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Abstract. We consider the two-dimensional system of non-linear differential equations

u0 D g.t/jvj
1
˛ sgnv; v0 D�p.t/juj˛sgnu;

where ˛ > 0, g W Œ0;C1Œ! Œ0;C1Œ , and p W Œ0;C1Œ! R are locally integrable functions.
In the case

RC1
g.s/ds D C1, the considered system has been widely studied in particular

cases such linear systems as well as second order linear and half-linear differential equations.
However, the case

RC1
g.s/ds < C1 has not been studied in detail in the existing literature.

Moreover, we allow that the coefficient g can have zero points in any neighbourhood of infinity
and consequently, considered system can not be rewritten as the second order linear or half-linear
differential equation in this case. In the paper, new oscillation criteria are established in the caseRC1

g.s/ds < C1 and without restricted assumption function p preserves its sign (which is
usually considered).
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1. INTRODUCTION

On the half-line RC D Œ0;C1Œ , we consider the two-dimensional system of non-
linear ordinary differential equations

u0 D g.t/jvj
1
˛ sgnv;

v0 D�p.t/juj˛sgnu;
(1.1)

where ˛ > 0 and p; g W RC! R are locally Lebesgue integrable functions.
Under a solution of system (1.1) on the interval J � Œ0;C1Œ we understand a

vector function .u;v/, where functions u;v W J ! R are absolutely continuous on
every compact interval contained in J and satisfy equalities (1.1) almost everywhere
in J .
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It is known (see [7]) that all non-extendable solutions of system (1.1) are defined
on the whole interval Œ0;C1Œ. Therefore, when we are speaking about a solution of
system (1.1), we assume without loss of generality that it is defined on Œ0;C1Œ.

Definition 1. A solution .u;v/ of system (1.1) is called non-trivial if u 6� 0 on
any neighborhood of C1. We say that a non-trivial solution .u;v/ of system (1.1)
is oscillatory if the function u has a sequence of zeros tending to infinity, and non-
oscillatory otherwise.

In [7, Theorem 1.1], it is proved that a certain analogue of Sturm’s theorem holds
for system (1.1), if the additional assumption

g.t/� 0 for a. e. t � 0 (1.2)

is satisfied. Especially, under assumption (1.2), if system (1.1) has an oscillatory
solution, then any other its non-trivial solution is also oscillatory. Moreover, if .u;v/
is an oscillatory solution to system (1.1) then also the function v oscillates.

On the contrary, if g � 0 on some neighborhood ofC1, then all non-trivial solu-
tions of system (1.1) are non-oscillatory. Consequently, it is natural to assume that
inequality (1.2) is satisfied and

measf� � t W g.�/ > 0g> 0 for t � 0: (1.3)

Definition 2. We say that system (1.1) is oscillatory if all its non-trivial solutions
are oscillatory.

It is clear that the half-linear equation�
r.t/ju0jq�1sgnu0

�0
Cp.t/jujq�1sgnuD 0 (1.4)

is a particular case of system (1.1). Indeed, this equation is usually studied under
the assumptions that q > 1, p;r are continuous functions on Œ0;C1Œ , and r.t/ >
0 for t � a. If the function u is a solution of equation (1.4) (i.e., u 2 C 1 and
r ju0jq�1sgnu0 2 C 1), then the vector function .u;r ju0jq�1sgnu0/ is a solution of
system (1.1) with g.t/ WD r

1
1�q .t/ and ˛ WD q�1.

In the case
RC1
0 r

1
1�q .s/ds DC1 (i.e.

RC1
0 g.s/ds DC1 in (1.1)), there are

many interesting results in the existing literature (see, e.g., [2, 3, 5, 6, 8]). However,
in the case

RC1
0 r

1
1�q .s/ds <C1 (i.e.

RC1
0 g.s/ds <C1 in (1.1)), as far as we

know, only a few results are known. Namely, some Hille and Nehari type oscillations
criteria are presented in the papers [4,9], where together with

RC1
0 r

1
1�q .s/ds <C1

is assumed that
p.t/� 0 for t � 0: (1.5)

In addition, the coefficient g can have zero points in any neighbourhood of infinity
and consequently, considered system can not be rewritten as the half-linear differen-
tial equation (1.4) in generall.



OSCILLATORY PROPERTIES OF CERTAIN SYSTEM OF NON-LINEAR ORDINARY. . . 441

In this paper we ”remove” the assumption (1.5) and we obtain oscillation criteria,
which complement and generalize above mentioned results. Therefore, throughout
the paper, we assume that the coefficient g is integrable on Œ0;C1Œ , i.e.,Z C1

0

g.s/ds <C1: (1.6)

Let

f .t/ WD

Z C1
t

g.t/ds for t � 0:

In view of assumptions (1.2), (1.3), and (1.6), we have

lim
t!C1

f .t/D 0 (1.7)

and
f .t/ > 0 for t � 0: (1.8)

For any � > ˛, we put

c˛.t I�/ WD .��˛/f
��˛.t/

Z t

0

g.s/

f ��˛C1.s/

�Z s

0

f �.�/p.�/d�

�
ds for t � 0:

(1.9)
The following statement was established in [1].

Theorem 1 ([1, Corollary 2.11 (with � D 1�˛C�)]). Let conditions (1.2), (1.3),
and (1.6) hold, � > ˛, and either

lim
t!C1

c˛.t I�/DC1;

or
�1< liminf

t!C1
c˛.t I�/ < limsup

t!C1

c˛.t I�/:

Then system (1.1) is oscillatory.

