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Introduction

Two main properties of an ecological community are its 
productivity (e.g., its total biomass or yield) and its diversity, 
understanding the relationship between them is crucial both 
in agriculture science, for productivity optimization (Fort et 
al. 2017, Halty et al. 2017), and in conservation ecology, for 
protecting endangering species and ecological communities. 
Competition plays a key role in determining the how the total 
biomass of a community is partitioned among species. The 
classical theoretical framework for describing the competi-
tion among S species in its simplest form is provided by the 
linear Lotka-Volterra competition equations (LLVCE) (Lotka 
1925, Volterra 1926). A convenient way of writing the equa-
tions for the species yields at equilibrium Yi – independent of 
how the yield is measured in different communities (popula-
tion density, biomass density or biovol) – is in terms of the 
relative yields yi = Yi/Ki , i.e., the species yield in mixture nor-
malized by its yield in monoculture or carrying capacity Ki, 
(Fort 2018):       		         	                        

(1)

where aij is the coefficient of competition of species j over 
species i (aii = 1). 

A main difficulty for obtaining the yi from (1) is that it 
involves the S2 parameters {aij} and thus at least the same 
number of experimental treatments is required to estimate 
them. Hence, for large values of S, only a fraction of these 

experiments is commonly carried out and consequently we 
have to deal with an incomplete knowledge of the parameters 
required to solve (1). This could explain why the focus of 
Lotka-Volterra competition theory has been almost exclusive-
ly on qualitative issues, like community stability and species 
coexistence, rather than on making quantitative predictions 
to be tested against experimental data, like relative species 
abundance in equilibrium (Hubbel 2002).

Here we show that, even with an incomplete knowledge 
of the LLVCE parameters, quantitative predictions are still 
possible if rather than attempting to predict the individual 
species yields, we aim at predicting aggregate or mean com-
munity quantities. A first example of aggregate quantity is the 
sum of the S relative yields, or Relative Yield Total, RYT (de 
Wit 1970):				           

(2)

This index allows comparing community productivity on 
a relative basis. For instance, in the agricultural sciences, the 
RYT is often used to quantify the overyielding of diverse plant 
mixtures relative to plant monocultures in studies of biodiver-
sity effects on ecosystem function. A RYT > 1 implies species 
complementarity and that species partition the niche so as to 
reduce inter-specific competition (Vandermeer 1989, Loreau 
and Hector 2001). This, in turn, implies that the yield perfor-
mance will be better in polyculture than in monoculture, a 
phenomenon termed as overyielding (Vandermeer 1989). The 
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RYT divided by S is equal to the Mean Relative Yield, MRY, a 
second measure of community productivity:
MRY = RYT/S  				     (3)

Next, we can define the mean inter-specific competition 
parameter, a, as the mean over the off-diagonal elements of 
the matrix {aij}:

i ja a ≠=  				     (4)

Recently derived analytical approximate expressions for 
the RYT and MRY as functions of this mean competition pa-
rameter a and the species richness S are provided by (Fort 
2018, Fort and Segura 2018):

					   
			    (5)

					   
			    (6)

 
To test formulae (5) and (6), a set of 25 experimental studies 
with S > 2 that measured all the species yields was collected 
from the literature (Fort 2018). Some of these experiments 
were completed in laboratory and others in the field under 
natural conditions (see Table 1 for a comprehensive list of 
experiments used and their references). For S > 8, I could not 
find an experiment in which the totality of the required treat-
ments was carried out but only a percentage fe of the them. 
Thus for 12 out of these 25 experiments fe < 100% (Table 1). 
The proposed method aims at providing RYT precisely for 
cases in which we have incomplete knowledge of the matrix 
[aij].1 

Table 1, which is a modified version from the one pub-
lished in Fort (2018), summarizes and compares �������������the theoreti-
cal and experimental results.

The relative error between the theoretical approximate 
formula (5) and the empirically observed RYT,eTE, is 10 % 
or less for 8 out of 25 (32 %) of the experiments (Table 1). 
This accuracy is remarkable since the experimental SE for 
such quantities are in general greater than eTE (in the interval 
2-43%, mean = 21 %). Furthermore, whenever eTE is large SE 
is also large, and thus the failure of eq. (5) can be explained 
by a low experimental precision. 

