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Abstract. In this paper, a parameter-uniform numerical method for a parameterized singularly
perturbed ordinary differential equation containing integral boundary condition is studied. Asymp-
totic estimates on the solution and its derivatives are derived. A numerical algorithm based on
upwind finite difference operator and an appropriate piecewise uniform mesh is constructed.
Parameter-uniform error estimate for the numerical solution is established. Numerical results are
presented, which illustrate the theoretical results.
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1. INTRODUCTION

In this paper, we consider the following parameterized singular perturbation prob-
lem with integral boundary condition arising in many scientific applications [
](see also references therein):

2

eu' + f(t,u,A)=0,te2=(0,T], T >0, (1.1)
T
u(O)—i—/c(s)u(s)ds =A, (1.2)
0
u(T) = B, (1.3)

where ¢ € (0, 1] is the perturbation parameter, A is known as the control parameter, A
and B are given constants. The functions c¢(¢) > 0 and f(¢,u,A) are assumed to
be sufficiently continuously differentiable for our purpose in 2 = £2 U {t = 0} and
2 x R? respectively and moreover

d
0<a§—f§a*<oo,
ou
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O0<m <

< M; < o0.

By a solution of (1.1)-(1.3) we mean {u(t),A} € C1[0,T] x R for which problem
(1.1)-(1.3) is satisfied.

Singularly perturbed differential equations are typically characterized by a small
parameter ¢ multiplying some or all of the highest order terms in the differential
equation as normally boundary layers occur in their solutions. These equations play
an important role in today’s advanced scientific computations. Many mathematical
models starting from fluid dynamics to the problems in mathematical biology are
modelled by singularly perturbed problems. Typical examples include high Reyn-
old’s number flow in the fluid dynamics, heat transport problem etc. For more details
on singular perturbation, one can refer to the books [10,12,19,21] and the references
therein. The numerical analysis of singular perturbation cases has always been far
from trivial because of the boundary layer behavior of the solution. Such problem
undergo rapid changes within very thin layers near the boundary or inside the prob-
lem domain [19,21]. It is well known that standard numerical methods for solving
such problems are unstable and fail to give accurate results when the perturbation
parameter is small. Therefore, it is important to develop suitable numerical methods
to these problems, whose accuracy does not depend on the parameter value, i.e. meth-
ods that are convergence e—uniformly. For the various approaches on the numerical
solution of differential equations with steep gradients and continuous solutions we
may refer to the studies [8, 10-12]. Parameterized boundary value problems have
been considered by many researchers for many years. Such problems arise in phys-
ical chemistry and physics, describing the exothermic and isothermal chemical reac-
tions, the steady-state temperature distributions, the oscillation of a mass attached by
two springs lead to a differential equation with a parameter [18,22]. An overview
of some existence and uniqueness results and applications of parameterized equa-
tions may be obtained, for example, in [13, 16, 18,22](see, also references therein).
In [18,22], the authors have also been considered some approximating aspects of
this kind of problems. But in the above-mentioned papers, algorithms are only con-
cerned with the regular cases (i.e., when the boundary layers are absent). In recent
years, many researchers presented the numerical methods for the singular perturba-
tion cases of parameterized problems. Uniform convergent finite-difference schemes
for solving parameterized singularly perturbed two-point boundary value problems
have been considered in [2, 3,9, 17,24, 25](see, also references therein). In [2, 3, 17]
authors used boundary layer technique for solving analogous problem. A methodo-
logy based on the homotopy analysis technique to approximate the analytic solution
was investigated in[24,25]. Also it is well known that nonlinear differential equations
with integral boundary conditions have been used in description of many phenomena
in the applied sciences, e.g., heat conduction, chemical engineering, underground wa-
ter flow and so on [0, 15,20]. Therefore, boundary value problems involving integral
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boundary conditions have been studied by many authors [1,4,5,7,11,14,16,23](see,
also references therein). Some approximating aspects of this kind of problems in
the regular cases, i.e, in absence of layers, were investigated in [4, 11, 14, 16, 23].
In recent years, many researchers considered the singularly perturbed case for these
problems. In [1,5, 7] authors develop a finite difference scheme on Shishkin mesh
for problem with integral boundary conditions and proved that the method is nearly
first order convergent except for a logarithmic factor. A hybrid scheme, which is
second order convergent on Shishkin mesh was discussed in [7]. For the numerical
methods, concerning to second order singularly perturbed differential equations with
integral boundary conditions can be seen e.g., [5]. In this paper, as far as we know
the numerical solution of the singularly perturbed boundary value problem contain-
ing both control parameter and integral condition is first being considered. For the
numerical solution of such problems, requires specific approach in constructing of
the appropriate difference scheme and examining the error analysis. The scheme is
constructed by the method of integral identities with the use of appropriate quadrature
rules with the remainder terms in integral form. We show that the proposed scheme
is uniformly convergent in the discrete maximum norm accuracy of O(N ~'InN) on
Shishkin meshes. First, the asymptotic estimates for the continuous solution are given
in Section 2, which are needed in later sections for the analysis of appropriate numer-
ical solution. In Section 3, we describe the finite discretization and give the difference
scheme on a piecewise uniform grid. In Section 4, the convergence analysis is carried
out. Finally, in Section 5 presents some numerical results to confirm the theoretical
analysis. Henceforth, C and ¢ denote the generic positive constants independent of
both the perturbation parameter £ and mesh parameter N. Such subscripted constants
are also independent of ¢ and mesh parameter, but whose values are fixed.

