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1. I

The purpose of this paper is to establish new efficient conditions sufficient for
the unique solvability of the Cauchy problem for some classes of many-dimensional
systems of linear integral-differential equations.

The proof of the main Theorem 3.1 of Section 3.1 is based on the application of
Theorem 2 from [4] (see Theorem 4.2 in this paper) established by using a result of
[5,7]. Note that similar statements were obtained in [1,6] by different methods.

2. N

The following notation is used.

(i) � = (−∞,∞),�+ = [0,∞),� = {1,2,3, . . . }.
(ii) ‖x‖ := max1≤k≤n |xk| for x = (xk)n

k=1 ∈ �n.
(iii) C([a,b],�n) is the Banach space of the continuous functions [a,b] → �n

equipped with the standard norm

C([a,b],�n) 3 u 7−→ max
s∈[a,b]

‖u(s)‖ .

(iv) L([a,b],�n) is the Banach space of Lebesgue integrable functionsu : [a,b] →
�n with the norm

L([a, b],�n) 3 u 7−→
∫ b

a
‖u(s)‖ds.

(v) L (�n) is the algebra of square real matrices of dimensionn.
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(vi) The relationx ≤~σ y for

~σ :=



σ1

σ2
...
σn



and{x, y} ⊂ �n means thatσk(yk − xk) ≥ 0 for all k = 1,2, . . . ,n. Similarly,
the relationx <~σ y means thatσk(yk − xk) > 0 for everyk = 1, 2, . . . ,n. The
symbols “≥~σ” and “>~σ” are defined by analogy.

3. I     - 

We consider the system ofn linear inhomogeneous integral-differential equations
of the form

u′(t) =

N∑

j=1

∫ b

a
H j(t, s)u(ω j(t, s))ds+ f (t), t ∈ [a, b], (3.1)

with the initial condition

u(τ) = c, (3.2)

and the corresponding homogeneous Cauchy problem

u′(t) =

N∑

j=1

∫ b

a
H j(t, s)u(ω j(t, s))ds, t ∈ [a,b], (3.3)

u(τ) = 0, (3.4)

whereH j : [a, b] × [a,b] → L (�n) and f : [a,b] → �n are integrable functions, and
ω j : [a,b]×[a, b] → [a,b] are measurable functions,j = 1, 2, . . . ,N. By a solution of
problem (3.1), (3.2) (respectively, (3.3), (3.4)), according to the definition adopted in
the modern theory of functional-differential equations [2], an absolutely continuous
functionu : [a, b] → �n is meant which possesses property (3.2) (respectively, (3.4))
at the pointτ and satisfies relation (3.1) (respectively, (3.3)) almost everywhere on
[a,b]. Various equations, e. g.,

u′(t) = λ(t)
∫ t

a
r(s)u(h(s))ds+ f (t), t ∈ (−∞,∞),

u′(t) =

∫ β(t)

α(t)
r(s)u(φ(|t − s|))ds+ f (t), t ∈ (−∞,∞),

can be rewritten in form (3.1).
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3.1. M 

Here, we state the main theorem on the unique solvability of the initial value prob-
lem (3.1), (3.2), which can be used to obtain efficient conditions for concrete equa-
tions (see, e. g., Corollary 3.6).

The conditions of the Theorem 3.1 below are formulated in terms of the func-
tions obtained by the consecutive application of the linear operation defined by the
right-hand side of equation (3.3) to a given function with suitable properties. More
precisely, let us fix some absolutely continuous functiony0 : [a,b] → �n which
satisfies the conditions

y0(τ) = 0 (3.5)

and
y0(t) >~σ 0, t ∈ [a, b] \ {τ}, (3.6)

and consider the sequence of functions given by the recurrence relation

yk(t) =

N∑

j=0

∫ t

τ

(∫ b

a
H j(ξ, s)yk−1(ω j(ξ, s))ds

)
dξ, t ∈ [a,b], k = 1, 2, . . . .

(3.7)
The following general theorem is true.

Theorem 3.1. Let the functionsω j : [a,b] × [a,b] → [a,b] be measurable and
H j : [a, b] × [a, b] → L (�n), j = 1, 2, . . . ,N, be integrable and such that

N∑

j=1

∫ b

a
H j(t, s)~σds sign(t − τ) ≥~σ 0 for a. e. t ∈ [a, b] (3.8)

with some constant vector~σ = col(σ1, σ2, . . . , σn), {σk | k = 1,2, . . . ,n} ⊂ {−1, 1}.
Assume also that there exist some real constantsα ∈ (0,1) and% ∈ (1,+∞), integers
k ≥ 0 and r ≥ 1, and a certain absolutely continuous functiony0 : [a, b] → �n

satisfying relations(3.5)and (3.6)such that the integral-differential inequality

[
y′0(t) − %k+1

1− α
N∑

j=1

(∫ b

a
H j(t, s)[%

ryk+r (ω j(t, s))

