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Abstract. The complete integrability of a generalized Riemann type hydrodynamic hierarchy
is studied by means of a novel combination of symplectic and differential-algebraic tools. A
compatible pair of polynomial Poissonian structures, a Lax representation and a related infinite
hierarchy of conservation laws are constructed. The current investigation provides an interesting
glimpse of what is apparently a far wider range of applications.
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1. INTRODUCTION

Since the Riemann classical works on two-dimensional hydrodynamic type equa-
tions and their invariants during the last decades there has been achieved great pro-
gress [7, 8] in studies of their analytical properties, in particular, in stating the exist-
ence of the Poissonian representations and infinite hierarchies of conservation laws.
Important results in studying the existence of hierarchies of both local and non-local
conservation laws for a general type of nonlinear differential equations were obtained
in [15,16] by means of differential-geometric methods, which in the two-dimensional
case also makes it possible to construct the corresponding Lax type representations.
Recently new mathematical approaches, based on differential-algebraic and differ-
ential geometric methods and techniques, were applied in works [5, 13] for studying
the Lax type integrability of nonlinear differential equations of Korteweg-de Vries
and Riemann type. In particular, a great deal of analytical studies [4, 5, 11] were de-
voted to finding the corresponding Lax-type representations of the infinite Riemann
type hydrodynamical hierarchy, suggested recently (by M. Pavlov and D. Holm [9])
in the form

DNt uD 0; (1.1)
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where the differentiation Dt WD @=@t C u@=@x; N 2 N; .x; t/| 2 R2 and
u 2 C1.R=2�ZIR/. It was found that the related dynamical system

Dtu1 D u2; :::;Dtuj D ujC1; :::;DtuN D 0; (1.2)

defined on a 2�-periodic infinite-dimensional smooth functional manifold MN �

C1.R=2�ZIRN /; possesses [11, 13] for an arbitrary integer N 2N a suitable Lax
type representation

Dxf D lN ŒuI��f; Dtf D qN .�/f (1.3)

with � 2 C being a complex spectral parameter and f 2 L1.RICN / and matrices
lN ŒuI��;qN .�/ 2 End C2: Here, by definition, u1 WD u 2 C1.R2IR/ and the dif-
ferentiations

Dt WD @=@tCu1Dx; Dx WD @=@x (1.4)

satisfy on the manifold MN the following commutation relationship:

ŒDx;Dt �D u1;xDx : (1.5)

In particular, for the casesN D 2;3 andN D 4 the following exact matrix polynomial
in � 2C expressions

l2ŒuI��D

�
�u1;x u2;x
�2�2 ��u1;x

�
; q2.�/D

�
0 0

�� 0

�
;

(1.6)

l3ŒuI��D

0@ �2u1;x ��u2;x u3;x
3�3 �2�2u1;x �u3;x

6�4r
.1/
3 Œu� �3�3 �2u1;x

1A ; q.�/ WD
0@ 0 0 0

� 0 0

0 � 0

1A ;

l4ŒuI��D

0BBB@
��3u1;x �2u2;x ��u3;x u4;x
�4�4 3�3u1;x �2�2u2;x �u3;x

�10�5r
.1/
N Œu� 6�4 �3�3u1;x �2u2;x

�20�6r
.2/
4 Œu� 10�5r

.1/
4 Œu� �4�4 �3u1;x

1CCCA ;

q4.�/ WD

0BB@
0 0 0 0

� 0 0 0

0 � 0 0

0 0 � 0

1CCA ;
were presented in exact form.

In the present work we will be interseted in studying the complete integrability of
a new important dispersionless Riemann type hydrodynamic hierarchy

DN�1t uD Ń sx; Dt Ń D 0 (1.7)
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on a 2�-periodic functional manifold NMN � C1.R=2�ZIRN /; where s;N 2 N
are arbitrary natural numbers, the vector .u;Dtu;D2t u; :::;D

N�1
t u; Ń/| 2 NMN ; the

differentiationsDx WD @=@x; Dt WD @=@tCu@=@x satisfy as above the Lie-algebraic
commutator relationship (1.5) and t 2 R is an evolution parameter. This system can
be considered at s D 2 and N D 3 as a nontrivial generalization of the dispersion-
less Riemann hydrodynamic system (1.1), extensively studied by means of different
mathematical tools in [4, 5, 10, 11, 13, 14]. For the case s D 2 and N D 2 it is well
known [1, 12] that the system (1.7) is a smooth Lax integrable bi-Hamiltonian flow
on the 2�-periodic functional manifold NM2; whose Lax representation is given by
the compatible linear system