2. ASYMPTOTIC BEHAVIOR OF THE EXACT SOLUTION

In this section, we give a priori estimates for the solution and its derivatives of the
problem (1.1)-(1.3), which indicate the asymptotic behavior of the solution and its
first derivative in respect to perturbation parameter. These estimates are unimprov-
able in terms of the view of behavior in ¢ and will be used in order to analyse the
numerical solution. We also denote || g||o, = 1(1)1%3(| g(t)| forany g € C[0,T].
Lemma 2.1 The solution {u(t),A} of the problem (1.1)-(1.3) satisfies the following
bounds:

|A] < co, 2.1
ulloo < c1. 2.2
where
vom et @Al 1Bla* (el T)
bo)eoT —1 my (e?"T —1)

T F oo -
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c1 = [uO)|+a (| Flloo + 1A M1) = [u(0)] + o (| F lloo + coM1),
1 _«
}u’(z)} <C (1 + —e‘et), te€l0,7], (2.3)
&

provided a € C'[0,T] and ‘% <C fort€[0,T]and |u| <c1,|A| < co.

Proof. The quasilinear equation (1.1) can be written as
su' +a(tyu = F(t)+Ab(t), t€[0,T], (2.4)
where

0 -
a)= L.k,

P -
b(t) = —%(z,ﬁ,k),

u=yu, A= yA (0 < y < 1)—intermediate values.
Integrating (2.4), (1.3) we have
u(t) = Bet i a®as _1 /T F(g)etfFamdngg | 4 /Tb(g)eéffa(n)dndg,
e Js & Jt
from which, after using the integral boundary condition (1.2), it follows that,

T T
Be;f{a@ds_l/ F(g)e;f§a(n)dnd§+&/ b(E)et S5 aman g
€Jo €Jo
T 1 T T
+B/0 c(s)eéff“@)dfds—g/o c(s)[/ F(&)et I aDdngg1 g
N

AT T L
+ E/O C(s)[/s b(E)et s W gg1ds = 4

and
A

LT peyetlsamdnge ¢ 1T peyfT e(s)et S amanggqe

A=

. B(eéfora(s)ds+/OTc(s)e%fsTa(‘§)d§dS)
LT eyt S adnge 4 1 [T pe) [T e(s)et K adngg)ae

Ly F@®er5amiangg + 1T F@)[f] c(s)et Fa®dngsjas
LT peyet foamdnge 4 1T ey T e(s)et s amdnggae

(2.5)
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As c(t) = 0, then after applying the mean value theorem for integrals, we deduce
that,

= Ea 1 Sa
%foTF(S)ei:ff; <">d"ds+%foTF(S)[ffc(s)elif; DIAsE| e
LT peyet foamangs 4 1 [T pe) 7 o(s)et s amdngs)a

(2.6)
and
Bek 0 a0t o [T ()t 1] a®rde gy .
€ ; .
LT pgyerfoamdnge 4 1 1T pe)[ [T ¢(s)er ls aangyslag
1Bl (1+ ¢l T)
a mle‘lfoTe%/éTa(”)dﬂdg
< 1Bl el azT < |*(_Jlr ||c||oo_ 3T P,
my(ax)"H(1l—e 2 ) mi(a*)"1(1—e=2" 1)
Also, for the first term in right side of (2.5) for ¢ <1 values, we get
A
< 4]
- T 1 (€ d
%fO b(i-‘)eefo a(mn) Tldg
|A| - |A| _ a4 08