− αyk(ω j(t, s))]ds
)]

sign(t − τ) ≥~σ 0 (3.9)

holds for almost everyt from [a, b].
Then the Cauchy problem(3.3), (3.4)has only the trivial solution, the inhomoge-

neous Cauchy problem(3.1), (3.2), has a unique solutionu(·) for arbitrary c ∈ �n

and f ∈ L([a,b],�n), and this solution is representable as the uniformly convergent
functional series

u(t) =

∞∑

k=0

f [k](t), t ∈ [a, b], (3.10)
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where, by definition,

f [k](t) :=
N∑

j=1

∫ t

τ

(∫ b

a
H j(ξ, s) f [k−1](ω j(ξ, s))ds

)
dξ, t ∈ [a,b], k = 1,2, . . . ,

and

f [0](t) := c +

∫ t

τ
f (s)ds, t ∈ [a,b].

Moreover, if the vector-functionf and vectorc satisfy the additional condition
∫ t

τ
f (s)ds≥~σ −c (3.11)

for all t from [a, b], then the unique solutionu(·) of the inhomogeneous problem(3.1),
(3.2)satisfies the relation

u(t) ≥~σ 0, t ∈ [a,b]. (3.12)

We recall that, everywhere in this paper, notation (vi) of Section 2 is used. For
example, condition (3.11) means that the inequality

σk

[
ck +

∫ t

τ
fk(s)ds

]
≥ 0

is true for allt from [a, b] andk = 1,2, . . . ,n.
Remark3.2. Under the condition of Theorem 3.1, the uniform convergence of

the sequence of functions (3.7) to the function equal identically to zero, i. e., to the
unique solution of the homogeneous Cauchy problem (3.3), (3.4), follows from the
proof of [7, Theorem 2], which theorem implies Theorems 3.1 and 4.2 of [4] used in
this paper.

Remark3.3. Condition (3.9) is optimal in the sense that the assertion of Theo-
rem 3.1, generally speaking, is not true if (3.9) is assumed with% = 1, i. e., has the
form

[
(1− α)y′0(t) −

N∑

j=1

(∫ b

a
H j(t, s)[yk+r (ω j(t, s))

− αyk(ω j(t, s))]ds
)]

sign(t − τ) ≥~σ 0. (3.13)

This statement is justified by the example below.
Example3.4. Consider the homogeneous integral-differential equation

u′(t) =
2 sign(t − τ)

(a− τ)2 + (b− τ)2

∫ b

a
u(s)ds, t ∈ [a,b], (3.14)
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whereτ is a given point from (a, b). Clearly, equation (3.14) can be rewritten as (3.3)
if we put

n = 1, N = 1,

H1(t, s) =
2 sign(t − τ)

(a− τ)2 + (b− τ)2
, (t, s) ∈ [a,b] × [a,b].

(3.15)

Let us set
y0(t) = |t − τ|, t ∈ [a,b]. (3.16)

Obviously, this function is absolutely continuous and satisfies conditions (3.5) and
(3.6) with n = 1 and~σ = 1. We construct the sequence of functionsy1, y2, . . .
defined by the formula (3.7). In this case, it has the form

yk(t) =

∫ t

τ

2 sign(ξ − τ)
(a− τ)2 + (b− τ)2

(∫ b

a
yk−1(s)ds

)
dξ

=
2|t − τ|

(a− τ)2 + (b− τ)2

∫ b

a
yk−1(s)ds, t ∈ [a, b]. (3.17)

It is clear that, by virtue of (3.16),

y1(t) =
2|t − τ|

(a− τ)2 + (b− τ)2

∫ b

a
|s− τ|ds= |t − τ|, t ∈ [a,b].

Arguing by induction, we obtain that

yk(t) = |t − τ|, t ∈ [a,b], (3.18)

for everyk ≥ 0 It is obvious that, for~σ = 1 andN, n, andH1 given by formulae
(3.15), the equality

N∑

j=1

∫ b

a
H j(t, s)~σds sign(t − τ) =

2
(a− τ)2 + (b− τ)2

(3.19)

is true and, hence, condition (3.8) is fulfilled.
Let us show that condition (3.9) with% = 1 (i. e., inequality (3.13)) holds for~σ = 1

andN, n, andH1 given by formulae (3.15). Indeed, in this case, according to (3.18),
the expression in the left-hand side of inequality (3.13) takes the form

(1− α)y′0(t) −
N∑

j=1

(∫ b

a
H j(t, s)[yk+r (ω j(t, s)) − αyk(ω j(t, s))]ds

) sign(t − τ)

= (1− α)

(
sign(t − τ) − 2 sign(t − τ)

(a− τ)2 + (b− τ)2

∫ b

a
|s− τ|ds

)
sign(t − τ)

= (1− α) (1− 1) = 0 (3.20)

and, hence, (3.9) is satisfied in the form of an equality. However, the function

u(t) = λ|t − τ|, t ∈ [a,b],
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whereλ ∈ � is arbitrary, is a non-trivial solution of the homogeneous Cauchy prob-
lem (3.14), (3.4).