Dxf D

�
Ńx 0

��.uCux= Ńx/ �Ńxx= Ńx

�
f; Dtf D

�
0 0

�� Ńx ux/

�
f; (1.8)

where f 2 C1.R2IR2/ and � 2 R is an arbitrary spectral parameter.
At sD 2 andN D 3 dynamical system (1.7) is equivalent to that on a 2�-periodic

functional manifold NM3 � C
1.R=2�ZIR3/ for a vector .u;v; Ń/| 2 NM3 W

DtuD v; Dtv D Ń
2
x; Dt Ń D 0: (1.9)

The latter can be easily rewritten by means of the change of variables ´ WD Ń2x
as that on a 2�-periodic functional manifold M3 � C

1.R=2�ZIR3/ for a vector
.u;v;´/| 2M3

DtuD v; Dtv D ´; Dt´D�2´ux; (1.10)

or in the form of the flow0@ du=dt

dv=dt

d´=dt

1ADKŒu;v;´� WD
0@ v�uux

´�uvx
�2ux´�u´x

1A ; (1.11)

defining a standard smooth dynamical system on the infinite-dimensional functional
manifold M3; where K WM3! T .M3/ is the corresponding vector field on M3:

Concerning the new dynamical system (1.11) we succeeded in proving the fol-
lowing result based on the symplectic gradient-holonomic and differential algebraic
tools.

Proposition 1. The Riemann type hydrodynamic flow (1.11) is a bi-Hamiltonian
dynamical system on the functional manifoldM3 with respect to two compatible Pois-
sonian structures #;� W T �.M3/! T .M3/

# WD

0@ 0 1 0

�1 0 0

0 0 2´1=2Dx´
1=2

1A ;� WD
0@ @�1 ux@

�1 0

@�1ux vx@
�1C@�1vx @�1´x �2´

0 ´x@
�1C2´ 0

1A ;
(1.12)
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possessing an infinite hierarchy of mutually commuting conservation laws and a non-
autonomous Lax representation of the form

Dtf D

0@ 0 0 0

�� 0 0

0 ��
p
´ ux

1Af; (1.13)

Dxf D

0BB@
�2u
p
´ �v

p
´ ´

��3tu
p
´ ��2tv

p
´ ��t´

�4.tuv�u2/�

��2ux=
p
´

��vx=
p
´C

C�3.tv2�uv/

��2
p
´.u� tv/�

�´x=2´

1CCAf;
where � 2 R is an arbitrary spectral parameter and f 2 C1 .R2IR3/:

2. SYMPLECTIC GRADIENT-HOLONOMIC INTEGRABILITY ANALYSIS

Our first steps in proving Proposition 1 are fashioned using the symplectic gradient-
holonomic method, which takes us a long way towards the desired result.

2.1. Poissonian structure analysis on the functional manifold M3

By employing the symplectic gradient-holonomic approach [1, 6, 12] to studying
the integrability of smooth nonlinear dynamical systems on functional manifolds,
one can find a set of conservation laws for (1.11) by constructing solutions ' WD
'Œu;v;´� 2 T �.M3/ to the functional Lax gradient equation:

d'=dtCK 0;�' D gradL; (2.1)

where '0 D '0;�; L 2 D.M3/ is a suitable Lagrangian functional (in the space of
smooth functionals on M3) and the linear operator K 0;� W T �.M3/! T �.M3/ is the
adjoint with respect to the standard convolution .�; �/ on T �.M3/� T .M3/; of the
Fréchet-derivative of a nonlinear mapping K WM3! T .M3/; namely,

K 0;� D

0@ uDx �vx ´xC2´Dx
1 uxCuDx 0

0 1 �uxCuDx

1A : (2.2)

The Lax gradient equation (2.1) can be, owing to (1.11), rewritten as

Dt'CkŒu;v;´�' D grad L; (2.3)

where the matrix operator

kŒu;v;´� WD

0@ 0 �vx ´xC2´Dx
1 ux 0

0 1 �ux

1A : (2.4)