B mla_l(e% -1) mia=t (T —1) = my(e®T —1)

The relation (2.5), by taking into consideration here (2.6)-(2.8), immediately leads to
(2.1).
Now, integrating (2.4), we have

t
—1 [a(m)dn

+1/q>(g)e ‘ d&; ®(s) = F(s) = Ab(s),
&

0

t
1 fa(mdn
u)=u(0e ©

from which, by setting the integral boundary condition (1.2), we get

A —gfc(s)[fscp(g)e—%fssa(")d"dg]ds
0 0

u(0) = -
1+ [e(s)e s Joa®dt g
0
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Since ¢(¢) is nonnegative, then

A-1 fc(s)[fs ®(E)e ¢ Je amdn g g1
0 0

[u(0)] = T
1+ [c(s)e™ e Joa®dt g
0

T K}

<41+ [l 0@l Eemiagas
0

0
1 T
< A1+ el (Pl + Micoda™e [ (1-e~%)ds
0

<Al + a7 iclloo TUIF oo + Mico)-

Next, by virtue of maximum principle we have
[t]loo < [u(0)]| +a™ | F—bA| o

< [u©)]+a (I Flloo + 2] M1),
which, after taking into account (2.1) and (2.9) leads to (2.2).
To prove (2.3), first we estimate u’(0):

|F(0)—a(Ou(0)—b0)4)] _C
g e

u'(0)] <
Differentiating, now the equation (2.4), we have

ev” + p()v' = g(t).
with ) )
v=1/, p(t) = F(t,u(®), 1) and g(t) = F (1, u(1), 2).
So

L t ‘
-z al)ds ] —1 [a®)dé
v(t) =v(0)e © + —/g(s)e ‘1a ds.
€

0
Since p(t) >« > 0and |g(¢)| < C, for v(¢) we then obtain

t
C —a C —a(t—s)
()] < —e " +—fe£ ds
& &
0

C - —
< —eTt +C(1 —e?t)
&

which implies validity of (2.3).

(2.9)
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3. DISCRETE PROBLEM
Let wpy be any non-uniform mesh on §2 :
oy ={0<t<th<..<ty_1<ty=T}

and oy = wy U {t = 0}. For each i > 1, we set the step size h; = t; —t;—1. To
simplify the notation we set g; = g(#;) for any function g(¢), while glN denotes an
approximation of g(¢) at¢;.

For any mesh function {w; } defined on @ we use

wz; = (Wi —wi—1)/h;,

w = |W Sh o= max |(wj|.
[llo0 = 112llc03y = max, [

To obtain approximation for (1.1) we integrate (1.1) over (t;—1,t) :

t
euz; +hi! / F@u(),\)dt =0,1<i <N,
ti—1
which yields the relation
euz; + f(ti,ui,A\)+ R; =0,  <i <N, (3.1)

with local truncation error
t; d
R = _hi_lf (1 =ti-1) 7 f (Lu(0).2) dr. (3.2)
ti—1

To define an approximation for the boundary condition (1.2), here we use the com-
posite right-side rectangle rule:

N

T
u(0) —i—/o c(s)u(s)ds =uo+ Zhiciui +r

i=1

with remainder term

N d
=— t—ti—1)— (c(t)u(t))dt. 3.3
r ;ft( ) S ) (3
Consequently
N
uo—i—Zhiciui—l—r:A. (3.4)

i=1
Neglecting R; and r in (3.1) and (3.4), we propose the following difference scheme
for approximating (1.1)-(1.3):

sul + i ulN ANy =0, 1<i <N, (3.5)
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N

i=1

ul = B. (3.7)
The difference scheme (3.5)-(3.7), in order to be e—uniform convergent, we will
use the Shishkin mesh. For an even number N, the piecewise uniform mesh takes
N/2 points in the interval [0,0] and also N/2 points in the interval [o, 7], where
the transition point o, which separates the fine and coarse portions of the mesh, is
obtained by taking

| 3.0 ein
0 = min E,a elney .

In practice one usually has ¢ < T, so the mesh is fine on [0,c] and coarse on [a, T].
Hence, if we denote by 2(1) and 1@ the step size in [0,0] and [0, T], respectively,
we have
B =26N7!, h® =2(T—0)N7,
KD <NV TN <h@ <2TN7Y, AW 5@ = 27N,
)
ti =ihW, fori =0,1,...,N/2; KV =20/N,
ti=0+(G—N/2)h®, fori =N/2+1,..,N; h® =2(T —0o)/N.