It is obvious that two cases are not covered by Theorem 1, namely, the function
c˛.�I�/ has a finite limit and liminft!C1 c˛.t I�/D �1. We are interested in the
first case when there exists finite limit of the function c˛.�I�/, i.e., if

lim
t!C1

c˛.t I�/DW c
�
˛.�/ 2 R: (1.10)

2. MAIN RESULTS

This section contains formulations of all the results of he paper. Their proofs are
presented in detail in Section 3.

Theorem 2. Let � > ˛ and (1.10) hold. Let, moreover, the inequality

limsup
t!C1

�1

f ��˛.t/ lnf .t/

�
c�˛.�/� c˛.t I�/

�
>

�
˛

1C˛

�1C˛
(2.1)

be satisfied. Then system (1.1) is oscillatory.
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As we presented above, known oscillation criteria for the equation (1.4) (with
integrable function r

1
1�q .t/) are established in [4, 9] under sign assumption on its

coefficient p.t/. We show an example of the system (1.1), where we can use the
oscillatory critearia from the Theorem 2, but we can not apply results from above
mention papers.

Example 1. Consider the system (1.1), where ˛ D 2

g.t/ WD
1

.tC1/2
; and p.t/ WD .tC1/4 cos t for t � 0:

Obviously, the function p and its integralZ t

0

p.s/ds D .t4C4t3�6t2�20tC13/sin t

C .4t3C12t2�12t �20/cos tC20 for t � 0

change their signs in any neighbourhood of C1. Therefore neither of results stated
in the papers [4, 9] can be used.

On the other hand, from (1.9) we obtain

c2.t I4/D
2

.1C t /2

tZ
0

.1C s/

0@ sZ
0

cos� d�

1Ads
D

2

.1C t /2
.1C sin t � t cos t � cos t / for t � 0:

Hence, the function c2.�;4/ has the finite limit

c�˛.4/D lim
t!C1

c2.t I4/D 0;

i.e., (1.10) holds. Moreover,

limsup
t!C1

.tC1/2

ln.tC1/

�
c�˛.4/� c2.t I4/

�
D limsup

t!C1

2.cos tC t cos t � sin t �1/
ln.tC1/

DC1:

Consequently, condition (2.1) is fulfilled with ˛ D 2 and according to Theorem 2,
system (1.1) is oscillatory.

Introduce the following notations. For any � 2 �˛;C1Œ and � 2 Œ0;˛Œ, we put

Q.t I˛;�/ WD
1

f ��˛.t/

�
c�˛.�/�

Z t

0

p.s/f �.s/ds

�
for t � 0; (2.2)

H.t I˛;�/ WD f ˛��.t/

Z t

0

p.s/f �.s/ds for t � 0; (2.3)
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where the number c�˛.�/ is given by (1.10). Moreover, let denote

Q�.˛;�/ WD liminf
t!C1

Q.t I˛;�/; H�.˛;�/ WD liminf
t!C1

H.t I˛;�/;

Q�.˛;�/ WD limsup
t!C1

Q.t I˛;�/; H�.˛;�/ WD limsup
t!C1

H.t I˛;�/:
(2.4)

Theorem 2 yields the following statements.

Corollary 1. Let � > ˛, (1.10) hold, and Q�.˛;�/ > �1. Let, moreover,

limsup
t!C1

�1

lnf .t/

Z t

0

f ˛.s/p.s/ds >

�
˛

˛C1

�˛C1
(2.5)

Then system (1.1) is oscillatory.

Corollary 2. Let � 2 Œ0;˛Œ , � 2 �˛;C1Œ , and (1.10) hold. Let, moreover,

liminf
t!C1

.Q.t I˛;�/CH.t I˛;�// >
.���/

.��˛/.˛��/

�
˛

1C˛

�1C˛
: (2.6)

Then system (1.1) is oscillatory.

Corollary 3. Let � 2 Œ0;˛Œ , � 2 �˛;C1Œ , and (1.10) hold. Let, moreover, either

Q�.˛;�/ >
1

��˛

�
˛

1C˛

�1C˛
; (2.7)

or

H�.˛;�/ >
1

˛��

�
˛

1C˛

�1C˛
: (2.8)

Then system (1.1) is oscillatory.

Remark 1. Corollary 3 generalizes result presented in [4]. Indeed, in [4, The-
orem 3.1] is established condition (2.7) with � D ˛C 1, but there is an additional
assumption p.t/� 0 for t � a. We proved oscillation criteria without this additional
restrictions, so they can be apply, even if the function p.t/ changes its sign (see the
following example).

Example 2. Consider the system (1.1), where ˛ D 2,

g.t/ WD
1

.tC1/2
; and p.t/ WD .tC1/

�
cos.ln.tC1/C sin.ln.tC1/C

4

3

�
for t � 0:

Obviously, the function p changes its sign in any neighbourhood ofC1, i.e. we can
not use the criteria presented in [4].
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On the other hand from (1.9) we obtain

c2.t I3/D
1

.1C t /

tZ
0

0@ sZ
0

cos.ln.�C1/C sin.ln.�C1/C 4
3

.�C1/2
d�

1Ads
D
7t �4 ln.1C t /�3sin.ln.1C t //

3.1C t /
for t � 0:

Therefore, the function c2.�;3/ has the finite limit

c�2 .3/D lim
t!C1

c2.t I3/D
7

3
;

i.e., (1.10) holds. In view of (2.2) we have

Q.t I2;3/D .tC1/

0@7
3
�

tZ
0

cos.ln.1C s/C sin.ln.1C s/C 4
3

.1C s/2
ds

1A
D cos.ln.tC1//C

4

3
for t � 0:

Hence

Q�.˛;�/D liminf
t!C1

Q.t I2;3/D
1

3
>
8

27
DQ�.˛;�/ >

1

��˛

�
˛

1C˛

�1C˛
with ˛ D 2 and � D 3. Consequently, condition (2.7) is satisfied and according to
Corollary 3, system (1.1) is oscillatory.