The first vector elements

'# Œu;v;´�D .´�uvx;�vCuux;u/;L# D 0 (2.5)
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'�Œu;v;´�D .vx;�ux;�1/
|;L� D 0;

'0Œu;v;´�D .�.ux´
�1=2/x; .´

�1=2/x; .vx=2�u
2
x=4/´

�3=2/|;L0 D 0;

as can be easily checked, are solutions of the functional equation (2.3). From an
application of the standard Volterra homotopy formula

H WD

Z 1

0

d�.'Œ�u;�v;�´�; .u;v;´/|/; (2.6)

one finds the conservation laws for (1.11); namely,

H� D
1

2

Z 2�

0

dx.2u´�v2�u2vx/; (2.7)

H# WD

Z 2�

0

dx.uvx=2�vux=2�´/; H0 WD
1

2

Z 2�

0

dx.u2x �2vx/´
�1=2:

It is now quite easy, making use of the conservation laws (2.7), to construct a
Poissonian structure # W T �.M3/! T .M3/ for the dynamical system (1.11). If we
use the representations

H# D

Z 2�

0

dx.uvx=2�vux=2�´/ WD . # ; .ux;vx;´x/
|/; (2.8)

 # WD .�v=2;u=2;´
�1=2D�1x ´1=2=2/|;

it follows that the vector  # 2 T �.M3/ satisfies the Lax gradient equation (2.3):

Dt #CkŒu;v;´� # D grad L# ; (2.9)

where the Lagrangian function L# D . # ;K/�H# : Thus, based on the inverse co-
symplectic functional expression

#�1 WD  0# � 
0;�
#
D

0@ 0 �1 0

1 0 0

0 0 ´�1=2D�1x ´�1=2=2

1A (2.10)

one readily obtains the linear co-symplectic operator on the manifold M3 W

# WD

0@ 0 1 0

�1 0 0

0 0 2´1=2Dx´
1=2

1A ; (2.11)

which is the corresponding Poissonian operator for the dynamical system (1.11). It
is also important to observe that the dynamical system (1.11) is a Hamiltonian flow
on the functional manifold M3 with respect to the Poissonian structure (2.11).

KŒu;v;´�D�# grad H�: (2.12)
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2.2. Poissonian structure analysis on NM3

In what follows, we shall find it convenient to construct other Poissonian structures
for dynamical system (1.9) on the manifold NM3; rewritten in the equivalent form

d

dt

0@ u

v

Ń

1AD NKŒu;v; Ń � WD
0@ v�uux
Ń2x �uvx

0

1A ; (2.13)

where NK W NM3! T . NM3/ is the corresponding vector field on NM3: To proceed, we
need to obtain additional solutions to the Lax gradient equation (2.3) on the functional
manifold NM3

Dt N C NkŒu;v;´� N D grad NL; (2.14)

where the matrix operator is

NkŒu;v; Ń � WD

0@ 0 �vx �Ńx

1 ux 0

0 �2@ Ńx ux

1A ; (2.15)

and which we may rewrite in the componentwise form

Dt N 
.1/
D vx N 

.2/
C Ńx N 

.3/
C ı NL=ıu; (2.16)

Dt N 
.2/
D� N .1/�ux N 

.2/
C ı NL=ıv;

Dt N 
.3/
D 2. Ńx N 

.2//x �ux N 
.3/
C ı NL=ı Ń ;

where the vector N WD . N .1/; N .2/; N .3//| 2 T �. NM3/: As a simple consequence of
(2.16), one obtains the following system of differential relationships:

D3t
Q .2/ D�2 Ń2x

Q 
.2/
x CD

2
t @
�1.ı NL=ıv/�

�@�1 < grad NL; .ux;vx; Ńx/| >;
Dt Q 

.2/ D� Q .1/C@�1.ı NL=ıv/;

Dt Q 
.3/ D 2 Ńx Q 

.2/
x C@

�1.ı NL=ı Ń/:

(2.17)

Here we have defined . N .1/; N .2/; N .3//| WD . Q .1/x ; Q 
.2/
x ; Q 

.3/
x /| and made use of the

commutator relationship for differentiations Dt and Dx W

ŒDt ;˛
�1Dx�D 0; (2.18)

which holds for the function ˛ WD 1= Ńx; where Dt Ń D 0. It therefore follows that
after solving the first equation of system (2.17), one can recursively sole the remain-
ing two equations. In particular, it is easy to see that the three vector elements