In the rest of the paper we only consider this mesh.

ON =

4. UNIFORM ERROR ESTIMATES
To investigate the convergence of the method, note that the error functions ZzN =

ulN —u;,0<i <N, pLN = AN — ) are the solution of the discrete problem

ezl + i ul AN) = f(tiui, ) = Ri, 1<i <N, @D
N

N +ZhiCiZ,N—V =0, (4.2)
i=1

where the truncation errors R; and r are given by (3.2) and (3.3), respectively.

Lemma 4.1. The solution of the first order difference equation
Yi=¢qiyi-1+¢i . 1<i =N

can be expressed in the following forms:

i
vi=00i+ ) ¢k Qi (4.4)
k=1
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or
N
yi=yNONSi— Y e Ol 45)
k=i+1
where
1, k=i,

Qi—k = { Moksrqe 1<k<i—1.
The relations (4.4) and (4.5) can be easily verified by induction in i.

Lemma 4.2. Under the above assumptions of Section 1 and Lemma 2.1, for the
error functions R and r, the following estimates hold:

IRlloo.wy <CN'InN, (4.6)
lrl<CN 'InN. 4.7)

Proof. From explicit expression (3.2) for R;, on an arbitrary mesh we have

I
R [ e |G @)+ 5 G2 o) d

ti
<Ch;! (t—ti—) (1+ [’ (0)])dr, 1<i < N.
ti—1

This inequality together with (2.3) enables us to write

t
|Ri| <C {h71+h;18‘1/ (t—ti_l)e_‘”/sdt}, 1<i <N, (4.8)
ti—1
in which
h — D 1<i<N/2,
"1 h®, N/2+1<i<N.

We consider first the case 0 = T/2 and so T/2 < o~ !elnN and h(V) = h® =
TN~ Hereby, since

Z
2InN T
hl-_le_l / (t —t,-_l)e_‘”/sdt < 1M < snv s 207 'N"!InN,
ol N
Li—1
it follows from (4.8) that
|Ri|<CN~'InN, 1<i <N. (4.9)

We now consider the case 0 = a~!eln N and estimate R; on [0,0] and [0, T] separ-
ately. In the layer region [0, o], inequality (4.8) reduces to
alelnN

IRi| <C(1+& )M =c(1+e—1)N—/2, l<i<N/2.
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Hence
|Ri{|<CN~'InN, 1 <i <N/2. (4.10)

It remains to estimate R; for N/2+ 1 <i < N. In this case we are able to write (4.8)
as

2 1 ati_q oty
|Ri|§C{h()+a_ (e_ ; —e—s)},N/2+1§i§N. 4.11)
Since t; =a~leln N + (i — N/2)h@ it follows that:
ary_ wt; 1 ai-1-5Hn® e
e (l—e_ s ) <N!
N
and this together with (4.11) to give the bound
|R;| <CN'. (4.12)

The inequalities (4.9) , (4.10) and (4.12) finish the proof of (4.6).
Finally, we estimate the remainder term r. From the explicit expressiom (3.3) we

obtain

N g

UEDD [ (|t =t (O)ldr, 1 <i <N,
i=17ti-1

This inequality together with (2.3) enable use to write

N t.
j | _a
Ir| < IICIIOOCZhi[ (1+—e—e’)dt, 1<i<N. (4.13)
ti—1 €

i=1

From (4.13), the validity of (4.7) follows:

e )dr+C % h<2)/ti 4o )de
—e & —e & s
& &

i=N/2+1 ti—1

T 1 T 1 o«
gcml)/ (1+—e—s) dt+Ch(2)/ (1+—e—s)dz,
0 & 0 &

<C (h(l) +h<2)) <CN~'lN.

N/2 "

nzc¥o [

i=1 ti—1

O
Lemma 4.3. For the solution of (4.1)-(4.3), the following estimates hold
‘MN‘ECVL (4.14)
2| < 11+ Nelloo 7B (|| M1 + 1R 1o, (4.15)
M| <ol [+ M [ |+ RI), 15 <N=1 @16)
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where

N
By= ,
N Eze-l—ahQNe

=1
1, for £ =N,

On-t= i) . forl<C<N-1.