Theorem 3. Let � 2 Œ0;˛Œ , � 2 �˛;C1Œ , and (1.10) hold. Let, moreover,

limsup
t!C1

.Q.t I˛;�/CH.t I˛;�// >
1

��˛

�
�

1C˛

�1C˛
C

1

˛��

�
�

1C˛

�1C˛
:

(2.9)
Then system (1.1) is oscillatory.

Remark 2. Let we notice that if p � 0 for t � 0 then conditions Q�.˛;�/ > 1
or H�.˛;�/ > 1 guarantees that (2.9) with �D ˛C 1 and �D 0 is satisfied. Con-
sequently, one can see Theorem 3 generalizes criteria established in [4, Theorem
3.5].

Now we provide two statements complementing Corollary 3 in a certain sense.

Theorem 4. Let � 2 Œ0;˛Œ , � 2 �˛;C1Œ , and (1.10) hold. Let, moreover, the
inequalities

˛

��˛

�
 �

1C˛
˛

�
�Q�.˛;�/�

1

��˛

�
˛

˛C1

�˛C1
(2.10)
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and

H�.˛;�/ >
1

˛��

�
�

1C˛

�1C˛
C �A.˛;�/ (2.11)

be satisfied, where

 WD

�
�

1C˛

�˛
(2.12)

and A.˛;�/ is the smallest root of the equation

˛jx� j
1C˛
˛ C˛xC .��˛/Q�.˛;�/�˛ D 0: (2.13)

Then system (1.1) is oscillatory.

Theorem 5. Let � 2 Œ0;˛Œ , � 2 �˛;C1Œ , and (1.10) hold. Let, moreover, the
inequalities�

�

1C˛

�˛ ˛.1C˛��/

.˛��/.1C˛/
�H�.˛;�/�

1

˛��

�
˛

1C˛

�1C˛
(2.14)

and

Q�.˛;�/ > B.˛;�/C
1

��˛

�
�

1C˛

�1C˛
(2.15)

be satisfied, where B.˛;�/ is the greatest root of the equation

˛jxj
1C˛
˛ C˛xC .˛��/H�.˛;�/D 0: (2.16)

Then system (1.1) is oscillatory.

Finally, we present an assertion, when both conditions (2.10) and (2.14) are ful-
filled. In this case, we can obtain sharper results than those in Theorems 4 and 5.

Theorem 6. Let � 2 Œ0;˛Œ , � 2 �˛;C1Œ , and (1.10) hold. Let, moreover, condi-
tions (2.10) and (2.14) be satisfied and

limsup
t!C1

.Q.t I˛;�/CH.t I˛;�// > B.˛;�/�A.˛;�/

CQ�.˛;�/CH�.˛;�/C;
(2.17)

where the number  is defined by (2.12), A.˛;�/ is the smallest root of equation
(2.13), and B.˛;�/ is the greatest root of equation (2.16). Then system (1.1) is
oscillatory.

3. PROOFS OF MAIN RESULTS

We first formulate auxiliary lemmas, which we need to prove main statements.
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Lemma 1 ([1, Lemma 3.1]). Let ˛ > 0 and ! � 0. Then the inequality

!jxj�˛jxj
1C˛
˛ �

�
!

1C˛

�1C˛
is satisfied for all x 2 R.

Lemma 2 ([1, Lemma 3.2]). Let ˛ > 0. Then

˛jxCyj
1C˛
˛ � ˛jyj

1C˛
˛ C .1C˛/xjyj

1
˛ sgny forx;y 2 R:

Lemma 3. Let liminft!C1 c˛.t I�/>�1 and .u;v/ is a solution of system (1.1)
satisfying

u.t/¤ 0 for t � tu (3.1)

with tu > 0. Then Z C1
tu

g.s/f ��1�˛.s/h.s/ds <C1; (3.2)

where

h.t/ WD ˛jf ˛.t/�.t/� j
1C˛
˛ C .1C˛/f ˛.t/�.t/

1
˛ �˛

1C˛
˛ for t � tu (3.3)

the number  is defined by (2.12) and

�.t/ WD
v.t/

ju.t/j˛sgnu.t/
C

1

f ˛.t/

�
�

1C˛

�˛
for t � tu: (3.4)

Proof. Let notice that acording to Lemma 2, we have

h.t/� 0 for t � tu: (3.5)

From the proof [1, Corollary 2.11] one can see that

liminf
t!C1

f n.��˛/.t/

Z t

0

�
1

f .��˛/.t/
�

1

f .��˛/.s/

�n
f �.s/p.s/ds > �1;

where n 2N; n >maxf1;˛g. Therefore from [1, Lemma 4.1] we obtain (3.2). �

Proof of Theorem 2. Assume on the contrary that system (1.1) is not oscillatory.
Then system (1.1) has non-oscillatory solution .u;v/, i.e. there exists tu > 0 such
that (3.1) holds. Now we can define the function � by (3.4) and from (1.1) we derive
that

�0.t/D�p.t/�˛g.t/

ˇ̌̌̌
�.t/�



f ˛.t/

ˇ̌̌̌ 1C˛
˛

C˛
g.t/

f 1C˛.t/
for a. e. t � tu:; (3.6)
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where the number  is defined by (2.12). Multiplaying the last equality by f �.t/ and
integrating it from tu to t , we obtainZ t

tu

f �.s/�0.s/ds D�˛

Z t

tu

g.s/f ��1�˛.s/ j�.s/f ˛.s/� j
1C˛
˛ ds

C˛

Z t

tu

g.s/f ��1�˛.s/ds�

Z t

tu

f �.s/p.s/ds for t � tu:

Integrating the left-hand side of the last equality by parts, we get

f �.t/�.t/D
�
˛ �˛

1C˛
˛

�Z t

tu

g.s/f ��1�˛.s/ds�

Z t

tu

f �.s/p.s/ds

Cf �.tu/�.tu/�

Z t

tu

g.s/f ��1�˛.s/h.s/ds for t � tu;

where the function h is defined in (3.3). Thus,

f �.t/�.t/D ı.tu/�

Z t

0

f �.s/p.s/ds�

Z t

tu

g.s/f ��1�˛.s/h.s/ds

�

˛
�
 �

1C˛
˛

�
��˛

f ��˛.t/ for t � tu;

(3.7)

where

ı.tu/ WD f
�.tu/�.tu/C

Z tu

0

f �.s/p.s/dsC
˛
�
 �

1C˛
˛

�
��˛

f ��˛.tu/:

On the other hand one can verify (see Lemma 3 and the proof of [1, Lemma 4.2]) that
the finite limit of function c˛.�I�/ is

c�˛.�/D f
�.tu/�.tu/C

Z tu

0

f �.s/p.s/dsC
˛. �

1C˛
˛ /

��˛
f ��˛.tu/

�

Z C1
tu

g.s/f ��1�˛.s/h.s/ds:

(3.8)

Hence, by virtue of relation (3.2), it follows from (3.7) that

f �.t/�.t/D c�˛.�/�

Z t

0

f �.s/p.s/dsC

Z C1
t

g.s/f ��1�˛.s/h.s/ds

�

˛
�
 �

1C˛
˛

�
��˛

f ��˛.t/ for t � tu:

(3.9)
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Multiplaying of the last equality by g.t/f ˛�1��.t/ and integrating it from tu to t ,
we obtain

Z t

tu

g.s/f ˛�1.s/�.s/ds D�

Z t

tu

g.s/

f 1C��˛.s/

�Z s

0

f �.�/p.�/d�

�
ds

C c�˛.�/

Z t

tu

g.s/

f 1C��˛.s/
ds�

˛

��˛

�
 �

1C˛
˛

�Z t

tu

g.s/

f .s/
ds

C

Z t

tu

g.s/

f 1C��˛.s/

�Z C1
s

g.�/f ��1�˛.�/h.�/d�

�
ds for t � tu:

(3.10)
One can see

Z t

tu

g.s/

f 1C��˛.s/

�Z C1
s

g.�/f ��1�˛.�/h.�/d�

�
ds

D
1

.��˛/f ��˛.t/

Z C1
t

g.s/f ��1�˛.s/h.s/dsC
1

��˛

Z t

tu

g.s/

f .s/
h.s/ds

�
1

.��˛/f ��˛.tu/

Z C1
tu

g.s/f ��1�˛.s/h.s/ds for t � tu:

By virtue of the latter equality, (3.10) yields that

Z t

tu

g.s/f ˛�1.s/�.s/ds D
c�˛.�/

��˛

�
1

f ��˛.t/
�

1

f ��˛.tu/

�
�

1

.��˛/f ��˛.t/
c˛.t I�/

C
1

.��˛/f ��˛.tu/
c˛.tuI�/C

1

.��˛/f ��˛.t/

Z C1
t

g.s/f ��1�˛.s/h.s/ds

�
1

.��˛/f ��˛.tu/

Z C1
tu

g.s/f ��1�˛.s/h.s/dsC
1

��˛

Z t

tu

g.s/

f .s/
h.s/ds

�
˛

��˛

�
 �

1C˛
˛

�Z t

tu

g.s/

f .s/
ds for t � tu
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Hence,

1

f ��˛.t/

�
c�˛.�/� c˛.t I�/

�
D

Z t

tu

g.s/

f .s/

h
.��˛/f ˛.s/�.s/�h.s/C˛

�
 �

1C˛
˛

�i
ds

C
1

f ��˛.tu/

�
c�˛.�/� c˛.tuI�/C

Z C1
tu

g.s/f ��1�˛.s/h.s/ds

�

�
1

f ��˛.t/

Z C1
t

g.s/f ��1�˛.s/h.s/ds for t � tu:

(3.11)
On the other hand, (2.12), (3.3), and Lemma 1 with ! WD ˛ yield the estimate

.��˛/f ˛.s/�.s/�h.s/C˛
�
 �

1C˛
˛

�
D�˛

�
f ˛.s/�.s/�

�
�˛jf ˛.s/�.s/� j

1C˛
˛

�

�
˛

1C˛

�1C˛
for s � tu:

(3.12)

Moreover, in view of (1.2), (1.8), and (3.5), it is clear that

1

f ��˛.t/

Z C1
t

g.s/f ��1�˛.s/h.s/ds � 0 for t � tu:

Therefore, according to the last inequality and (3.12), it follows from (3.11) that

1

f ��˛.t/

�
c�˛.�/� c˛.t I�/

�
� �

�
˛

1C˛

�1C˛
ln
f .t/

f .tu/

C
1

f ��˛.tu/

�
c�˛.�/� c˛.tuI�/C

Z C1
tu

g.s/f ��1�˛.s/h.s/ds

�
for t � tu:

Consequently, in view of (1.7), we get

limsup
t!C1

�1

f ��˛.t/ lnf .t/

�
c�˛.�/� c˛.t I�/

�
�

�
˛

1C˛

�1C˛
;

which contradicts (2.1). �
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Proof of Corollary 1. It is clear that

c˛.t I�/D.��˛/f
��˛.t/

tZ
0

g.s/

f 1C��˛.s/

�Z s

0

f �.�/p.�/d�

�
ds

D

tZ
0

f �.s/p.s/ds�f ��˛.t/

tZ
0

f ˛.s/p.s/ds:

Hence, by virtue of the definition (2.2), we have

�1

f ��˛.t/ lnf .t/

�
c�˛.�/� c˛.t I�/

�
D
�Q.t I˛;�/

lnf .t/
�

1

lnf .t/

tZ
0

f ˛.s/p.s/ds

for t � 0. Now, the last equality, (1.7), (2.5), and the assumption Q�.˛;�/ > �1
guarantee the validity of condition (2.1) and thus, the assertion of the corollary fol-
lows from Theorem 2.

�

Proof of Corollary 2. It is not difficult to verify that

1

f ��˛.t/ lnf .t/

�
c�˛.�/� c˛.t I�/

�
D

��˛

lnf .t/

tZ
0

g.s/

f .s/
Q.sI˛;�/dsC

c�˛.�/

f ��˛.0/ lnf .t/
for t � 0

(3.13)
and
Q.t I˛;�/CH.t I˛;�/D

.���/f ˛��.t/

tZ
0

g.s/f ��˛�1.s/Q.sI˛;�/dsC
c�˛.�/

f ���.0/
f ˛��.t/

(3.14)
for t � 0, where functions Q.�I˛;�/ and H.�I˛;�/ are defined by (2.2) and (2.3).
Moreover, it is easy to show that

tZ
0

g.s/

f .s/
Q.sI˛;�/ds D f ˛��.t/

tZ
0

g.s/f ��˛�1.s/Q.sI˛;�/ds

C .˛��/

tZ
0

g.s/f ˛���1.s/

0@ sZ
0

g.�/f ��˛�1.�/Q.�I˛;�/d�

1Ads
(3.15)
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for t � 0. On the other hand, in view of (2.6), relation (3.14) yields

liminf
t!C1

f ˛��.t/

tZ
0

g.s/f ��˛�1.s/Q.sI˛;�/ds >
1

.��˛/.˛��/

�
˛

˛C1

�˛C1
:

Consequently, in view of (1.7), it follows from (3.15) that

liminf
t!C1

�1

lnf .t/

tZ
0

g.s/

f .s/
Q.sI˛;�/ds >

1

��˛

�
˛

˛C1

�˛C1
:

The last inequality, by virtue of (1.7) and (3.13), yields the validity of condition (2.1).
Therefore, the assertion of the corollary follows from Theorem 2. �

Proof of Corollary 3. First let assumption (2.7) hold. Then it follows from (3.13)
that condition (2.1) is satisfied. Therefore, by virtue of Theorem 2 system (1.1) is
oscillatory.

Now suppose that assumption (2.8) is fulfilled. It is not difficult to verify that
tZ
0

f ˛.s/p.s/ds DH.t I˛;�/C .˛��/

Z t

0

g.s/

f .s/
H.sI˛;�/ds for t � 0:

Hence, in view of (2.8), we get

liminf
t!C1

�1

lnf .t/

Z t

0

f ˛.s/p.s/ds >

�
˛

˛C1

�˛C1
: (3.16)

On the other hand, one can see

c0˛.t I�/D
.��˛/g.t/

f ˛��C1.t/

Z t

0

f ˛.s/p.s/ds for a. e. t � 0;

where function c˛.�I�/ is given by (1.9). By integrating the last equality from � to t ,
we obtain

c˛.� I�/� c˛.t I�/D .��˛/

Z �

t

g.s/

f ˛��C1.s/

�Z s

0

f ˛.�/p.�/d�

�
ds � � t � 0

and therefore, by virtue of assumption (1.10) and condition (3.16), we have

c�˛.�/� c˛.t I�/D

.��˛/

Z C1
t

g.s/ lnf .s/
f ˛��C1.s/

�
1

lnf .s/

Z s

0

f ˛.�/p.�/d�

�
ds for t � 0:

(3.17)
In view of (1.7) and (3.16), there exist " > 0 and t" > 0 such that

f .t/ < 1;
�1

lnf .t/

Z t

0

f ˛.s/p.s/ds �

�
˛

˛C1

�˛C1
C " for t � t":
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Hence, (3.17) yields that

c�˛.�/� c˛.t I�/� �.��˛/

 �
˛

˛C1

�˛C1
C "

!Z C1
t

g.s/ lnf .s/
f ˛��C1.s/

for t � t":

By virtue of " > 0 and (1.7), from the last relation we derive inequality (2.1). Con-
sequently, the assertion of the corollary follows from Theorem 2. �

Proof of Theorem 3. Assume on the contrary that system (1.1) is not oscillatory,
i.e., there exists a solution .u;v/ of system (1.1) satisfying relation (3.1) with tu > 0.
Analogously to the proof of Theorem 2 one can show that equality (3.6) and (3.9)
hold, where the number  , and the functions h, � are given by (2.12), (3.3), and (3.4).