Q 0 D .�v;u;�2 Ńx/
|; NL0 D 0I

Q � D .�ux= Ńx;1= Ńx; .u
2
x �2vx/=.2 Ń

2
x//

|; NL� D 0I
Q � D .u=2;�x=2;@

�1Œ.2vx �u
2
x/=.2 Ńx/�/;

NL� D .Dx Q �; NK/�H# ;

(2.19)
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are solutions of the system (2.17). The first two elements of (2.19) lead to the Vol-
terra symmetric vectors N 0DDx Q 0; N � DDx Q � 2 T �. NM3/ W N 

0
0D
N 
0;�
0 ; N 0

�
D N 

0;�
�

entailing the trivial conservation laws . N 0; NK/D 0D . N � ; NK/: The third element of
(2.19) gives rise to the Volterra asymmetric vector N � WDDx Q � W N 0� ¤ N 

0;�
� ; entail-

ing the following inverse co-symplectic functional expression:

N��1 WD N 0��
N 0;�� D

0BBB@
@ 0 �@ux

Ńx

0 0 @ 1
Ńx

�
ux

Ńx
@ 1
Ńx
@

ux

2 Ńx
@ux

Ńx
�

�
vx

Ńx
@ 1
Ńx
�

1
Ńx
@vx

Ńx

1CCCA : (2.20)

Correspondingly, the Poissonian operator N� W T �. NM3/! T . NM3/ is

N�D

0@ @�1 ux@
�1 0

@�1ux vx@
�1C@�1vx @�1 Ńx

0 Ńx@
�1 0

1A ; (2.21)

subject to which the following Hamiltonian representation

NKŒu;v; Ń �D�N� grad H�j´DŃ2x (2.22)

holds on the manifold NM3.

2.3. Hamiltonian integrability analysis

Next, we return to our integrability analysis of the dynamical system (1.11) on the
functional manifold M3: It is easy to recalculate the form of the Poissonian operator
(2.21) on the manifold NM3 to that acting on the manifoldM3; giving rise to the second
Hamiltonian representation of (1.11):

KŒu;v;´�D�� grad H# ; (2.23)

where � W T �.M3/! T .M3/ is the corresponding Poissonian operator. As a next
important point, the Poissonian operators (2.11) and (2.21) are compatible [1–3,12]
on the manifold NM3; that is, the operator pencil .#C��/ W T �.M3/! T .M3/ is
also Poissonian for arbitrary � 2 R: As a consequence, any operator of the form

#n WD #.#
�1�/n (2.24)

for all n 2 Z is Poissonian on the manifold M3. Using now the homotopy formula
(2.6) and recursion property of the Poissonian pair (2.12) and (2.21), it is easy to
construct the related infinite hierarchy of mutually commuting conservation laws


j D
R 1
0 d�.grad 
j Œ�u;�v;�´�; .u;v;´/|/;
grad 
j Œu;v;´� WD�j grad H�;

(2.25)
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for the dynamical system (1.11), where j 2 ZC and � WD #�1� W T �.M3/ !

T �.M3/ is the corresponding recursion operator, which satisfies the so called as-
sociated Lax commutator relationship

d�=dt D Œ�;K 0;��: (2.26)

In the course of above analysis and observations, we have proved the following result.

Proposition 2. The Riemann hydrodynamic system (1.11) is a bi-Hamiltonian dy-
namical system on the functional manifold M3 with respect to the compatible Pois-
sonian structures #;� W T �.M3/! T .M3/

# WD

0@ 0 1 0

�1 0 0

0 0 2´1=2Dx´
1=2

1A ;� WD
0@ @�1 ux@

�1 0

@�1ux vx@
�1C@�1vx @�1´x �2´

0 ´x@
�1C2´ 0

1A
(2.27)

and possesses an infinite hierarchy of mutually commuting conservation laws (2.25).