Also notice that as S increases the fraction fe of the 
S×(S+1)/2 experiments required to estimate the experimental 
quantities also decreases.

The dependence of the total yield with the species richness 
and the intensity of competition

Figure 1a shows the experimental and theoretical RYT vs. 
S for the 25 experiments listed in Table 1. We can see that 
the RYT predicted by eq.(5) for the minimum and maximum 

experimentally measured mean inter-specific competition pa-
rameter in Table 1, respectively, a = 0.12 (gray line) and a = 
0.98 (gray dotted line), both fall within the error bars of the 
corresponding experimental values (black circles). In addi-
tion we plotted the theoretical RYT curve for a = 0.56 (gray 
dashed line) which is the mean value of parameter a over the 
25 experiments.

Notice that the RYT increases with S, a phenomenon 
which has been observed in many empirical studies and in-
terpreted as niche partitioning (Cardinale et al. 2012). That is, 
different species can use resources in a complementary way 
and therefore more diverse communities will lead to a high-

1 The details of the recipe used in these cases for estimating the experimental average interspecific competition coefficient a (to feed equation 
(5)) and the experimental RYT are explained in Fort (2018).
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er RYT. However it was noticed that in spite of widespread 
claims about the role of biodiversity and ecosystem function-
ing relationships, researchers have rarely provided any direct 

quantitative evidence that niche partitioning is responsible for 
higher productivity in mixtures. The RYT > 1 for all except 
one of the experiments considered here (see Table 1), is a 

Table 1. RYT predicted by eq. (5) vs. experimental values for 25 ecological communities across different taxa (mainly vascular plants, 
but also algae, insects and crustaceans). S is the number of coexisting species; exp.and theo. denote, respectively, experimental and 
theoretical; a is the measured mean interspecific competition coefficient; RYT is the relative yield total; eTE  is the relative difference of 
theo. RYT respect to exp.RYT as %;SE is the standard error as % and fe is the percentage of the total S×(S+1)/2 experiments which were 
used to estimate the experimental quantities. For references to the experimental studies, see Fort (2018).

[a] More aggregate data: for functional groups rather than individual species.  
[b] Averages over two different places and across the three years.				     
[c] K obtained from the removal of 2 species rather than S – 1 = 3.				     
[d] exp. RYT is a lower bound since there are other six additional species whose relative yields were not measured. 
[e] The number of coexisting species S was smaller than the number of seeded species (12) in this plot.   
[f] In mix.nest 233 (234) of Silwood all except one (all) of the 11 relative yields y of the polyculture are available.  
[g] In spite of many positive interactions the% error is small.					      
[h] a was computed from mean biomass densities for mono & bicultures:  b =  B b/K M, a = (1– b)/b . 
[i] The experimental RYT was computed approximately as SY/ KM. 
[j] The experimental RYT was computed approximately by averaging SiYi/K M.

Taxon Community (site, year, treatment, 
etc) S exp. a exp. 

RYT
theo. 
RYT eTE % exp.SE %   fe % Note

Algae Santa Catalina Is., California 3 0.61 1.53 1.35 12.4 14.1 100

Plants Grassland, San Jose, Ca. 1998 3 0.23 1.54 2.06 33.4 27.6 100 [a] 

Plants Iowa, 2003-2005, 1 cut [b] 

species mixture: IBF-IW-EG 3 0.54 1.20 1.44 19.9 27.2 100

species mixture: IBF-SW-EG 3 0.49 1.16 1.51 29.9 23.9 100

Algae continuous culture systems 4 0.75 1.04 1.23 18.1 >4.7 100

Crustaceans Lab. microcosms 4 0.39 1.32 1.85 39.4 >2.0 100 [c]

Plants Random distribution experim. 4 0.98 0.92 1.02 11.0 18.1 100

Plants Pastures, British Columbia

1939 pasture 4 0.67 1.10 1.33 21.5 19.8 100 [d]