Multiplaying of (3.6) by f �.t/ and integrating it from tu to t , we get

tZ
tu

f �.s/�0.s/ds D�

tZ
tu

f �.s/p.s/ds�˛

tZ
tu

g.s/f ��˛�1.s/j�.s/f ˛.s/� j
1C˛
˛ ds

C˛

tZ
tu

g.s/f ��˛�1.s/ds for t � tu:

Now we integrate the left-hand side of the last equality by parts and we obtain

f ˛.t/�.t/D

Cf ˛��.t/

tZ
tu

g.s/f ��˛�1.s/
h
��f ˛.s/�.s/�˛j�.s/f ˛.s/� j

1C˛
˛

i
ds

C ı.tu/f
˛��.t/�H.t I˛;�/C

˛

˛��
for t � tu;

(3.18)
where the function H.�I˛;�/ is defined by (2.3) and

ı.tu/ WD f
�.tu/�.tu/C

Z tu

0

f �.s/p.s/ds�
˛

.˛��/

1

f ˛��.tu/
: (3.19)

On the other hand, multiplaying of (3.9) by f ˛��.t/, we get

f ˛.t/�.t/DQ.t I˛;�/C
1

f ��˛.t/

Z C1
t

g.s/f ��1�˛.s/h.s/ds

�

˛
�
 �

1C˛
˛

�
��˛

for t � tu;
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where the function Q.�I˛;�/ is defined by (2.2). Hence, by virtue of (3.18), one can
see

Q.t I˛;�/CH.t I˛;�/D�
1

f ��˛.t/

Z C1
t

g.s/f ��1�˛.s/h.s/ds

Cf ˛��.t/

tZ
tu

g.s/f ��˛�1.s/
h
��f ˛.s/�.s/�˛j�.s/f ˛.s/� j

1C˛
˛

i
ds

C
˛

��˛

�
 �

1C˛
˛

�
C

˛

˛��
C ı.tu/f

˛��.t/ for t � tu:

(3.20)

Moreover, it follows Lemma 1 with ! WD �� 0 that

��
�
f ˛.t/�.t/�

�
�˛j�.t/f ˛.t/� j

1C˛
˛ �

�
�

1C˛

�1C˛
for t � tu: (3.21)

Therefore, using (2.12), (3.5), and (3.21) in relation (3.20) yields

Q.t I˛;�/CH.t I˛;�/�
1

��˛

�
�

1C˛

�1C˛
C

1

˛��

�
�

1C˛

�1C˛
C ı1.tu/f

˛��.t/ for t � tu;
(3.22)

where

ı1.tu/ WD ı.tu/C

"
� �

�
�

1C˛

�1C˛# 1

.˛��/f ˛��.tu/
: (3.23)

Consequently, by virtue of (1.7) relation (3.22) contradicts with assumption (2.9).
�

Proof of Theorem 4. Assume on the contrary that system (1.1) is not oscillatory.
Then there exists a solution .u;v/ of system (1.1) satisfying relation (3.1) with tu >0.
Analogously to the proof of Theorem 3 one can show that relation (3.18) holds, where
the numbers  , ı.tu/ and the functionsH.�I˛;�/, � are given by (2.12), (3.19), (2.3),
and (3.4). Moreover using inequality (3.21) in (3.18) yields

f ˛.t/�.t/� ı1.tu/f
˛��.t/�H.t I˛;�/C

1

˛��

�
�

1C˛

�1C˛
C for t � tu;

(3.24)
where ı1.tu/ is given by (3.23).

Now we show that the estimate

liminf
t!C1

f ˛.t/�.t/� A.˛;�/ (3.25)

holds, where A.˛;�/ denotes the smallest root of equation (2.13). Similarly, as in
the proof of Theorem 2 we can derive that equality (3.8) holds. Multiplying (3.8) by
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f ˛��.t/, we obtain

f ˛.t/�.t/DQ.t I˛;�/C
1

f ��˛.t/

Z C1
t

g.s/f ��1�˛.s/h.s/ds

�

˛
�
 �

1C˛
˛

�
��˛

for t � tu:

(3.26)

Let denote
m WD liminf

t!C1
f ˛.t/�.t/: (3.27)

Observe that, if mDC1, then (3.25) is fulfilled. Therefore, we assume

m<C1:

In view of (2.10), (3.5), and (3.27), it follows from relation (3.26)

m�Q�.˛;�/�
˛

��˛

�
 �

1C˛
˛

�
� 0; (3.28)

where Q�.˛;�/ is given by (2.4).
First suppose that Q�.˛;�/ D ˛

��˛
. � 

1C˛
˛ /, then it is clear that 0 is a root

of equation (2.13). Moreover, in view of Lemma 2 and the assumption � > ˛, one
can derive that the function x 7! ˛jx� j

1C˛
˛ C˛x�˛

1C˛
˛ is positive on ��1;0Œ .

Consequently, by virtue of notation (3.27) and relation (3.28), desired estimate (3.25)
holds.
Now suppose that Q�.˛;�/ > ˛

��˛
. � 

1C˛
˛ /. Let

" 2 �0;Q�.˛;�/�
˛
��˛

. � 
1C˛
˛ /Œ be arbitrary. According to (3.28), it is clear that

m> ": (3.29)

In view of (2.4) and (3.27), there exists t" � tu such that

f ˛.t/�.t/�m� " and Q.t I˛;�/�Q�.˛;�/� " for t � t": (3.30)

Then (3.26) yields that

f ˛.t/�.t/�Q�.˛;�/� "C
1

f ��˛.t/

Z C1
t

g.s/f ��1�˛.s/h.s/ds

�
˛
�
 �

1C˛
˛

�
��˛

for t � t":

(3.31)