Concerning the existence of an additional infinite and parametrically R3�-ordered
hierarchy of conservation laws for the dynamical system (1.11), it is instructive to
consider the dispersive nonlinear dynamical system0@ du=d�

dv=d�

d´=d�

1AD�# grad H0Œu;v;´� WD

0B@ �.´�1=2/x
�.ux´

�1=2/x

´1=2.
u2

x�2vx

2´
/x

1CAD QKŒu;v;´�: (2.28)

By solving the corresponding Lax equation

d Q'=dtC QK 0;� Q' D 0 (2.29)

for an element Q' 2 T �.M3/ in a suitably chosen asymptotic form, one can construct
an infinite ordered hierarchy of conservation laws for (1.11), which we will not delve
into here. This hierarchy and the existence of an infinite and parametrically R 3 �-
ordered hierarchy of conservation laws for the Riemann type dynamical system (1.11)
provided compelling indications that it is completely integrable in the sense of Lax on
the functional manifold M3. We shall complete our integrability analysis in the next
section using rather powerful differential-algebraic tools that were devised recently
in [11, 13, 14].

3. DIFFERENTIAL-ALGEBRAIC INTEGRABILITY ANALYSIS: N D 3

Consider a polynomial differential ring Kfug �K WD Rffx; tgg generated by a
fixed functional variable u 2 Rffx; tgg and invariant with respect to two differenti-
ations Dx WD @=@x and Dt WD @=@tCu@=@x that satisfy the Lie-algebraic commut-
ator relationship (1.5)

ŒDx;Dt �D uxDx (3.1)
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together with the constraint (1.10) expressed in the differential-algebraic functional
form

D3t uD�2D
2
t uDxu:

Since the Lax representation for the dynamical system (1.11) can be interpreted [1,
13] as the existence of a finite-dimensional invariant ideal Ifug �Kfug realizing the
corresponding finite-dimensional representation of the the Lie-algebraic commutator
relationship (3.1), this ideal can be constructed as

Ifug WD f�2uf1C�vf2C´
1=2f3 2Kfug W fj 2K;1� j � 3;� 2 Rg; (3.2)

where v D Dtu;´ D D2t u and � 2 R is an arbitrary real parameter. To find finite-
dimensional representations of the Dx- and Dt -differentiations, it is necessary [13]
first to find the Dt -invariant kernel kerDt � Ifug and next to check its invariance
with respect to the Dx-differentiation. It is easy to show that

kerDt D ff 2K3
fug WDtf D q.�/f; � 2 Rg; (3.3)

where the matrix q.�/ WD qŒu;v;´I�� 2End Kfug3 is given as

q.�/D

0@ 0 0 0

�� 0 0

0 ��
p
´ ux

1A : (3.4)

To obtain the corresponding representation of the Dx-differentiation in the space
K3; it suffices to find a matrix l.�/ WD l Œu;v;´I�� 2End Kfug3 such that

Dxf D l.�/f (3.5)

for f 2Kfug3 and the related ideal

Rfug WD f< g;f >K3 W f 2 kerDt �K3
fug; g 2K3

g (3.6)

isDx-invariant with respect to the matrix differentiation representation (3.5). Straight-
forward calculations using this invariance condition then yield the following matrix

l.�/D

0BB@
�2u
p
´ �v

p
´ ´

��3tu
p
´ ��2tv

p
´ ��t´

�4.tuv�u2/�

��2ux=
p
´

��vx=
p
´C

C�3.tv2�uv/

��2
p
´.u� tv/�

�´x=2´

1CCA (3.7)

entering the linear equation (3.5). Thus, the following proposition is proved.

Proposition 3. The generalized Riemann type dynamical system (1.11) is a bi-
Hamiltonian integrable flow possessing a non-autonomous Lax representation of the
form

Dtf D

0@ 0 0 0

�� 0 0

0 ��
p
´ ux

1Af; (3.8)
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Dxf D

0BB@
�2u
p
´ �v

p
´ ´

��3tu
p
´ ��2tv

p
´ ��t´

�4.tuv�u2/�

��2ux=
p
´

��vx=
p
´C

C�3.tv2�uv/

��2
p
´.u� tv/�

�´x=2´

1CCAf;
where � 2 R is an arbitrary spectral parameter and f 2 C1 .R2IR3/:

Remark 1. Simple analogs of the above differential-algebraic calculations for the
case N D 2 lead readily to the corresponding Riemann type hydrodynamic system

DtuD Ń
2
x; Dt Ń D 0 (3.9)

on the functional manifold NM2, which possesses the following matrix Lax represent-
ation:

Dtf D

�
0 0

�� Ńx ux

�
; Dxf D

�
Ńx 0

��.uCux= Ńx �Ńxx= Ńx

�
f; (3.10)

where � 2 R is an arbitrary spectral parameter and f 2 C1 .R2IR2/:

As one can readily see, these differential-algebraic results provide a direct proof of
Proposition 1 describing the integrability of system (1.11) for N D 3: The matrices
(3.7) are not of standard form since they depend explicitly on the temporal evolution
parameter t 2 R: Nonetheless, the matrices (3.4) and (3.7) satisfy for all � 2 R the
well-known Zakharov–Shabat type compatibility condition

Dt l.�/D Œq.�/; l.�/�CDxl.�/�uxl.�/; (3.11)

which follows from the Lax type relationships (3.3) and (3.5)

Dtf D q.�/f; Dxf D l.�/f (3.12)

and the commutator condition (3.1). Moreover, taking into account that the dynam-
ical system (1.11) has a compatible Poissonian pair (2.11) and (2.21) depending only
on the variables .u;v;´/| 2M3 and not depending on the temporal variable t 2 R;
one can certainly assume that it also possesses a standard autonomous Lax represent-
ation, which can possibly be found by means of a suitable gauge transformation of
(3.12). We plan to pursue this line of analysis in a forthcoming paper.

4. CONCLUDING REMARKS

A new nonlinear Hamiltonian dynamical system representing a Riemann type hy-
drodynamic equation (1.7) in two and three dimensions proves to be a very interesting
example of a Lax integrable dynamical system, as we have proved here. In particular,
the integrability prerequisites of this dynamical system, such as compatible Poisso-
nian structures, an infinite hierarchy of conservation laws and related Lax repres-
entation have been constructed by means of both the symplectic gradient-holonomic
approach [1,6,12] and innovative differential-algebraic tools devised recently [4,13]



INTEGRABILITY OF A GENERALIZED RIEMANN HYDRODYNAMIC HIERARCHY 565

for analyzing the integrability of a special infinite hierarchy of Riemann type hydro-
dynamic systems. It is also quite clear from recent research in this area and our work
in this paper that the dynamical system (1.7) is a Lax integrable bi-Hamiltonian flow
for arbitrary integers N 2 NI this is perhaps most readily verified by means of the
differential-algebraic approach, which was devised and successfully applied here for
the cases N D 2 and 3.

We have seen in the course of this investigation that perhaps the most important
lesson that one can derive from this approach is the following: If an analysis of a
given nonlinear Hamiltonian dynamical system via the gradient-holonomic method
indicates (but does not necessarily prove) that the system is Lax integrable, then
its Lax representation can often be shown to exist and then successfully derived by
means of a suitably constructed invariant differential ideal Ifug of the ring Kfug in
accordance with the differential-algebraic approach developed here. Consequently,
when it comes to applying this lesson to the investigation of other nonlinear dynam-
ical systems, it is natural to start with systems that are known to be Lax integrable
and then to try to identify and characterize those algebraic structures responsible for
the existence of a related finite-dimensional matrix representation for the basic Dx-
and Dt -differentiations in a vector space Kp for some finite p 2ZC:

It seems plausible that if one could do this for several classes of Lax integrable dy-
namical systems, certain patterns in the algebraic structures may be detected that can
be used to assemble a more extensive array of symplectic and differential-algebraic
tools capable of resolving the question of complete integrability for many other types
of nonlinear Hamiltonian dynamical systems. Moreover, if the integrability is es-
tablished in this manner, the approach should also serve as a means of constructing
associated artifacts of the integrability such as Lax representations and hierarchies
of mutually commuting invariants. As a particular differential-algebraic problem of
interest concerning these matrix representations, one can seek to develop a scheme
for the effective construction of functional generators of the corresponding invariant
finite-dimensional ideals Ifug �Kfug under given differential-algebraic constraints
imposed on the Dx- and Dt -differentiations.

We have demonstrated here that an approach combining the gradient-holonomic
method with some recently devised differential-algebraic techniques can be a very ef-
fective and efficient way of investigating integrability for a particular class of infinite-
dimensional Hamiltonian dynamical systems (generalized Riemann hydrodynamical
systems). But a closer look at the specific details of the approach reveals, we believe,
that this combination of methods can be adapted to perform effective integrability
investigations of a much wider range of dynamical systems - a goal that we intend to
pursue in the near future.
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