Proof. The equation (4.1) can be rewritten as

8Z— —i—alz —blu + R, 1<i<N-1, 4.17)
with
a
ai=—f(li,ui+yzfv,k+WN),
u
a
b =— Bj)ft (t,,u,+yzl A+ yu ) 0<y<l.
From (4.17) we have
N & N N h,‘bl‘ /’liRi
N__ =~ ! ) 4.18
L S—I-aihizl_l—i_u et+aihi e+ajh; ( )

Solving the first-order difference equation with respect to le by using (4.5) and
setting the boundary condition (4.3), we get

N N

hib hi R
N N k k —1 kg
=— E ;= E 4.19
H = 8+akhk k=i+18+akhk Qk i (4.19)

Taking into consideration in (4.19) the integral boundary condition (4.2), we have
N _ r
s hih
_hibi 1 hsb -1
Zk 1 staghy Qk +Zk 1hkck Zs =k+1 s—i—aé;lé s—k

hkRk 1 hs Ry —1
Zk 1 staghy Or "‘Zk 1hkckzs =k+1 stashs Zs—k

hib 1 hsb -1
St o 0 Y ek Yool s O
Now, we estimate separately the terms on the right-hand side of equality (4.20).
For the first term, we have

(4.20)

-
N hib -1 N N hsb -1
Zk:l 8+]:Zk];lk Qk + 2 k=1 ek Zs=k+1 g_;_iz‘y%s Qs—k

7| a*|rl a*|rl
< =

<
le{LlstIﬁQ;l mlP*lecV=1(l+P*)k_1 ml[(l—i—p*)N—l]
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here p = aphy /e and psx = min pg. Therefore, it is not hard to see that
r

hkbk hgb —1

Zk 1 etarhy Qk + Zk 1 hick Zs =k+1 8+a;hs Qs—k
Next, evidently

N hy Ry -1 N N hs R —1
ZkZI 5+akhk Qk + Zkzl hkck Zs‘:k-l—l g-}-basils QS—k

N hibi -1 N N hsb -1
2k=1 i Q- k=10l Zs=k+1 7 n: Qi

After taking into consideration (4.21) and (4.22) in (4.20), we arrive at (4.14).
Now, we need to estimate z¢. From (4.18), by using (4.4) we have

<Clr| (4.21)

<m7! R0 (4.22)

i
hi Ry,
M=z Qz'HLNZS_'_ th Y Qi

et+arh
k=1+kk

From here, by virtue of (4.2) it follows that

N N~k b kR
v T lk=1lkCk (M D ot=157a,5; Qh—t T2 i=157a,0 Qk—e)
29 = N .
1+ k=g hiek Qk

Thereby

N
X[ =i+ el T

he |be) M he|Ry|
) N)28+aghk e+;—Qk—e},

t e+agphy

N
s|r|+||c||ooT{<M1\MN\+||R||OO}Z QN

which implies validity of (4.15).
Finally, an applying the maximum principle for the difference operator LY le =
sthi +a,~le, 1 <i < N, to Eq. (4.17) immediately leads to (4.16). ]

Combining the two previous lemmas gives us the following convergence result.
Theorem 4.1. Let {u(¢),A} and {ulN AN } be the exact solution and discrete solution
on @y respectively. Then the following estimates hold

|A—)\N‘ <CN~'InN.
Hu—uNH §CN_1 InN.
00, N

Proof. This follows immediately by combining the previous lemmas. O
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5. ALGORITHM AND NUMERICAL RESULTS

Here, we consider a test problem to show the applicability and efficiency of the
method described in this paper.

a) We solve the nonlinear problem (3.5)-(3.7) using the following quasilineariza-
tion technique:

—uly = —u™, ) oyt + £ (T.B.A®D)
af /oA (T,B,)&(”))
N-1
u(()") =A—cyhyB— Z hibiul(n_l),
i=1

(n—l)_ (l’l) —1 ) (n—l) (n))
u® =, =D _ (”i “i—1)Pf +f(fz,u,- A

: ’ f [ du (zi,u§”‘1),x(n)) 4!