On the other hand, one can see that the function x 7! ˛jx�  j
1C˛
˛ C .1C˛/x

1
˛ �

˛
1C˛
˛ is non-decreasing on Œ0;C1Œ. Therefore, by using (3.5), (3.29), and (3.30)

in (3.31), we obtain that

f ˛.t/�.t/�Q�.˛;�/� "C
˛j.m� "/� j

1C˛
˛ �˛C�.m� "/

��˛
for t � t";
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which implies

m�Q�.˛;�/� "C
˛j.m� "/� j

1C˛
˛ �˛C�.m� "/

��˛
:

Since " was arbitrary, the latter relation leads to the inequality

˛jm� j
1C˛
˛ C˛mCQ�.˛;�/.��˛/�˛ � 0: (3.32)

One can show that the function y W x 7! ˛jx� j
1C˛
˛ C˛xCQ�.˛;�/.��˛/�˛ is

decreasing on ��1; � . ˛
1C˛

/˛� and increasing on Œ � . ˛
1C˛

/˛;C1Œ . Moreover,
in view of assumption (2.10), the function y is non-positive at the point  �

�
˛
1C˛

�˛,
which together with (3.27), and (3.32) yields desired estimate (3.25).

Let nowe" > 0 be arbitrary. In view of (3.25) there exists te" � tu such that

f ˛.t/�.t/� A.˛;�/�e" for t � te";
Hence, it follows from (3.24) that

H.t I˛;�/� ı1.tu/f
˛��.t/�A.˛;�/Ce"C 1

˛��

�
�

1C˛

�1C˛
C for t � te":

Sincee" was arbitrary, in view of (1.7) and (2.4), from the latter inequality we obtain

H�.˛;�/�
1

˛��

�
�

1C˛

�1C˛
C �A.˛;�;/;

which contradicts assumption (2.11). �

Proof of Theorem 5. Assume on the contrary that system (1.1) is not oscillatory,
i.e., there exists a solution .u;v/ of system (1.1) satisfying relation (3.1) with tu > 0.

First we show that the estimate

limsup
t!C1

.f ˛.t/�.t/�/� B.˛;�/; (3.33)

holds, where the number  , the function � are defined by (2.12), (3.4), and B.˛;�/
is the greatest root of equation (2.16). Let denote

M WD limsup
t!C1

�
f ˛.t/�.t/�

�
: (3.34)

It is clear that, if M D�1 then (3.33) holds. Therefore, we suppose that

M > �1:

Analogously to the proof of Theorem 4, we can derive inequality (3.24), where the
function H.t I˛;�/ is defined by (2.3). Then, in view of (1.7) and (3.34), it follows
from inequality (3.24) that

M � �H�.˛;�/C
1

˛��

�
�

1C˛

�1C˛
: (3.35)
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First we assume that H�.˛;�/ D
� �
1C˛

�˛ ˛.1C˛��/
.˛��/.1C˛/

. Then it is not difficult to

verify that �. �
1C˛

/˛ is a root of the equation (2.16) and the function x 7! ˛jxj
1C˛
˛ C

˛xC .˛��/H�.˛;�/ is positive on �� . �
1C˛

/˛;C1Œ . Therefore, (3.34) and (3.35)
yields that (3.33) is satisfied.

Now we suppose

H�.˛;�/ >

�
�

1C˛

�˛ ˛.1C˛��/

.˛��/.1C˛/
:

Hence, it follows from (3.35)

M < �

�
�

1C˛

�˛
:

On the other hand, similarly as in the proof of the Theorem 3 we can derive equality
(3.18). Let " 2�0;�

� �
1C˛

�˛
�MŒ be arbitrary and choose t" � tu such that

f ˛.t/�.t/� �M C "; H.t I˛;�/�H�.˛;�/� " for t � t": (3.36)

One can see that the function x 7! �xC˛jxj
1C˛
˛ is non-increasing on interval ��

1;�
� �
1C˛

�˛
� and thus, using relations (3.36) and M C " < �

� �
1C˛

�˛ in (3.18), we
get

f ˛.t/�.t/� ı2.tu/f
˛��.t/�H�.˛;�/C "C

˛

˛��
�

�

˛��

Cf ˛��.t/

tZ
tu

g.s/f ��˛�1.s/
h
��.M C "/�˛jM C "j

1C˛
˛

i
ds for t � t";

where

ı2.tu/ WD f
�.tu/�.tu/C

Z tu

0

f �.s/p.s/ds�
1

f ˛��.tu/
:

Hence,
f ˛.t/�.t/� � ı3.tu/f

˛��.t/�H�.˛;�/C "

�
�.M C "/C˛jM C "j

1C˛
˛

˛��
for t � t";

where

ı3.tu/ WD ı2.tu/C
�.M C "/C˛jM C "j

1C˛
˛

.˛��/

1

f ˛��.tu/
;

which, by virtue of the assumption ˛ > �, condition (1.7) and notation (3.34), yields
that

M � �H�.˛;�/C "�
�.M C "/C˛jM C "j

1C˛
˛

˛��
:
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Because of " was choosen arbitrary, from the latter inequality follows

˛jM j
1C˛
˛ C˛M C .˛��/H�.˛;�/� 0: (3.37)

One can easily verify that the function y W x 7! ˛jxj
1C˛
˛ C ˛xCH�.˛;�/.˛��/

is decreasing on ��1;�. ˛
1C˛

/˛� and increasing on Œ�. ˛
1C˛

/˛;C1Œ. Moreover,
in view of assumption (2.14), the function y is non-positive at the point �

�
˛
1C˛

�˛,
which together with (3.34), and (3.37) yields desired estimate (3.33).

