently, (3.6) holds with (4.11) and (4.12). Then all the conditions of Theorem
1 are satisfied, therefore the solution x of the closed loop system (2.4) is bounded by
v for n� �� , i.e.,

kx.n/k � v Dmax
�
2.�kbk1k k

p
� Ck´k1C�krk1/; .2�kbk1/

1
1�p ;k k�

�
� 2�krk1Cmax

�
2.�kbk1k k

p
� Ck´k1/; .2�kbk1/

1
1�p ;k k�

�
for n� �� . Then

ky.n/k � kCkkx.n/k � �1krk1C�2; n 2ZC;

where �1 WD 2�kCk and

�2 WD kCkmax
�
2.�kbk1k k

p
� Ck´k1/; .2�kbk1/

1
1�p ;k k�

�
:

Hence, by Definition 1, the closed loop system (2.4) is BIBO stable. �

It is easy to see that for k D 1 the last inequality of (4.1) gives the upper bound
�i < 1, and as k!1, the upper bound of �i in condition (4.1) tends monotonically
to 0. Therefore large delay allows only small gain in the control law.

In the following theorem a sufficient condition is given for the BIBO stability in
the case of a linear estimate of the function g.

Theorem 3. Let g W Rd ! Rd be a continuous function which satisfies inequality
(2.2) with '.t/D t; t � 0. The closed loop system (2.4) with D D diag.�1; : : : ;�d /
and k 2N is BIBO stable if

kbk1 <
1

�
and 0 < �i < 2cos

k�

2kC1
; i D 1; : : : ;d (4.13)

hold, where � is defined by (4.6).

Proof. As in the proof of Theorem 2, we rewrite (2.4) in the form of (4.7), and
define the functions fi , ai and hi for i D 1; : : : ;d . Then the conditions (B1)-(B5) are
satisfied.

Next we show that the inequalities (3.4) and (3.5) are satisfied with

'.t/D t; N D 0; � WD k k� and v WDmax
�
�krk1CMk k�

1��kbk1
;k k�

�
; (4.14)

where the positive constant M is defined in (4.4), k k� WD sup
���n�0

kx.n/k. Since

ai .n;j / WD wi .n�j /b.j /, 0� j � n, we have
nX

jD0

ai .n;j /D

nX
jD0

jwi .n�j /jb.j /
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� max
1�i�d

sup
n2ZC

nX
jD0

jwi .n�j /jb.j /

� kbk1 max
1�i�q

1X
nD0

jwi .n/j

D �kbk1 (4.15)
< 1: (4.16)

By (4.4), (4.8), (4.13), (4.14) and (4.16), we have for n 2ZC, i D 1; : : : ;d

v �
�krk1CMk k�

1��kbk1

�

krk1

nX
jD0

jwi .n�j /jC j´i .nC1/j

1�

nX
jD0

jwi .n�j /jb.j /

�

nX
jD0

jwi .n�j /jjri .j /jC j´i .nC1/j

1�

nX
jD0

jwi .n�j /jb.j /

:

Since hi .n/D
Pn
jD0wi .n�j /r.j /C´i .nC1/, it follows

v �
jhi .n/j

1�

nX
jD0

jwi .n�j /jb.j /

; n 2ZC:

Therefore

v

nX
jD0

jwi .n�j /jb.j /Cjhi .n/j � v; n 2ZC; i D 1; : : : ;d:

Hence the above inequality and v � k k� yield for nD 0 and i D 1; : : : ;d

ai .0;0/k k� Cjhi .0/j � vjwi .0/jb.0/Cjhi .0/j � v;

and so (3.4) is satisfied with (4.14). Similarly, for n 2N and i D 1; : : : ;d

vjwi .n/jb.0/Cv

nX
jD1

jwi .n�j /jb.j /Cjhi .n/j � v:
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Therefore

ai .n;0/k k� Cv

nX
jD1

ai .n;j /Cjhi .n/j � v; n 2N; i D 1; : : : ;d;

consequently, (3.5) is satisfied with (4.14). Then all the conditions of Theorem 1 hold
with with (4.14), therefore the solution x of the closed loop system (2.4) is bounded
by v, i.e.,

kx.n/k � v; n 2ZC:

Hence

ky.n/k � kCkkx.n/k

� kCkv

D kCkmax
�
�krk1CMk k�

1��kbk1
;k k�

�
� �1krk1C�2;

where

�1 WD
kCk�

1��kbk1
and �2 WD kCkmax

�
Mk k�

1��kbk1
;k k�

�
:

Then, by Definition 1, the feedback control system (2.4) is BIBO stable. �

Corollary 1. Let g W RC�Rd ! Rd be a continuous function which satisfies in-
equality (2.2) with '.t/ D t , t � 0. The closed loop system (2.4) with D D

diag.�1; : : : ;�d / and k 2N is BIBO stable if

kbk1 < �i �
kk

.kC1/kC1
; i D 1; : : : ;d (4.17)

hold.

Proof. Under our condition (4.17) and from Lemma 4 in [4] we get that the fun-
damental solution wi of (4.2)-(4.3) is positive and

1X
jD0

wi .j /D
1

�i
; i D 1; : : : ;d:

Therefore

�Dmax
�
1

�1
; : : : ;

1

�d

�
;

and hence �kbk1 < 1. The proof is similar to the proof of Theorem 3 and it is
omitted. �
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In the next theorem it is shown that in the super-linear case there exist positive
diagonal gainD and positive delay k such that the solutions of the closed loop system
are bounded for small initial functions and small reference inputs, i.e., the system is
locally BIBO stable.

Theorem 4. Let g W Rd ! Rd be a continuous function which satisfies inequality
(2.2) with '.t/D tp; p > 1, t � 0. Then the solution x of the feedback control system
(2.4) is locally BIBO stable if (4.1) holds.

Proof. Suppose �1; : : : ;�d are fixed satisfying (4.1), D D diag.�1; : : : ;�d /, and
let ´ be the solution of the IVP (2.6)-(2.7), and � be defined by (4.6). Let k k� � ı1
and krk1 � ı2, where ı1, ı2 will be specified later. From (4.5) and (4.9) we have

k´k1 �Mk k� �Mı1

and
 WD max

1�i�d
sup
n2ZC

jhi .n/j � k´k1C�krk1 �Mı1C�ı2 <1;

and from (4.1) and (4.15) it follows

˛ WD max
1�i�d

sup
n2ZC

nX
jD0

ai .n;j /� �kbk1 <1:

Since p > 1 and � and kbk1 are positive and finite, we select the positive constants
ı1 and ı2 so that

˛ı
p
1 CMı1C�ı2 �

1

2

�
1

2�kbk1

� 1
p�1

and 0 < ı1 �

�
1

2�kbk1

� 1
p�1

(4.18)

hold.
Next we show that the inequalities (3.4) and (3.5) are satisfied with

'.t/D tp; N D 0; � WD k k� and v WD

�
1

2�kbk1

� 1
p�1

: (4.19)

We note that the definitions of �, ı1 and the second part of (4.18) yield �� v. Using
the definition of v, p > 1 and (4.18) we get

v �
1

2

�
1

2�kbk1

� 1
p�1

� ˛ı
p
1 CMı1C�ı2 � ˛k k

p
� C � ai .0;0/k k

p
� Cjhi .0/j

for i D 1; : : : ;d , hence the condition (3.4) holds with (4.19).
Similarly, the definition of v, p > 1 and (4.18) yield

v�˛vp � v��kbk1v
p
D
1

2

�
1

2�kbk1

� 1
p�1

� ˛ı
p
1 CMı1C�ı2 � ˛k k

p
� C:
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Then the definitions of ˛ and  imply

ai .n;0/k k
p
� C

nX
jD1

ai .n;j /v
p
Cjhi .n/j � ˛k k

p
� C˛v

p
C � v; n 2N;

therefore the condition (3.5) holds with (4.19).
Therefore the conditions of Theorem 1 are satisfied with (4.19), so the solution of

the closed loop system (2.4) is bounded by v, i.e.,

kx.n/k< v D

�
1

p�kbk1

� 1
p�1

; n 2ZC:

Hence
ky.n/k � kCkkx.n/k � �; n 2ZC;

where

� WD kCk

�
1

p�kbk1

� 1
p�1

:

By Definition 2 the closed loop system (2.4) is locally BIBO stable. �
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