1958 pasture 4 0.98 1.02 1.01 1.0 12.7 100

1977 pasture 4 0.91 1.01 1.07 6.6 14.0 100

Protozoa Cultures & lab. experiments 4 0.62 1.08 1.62 49.6 43.5 100

Plants Otago lawn, NZ 7 0.75 1.27 1.24 2.5 4.5 100

Plants Shoreline of Axe Lake, Ontario 7 0.52 2.02 1.74 14.1 NA 75

Plants BIODEPTH exp., year 3

Sweden, blok R6P009 7 0.12 5.05 4.56 9.6 40.3 35.7 [e]

Sweden, blok R6P010 7 0.12 4.08 4.56 11.8 48.9 35.7 [e]

Silwood, UK, mix.nest 233 11 0.46 2.04 1.97 3.3 13.2 16.7 [e],[f],[g]

Silwood, UK,  mix.nest 234 11 0.46 1.93 1.97 1.9 18.9 16.7 [e],[f],[g]

Germany, mix.nest 28 12 0.55 2.15 1.71 20.1 29.9 24.4 [h],[i] 

Germany, mix.nest 29 12 0.55 1.73 1.71 0.8 14.9 24.4 [h],[i] 

Sheffield,  UK, block S7P012 12 0.81 1.61 1.21 24.5 16.2 21.8 [h] 

Sheffield, UK, block S7P023 12 0.81 1.48 1.21 18.0 17.6 21.8

Sheffield, UK, block S7P023 12 0.81 1.61 1.21 24.8 16.2 21.8

Plants Cedar Creek E120, year 2003 16 0.24 4.28 3.73 12.9 5.9 30.1

Plants Jena exp., year 2007 16 0.28 2.80 3.06 9.5 16.9 17.6 [j] 
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clear quantitative evidence of such species complementar-
ity (de Wit 1970, Loreau and Hector 2001). For fixed mean 
competition parameter a, equation (5) becomes a non-linear 
saturating relationship between diversity and yield. A novelty 
here is that we provide the specific functional dependency for 
RYT with S: an hyperbolic function (gray curves in Fig. 1.a).  
As expected, notice that, for fixed S, the RYT (Fig. 1.b) de-
creases with a. 

Applicability 

Regarding applications, the derived RYT approximate 
formula can be useful in biodiversity-ecosystem function-
ing (BEF) research in cases in which measuring directly the 
RYT is difficult. For example, the artificial communities of 
BIODEPTH experiments (Hector et al. 2010), designed to 
measure this relation between species richness and produc-
tivity in plant communities. The maintenance of mixtures of 
many different coexisting species in this kind of experiments 
was a difficult task, implying intensive management such as 
hand weeding to maintain low diversity plantings and exclude 
unplanted species. The formula for the RYT may also be used 
to estimate the effect of removing existing species or adding 
foreign species to a community through the changes in the 
mean intensity of the interspecific competition they produce.

Parsimonious modelling: proportionality between  
the available data and the means.

For the reasons explained at the beginning, it seems a 
sensible approach to use the smallest possible number of pa-
rameters and, more importantly, parameters that can be prac-
tically estimated from empirical data, either experiments or 
field work. In particular, the incomplete knowledge of model 
parameters implies the necessity of an aggregation strategy 
since we cannot work with variables for individual species. 
One way to aggregate variables is to look for ����������� global com-
munity quantities − i.e., for the whole community of inter-
acting species. Therefore here we contrasted predictions for 
the RYT and MRY using simple formulas we recently derived 
(Fort 2018) in terms of the average competition strength a, 
estimated from the yields for a reduced sample experimen-
tal treatments, against empirical results for a wide variety of 
communities (from protozoa to mammals). This aggregation 
procedure could be complemented with others like work-
ing with size-classes (Fort and Mungan 2015), or functional 
groups (Segura et al. 2013), or abundance-generalist classifi-
cations (Fort et al. 2016) etc. To conclude, the approximation 
we consider here seems to be good enough for many practical 

purposes and is proportional to the problem that it seeks to 
solve.
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