Let nowe" > 0 be arbitrary. Then, by virtue of (3.33), there exists te" � tu such that

f ˛.t/�.t/� � B.˛;�/Ce" for t � te":
Observe that, analogously to the proof of Theorem 4 we can derive relation (3.26).
Then, in view of the last inequality, (1.2), (1.8) and (3.5), it follows from (3.26)

Q.t I˛;�/� B.˛;�/Ce"CC ˛

��˛

�
 �

1C˛
˛

�
for t � te":

Sincee" was arbitrary, from the last inequality and (2.4), we obtain

Q�.˛;�/� B.˛;�/C

1C˛
˛

��˛
;

which is in contradiction with (2.15). �

Proof of Theorem 6. Suppose on the contrary that system (1.1) is not oscillatory.
Then there exists a solution .u;v/ of system (1.1) satisfying relation (3.1) with tu >0.
Put em WD A.˛;�/; fM WD B.˛;�/; (3.38)

i.e., em denotes the smallest root of equation (2.13) and fM is the greatest root of
equation (2.16). Analogously to the proofs of Theorems 4 and 5 we can derive that
estimates (3.25) and (3.33) hold. Consequently, by virtue of (3.38), we have

liminf
t!C1

f ˛.t/�.t/� em; limsup
t!C1

�
f ˛.t/�.t/�

�
�fM; (3.39)

where the number  and the function � are defined by (2.12) and (3.4).
On the other hand, in view of (2.10), one can show that the function y W x 7!

˛jx� j
1C˛
˛ C˛xCQ�.˛;�/.��˛/�˛ is positive on ��1;0Œ and there exists Nx 2

Œ0;C1Œ such that y. Nx/ � 0, which yields that em � 0. Moreover, by virtue of (2.14),
one can easily verify that the function ´ W x 7! ˛jxj

1C˛
˛ C ˛xC .˛ ��/H�.˛;�/

is positive on ��
� �
1C˛

�˛
;C1Œ and there exists Qx � �

� �
1C˛

�˛ such that ´. Qx/ � 0.
Consequently, we have fM � �� �

1C˛

�˛.
We first assume that em > 0 and fM < �

� �
1C˛

�˛. Let " 2 �0;min
˚em;�� �

1C˛

�˛
�fM 	

Œ be arbitrary. Then, it follows from (3.39) that, there exists t" � tu such that

f ˛.t/�.t/� em� "; f ˛.t/�.t/� �fM C " for t � t": (3.40)
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Observe that, the function x 7! ˛jx �  j
1C˛
˛ C .1C ˛/x

1
˛ is non-decrasing on

Œ0;C1Œ and thus, in view of (3.3) and (3.40), we obtain

1

f ��˛.t/

Z C1
t

g.s/f ��1�˛.s/h.s/ds �

C
˛jem� "� j 1C˛˛ C�.em� "/�˛ 1C˛˛

��˛
for t � t":

(3.41)

Moreover, the function x 7! ��x�˛jxj
1C˛
˛ is non-decrasing on � � 1;�

� �
1C˛

�˛
Œ.

Therefore, by virtue of (3.40), we obtain

f ˛��.t/

tZ
t"

g.s/f ��˛�1.s/
h
��f ˛.s/�.s/�˛j�.s/f ˛.s/� j

1C˛
˛

i
ds

�
��.fM C "/�˛jfM C "j 1C˛˛ ��

˛��
for t � t":

(3.42)

On the other hand, analogously to the proof of Theorem 3 we can derive relation
(3.20), where the number ı.tu/ and the function h are defined by (3.19) and (3.3).
Now it follows from (3.20), (3.41), and (3.42)

Q.t I˛;�/CH.t I˛;�/�fM C "CH�.˛;�/� .em� "/CQ�.˛;�/C
�
˛.fM C "/C˛jfM C "j 1C˛˛ C .˛��/H�.˛;�/

˛��

�
˛jem� "� j 1C˛˛ C˛.em� "/C .��˛/Q�.˛;�/�˛

��˛
C ı.t"/f

˛��.t/ for t � t";

(3.43)

where

ı.t"/ WD ı.tu/C

Z t"

tu

g.s/f ��˛�1.s/
h
��f ˛.s/�.s/�˛j�.s/f ˛.s/� j

1C˛
˛

i
ds:

Since " was arbitrary, in view of (1.7) and (3.38), inequality (3.43) yields that

limsup
t!C1

.Q.t I˛;�/CH.t I˛;�//� B.˛;�/�A.˛;�;/

CQ�.˛;�/CH�.˛;�/C;
(3.44)

which contradicts assumption (2.17).
If emD 0 then, in view of (3.5), it is clear that

1

f ��˛.t/

Z C1
t

g.s/f ��1�˛.s/h.s/ds � 0D
˛jem� j 1C˛˛ C�em�˛ 1C˛˛

˛��
(3.45)
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for t � tu. On the other hand, if fM D�� �
1C˛

�˛ then, using Lemma 1 with ! WD �,
one can show that

f ˛��.t/

tZ
tu

g.s/f ��˛�1.s/
h
��f ˛.s/�.s/�˛j�.s/f ˛.s/� j

1C˛
˛

i
ds

�

� �
1C˛

�1C˛
��

˛��
�
f ˛��.t/

f ˛��.tu/

"� �
1C˛

�1C˛
��

˛��

#

D
��fM �˛jfM j 1C˛˛ ��

˛��
�
f ˛��.t/

f ˛��.tu/

"� �
1C˛

�1C˛
��

˛��

#
for t � tu:

(3.46)
Consequently, if em D 0 (resp. fM D �� �

1C˛

�˛), then we derive the inequality
(3.44) from (3.20) similarly as above, but we use (3.45) instead of (3.41) (resp. (3.46)
instead of (3.42)). �
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Zdeněk Opluštil
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