(B
A — y(r=1) _

’

,n=12,..

where, p; = hi/¢; 2 and ul@)(l <i < N —1) are the initial iterations given.
b) Consider the test problem:
eu +2u—e " +1?>+A4+tanh(A +1) =0, 0<r <1,

1 1
u(0) + —/ e Su(s)ds =1,
4Jo
u(l) =0.
The exact solution of our test problem is not available. Therefore we use the double

mesh principle to estimate the errors and to compute the experimental rates of con-
vergence. The error estimates obtained in this way are denoted by

e;‘,N — max us,N_ﬁs,ZN ’ ei,N — )Ls,N_Ae,ZN ’
oN
where {ﬁS’ZN ,A82N } is the approximate solution on the mesh

won ={tij2:i =0,1,....2N}

with #; 12 = (t; +ti+1)/2 for i =0,1,..., N — 1. The corresponding rates of con-
vergence are calculated by

" =1n(e; N feg?N)/In2
for u, and
pi’N = ln(ei’N/ei’ 2N)/ln2

for A. The e—uniform errors p,]lv , piv are estimated from

N &N _N &,N

¢, =maxe,”, e;’ =maxe;
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The corresponding e—uniform convergence rates are
N N /,2N N N ;2N
Py =In(e, /e, )/In2, p;" =In(e)’ /e;™ )/In2.
In the computations in this section we take o = 2. The initial guess in the iteration
© _ 4
L=

max uf")—ul("_l)‘ <1072, ‘/\(”)—A("_l) <107,
l

process is taken as u — tl-z, 2© = _0.4 and the stopping criterion is

The values of ¢ and N for which we solve the test problem are € = 271 i =2.4,..,16;
N = 64,128,256,512,1024. Some results of numerical experiment are displayed in
Tables 1 and 2. The numerical results are the clear illustration of the error estimates.

TABLE 1. Errors e5V computed e—uniform errors e and conver-

e,N
gence rates p,;’ on wy.

N =64

N =128

N =256

N =512

N =1024

2—10
2—12
2—14

2—16

e,N

e,N
Pu

0.00047526
0.91
0.00477384
091
0.00357052
0.81
0.00354583
0.80
0.00349702
0.78
0.00349702
0.78
0.00349702
0.78
0.00349702
0.78
0.00349702

0.78

0.00025293
0.92
0.00254057
0.93
0.00203655
0.82
0.00203655
0.82
0.00203655
0.82
0.00203655
0.82
0.00203655
0.82
0.00203655
0.82
0.00203655

0.82

0.00133677
0.95
0.00133344
0.95
0.00115359
0.84
0.00115359
0.84
0.00115359
0.84
0.00115359
0.84
0.00115359
0.84
0.00115359
0.84
0.00133677

0.84

0.00069196
0.97
0.00069070
0.97
0.00064445
0.87
0.00064445
0.87
0.00064445
0.87
0.00064445
0.87
0.00064445
0.87
0.00064445
0.87
0.00069196

0.97

0.00035325

0.00035261

0.00035261

0.00035261

0.00035261

0.00035261

0.00035261

0.00035261

0.00035261
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TABLE 2. Errors ei’Ncomputed e—uniform errors eiv and conver-

gence rates pi’N onwy.

N = 64

N =128

N =256

N =512

N =1024

0.03255711
0.83
0.03134362
0.77
0.03134362
0.77
0.03134362
0.77
0.03134362
0.77
0.03134362
0.77
0.03134362
0.77
0.03134362
0.77

0.03134362
0.77

0.01831433
0.87
0.01838045
0.81
0.01838045
0.81
0.01838045
0.81
0.01838045
0.81
0.01838045
0.81
0.01838045
0.81
0.01838045
0.81

0.01838045
0.81

0.01002063
0.91
0.01048388
0.85
0.01048388
0.85
0.01048388
0.85
0.01048388
0.85
0.01048388
0.85
0.01048388
0.85
0.01048388
0.85

0.01048388
0.85

0. 00533283
0.95
0.00581630
0.89
0.00581630
0.89
0.00581630
0.89
0.00581630
0.89
0.00581630
0.89
0.00581630
0.89
0.00581630
0.89

0.00581630
0.89

0.00276045

0.00313856

0.00313856

0.00313856

0.00313856

0.00313856

0.00313856

0.00313856

0.00313856

6. CONCLUSION

A parameterized singular perturbation problem with integral boundary condition is
considered. The difference scheme is constructed by the method of integral identities
with the use of interpolating quadrature rules with the weight and remainder terms in
integral form. The numerical method presented here comprises a backward difference
operator on a non-uniform mesh for the equation and composite rectangle rule for
the integral condition. It is shown that the method displays uniform convergence
with respect to the perturbation parameter. Numerical results confirm our theoretical
analysis. The main lines for the analysis of the uniform convergence carried out
here can be used for the study of more complicated nonlinear singularly perturbed
analogous type problems.
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