Thus, in Theorem 3.1, one cannot replace condition (3.9) with% > 1 by condition
(3.13) because the latter does not guarantee the unique solvability of the Cauchy
problem under consideration.

3.2. C

Conditions (3.5) and (3.6) are satisfied, e. g., for the function

y0(t) = |t − τ|q~σ, t ∈ [a, b], (3.21)

whereq is some natural number and~σ = (σk)n
k=1 is ann-dimensional vector such

that σk ∈ {−1,1} for all k = 1, 2, . . . ,n. The following results then follow from
Theorem 3.1.

Corollary 3.5. Let the functionsω j : [a,b] × [a, b] → [a, b] be measurable,H j :
[a,b] × [a, b] → L (�n) be integrable, and inequality(3.8) be satisfied for some
~σ ∈ {−1, 1}n. Moreover, assume that there exist a real numberγ ∈ (0,1) and some
q ∈ � such that the inequality

N∑

j1=1

N∑

j2=1

∫ t

τ

(∫ b

a
H j1(ξ, p)

(∫ ω j1(ξ,p)

τ

(∫ b

a
H j2(η, s)~σ|ω j2(η, s) − τ|qds

)
dη

)
dp

)
dξ

≤~σ γ
N∑

j1=1

∫ t

τ

(∫ b

a
H j1(η, s)~σ|ω j1(η, s) − τ|qds

)
dη (3.22)

is true for almost everyt ∈ [a, b]
Then for arbitraryc ∈ �n and f ∈ L([a,b],�n), the inhomogeneous Cauchy prob-

lem (3.1), (3.2) is uniquely solvable, and homogeneous Cauchy problem(3.3), (3.4)
has only trivial solution. Moreover, if the functionf and vectorc satisfy inequal-
ity (3.11) for all t ∈ [a,b], then the unique solution of problem(3.1), (3.2) satisfies
condition(3.12).

Corollary 3.6. Assume that the functionsω j : [a, b] × [a, b] → [a,b] are measur-
able and the integrableH j : [a,b] × [a, b] → L (�n) satisfy(3.8) with some vector
~σ ∈ {−1, 1}n. Let, moreover, there exist some constantsγ ∈ (0, 1) and q ∈ � such
that the inequality

N∑

j=1

∫ t

τ

[∫ b

a
|ω j(η, s) − τ|qH j(η, s)ds

]
dη ~σ ≤~σ γ|t − τ|q~σ (3.23)

is fulfilled for a. e.t ∈ [a, b].
Then the conclusion of Corollary 3.5 is true for the inhomogeneous problem(3.1),

(3.2)and homogeneous problem(3.3), (3.4).
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3.3. T    - 

Let us obtain conditions sufficient for the unique solvability of the initial value
problem

u′1(t) =

∫ b

a
h11(t, s)u1(ω11(t, s))ds+

∫ b

a
h12(t, s)u2(ω12(t, s))ds+ f1(t), (3.24)

u′2(t) =

∫ b

a
h21(t, s)u1(ω21(t, s))ds+

∫ b

a
h22(t, s)u2(ω22(t, s))ds+ f2(t), (3.25)

u1(τ) = c1, (3.26)

u2(τ) = c2, (3.27)

wheret ∈ [a,b], the functionsfi andhi j , i, j = 1,2, are integrable,ωi j , i, j = 1, 2, are
measurable, andc1 andc2 are arbitrary real constants.

The following assertion is true.

Corollary 3.7. Assume that the functionsωi j : [a,b] × [a, b] → [a, b] are mea-
surable,hi j : [a, b] × [a, b] → � are integrable for alli, j = 1, 2, and, moreover, the
following conditions are satisfied with certain{σ1, σ2} ⊂ {−1,1}:

(∫ b

a
h11(t, s)ds+ σ1σ2

∫ b

a
h12(t, s)ds

)
sign(t − τ) ≥ 0 for a. e.t ∈ [a, b]

and
(
σ1σ2

∫ b

a
h21(t, s)ds+

∫ b

a
h22(t, s)ds

)
sign(t − τ) ≥ 0 for a. e.t ∈ [a, b].

Let there exist some constantsγ ∈ (0,1) andq ∈ � such that the inequalities

∫ t

τ

[∫ b

a
|ω1(η, s) − τ|qh11(η, s)ds

]
dη

+ σ1σ2

∫ t

τ

[∫ b

a
|ω2(η, s) − τ|qh12(η, s)ds

]
dη ≤ γ|t − τ|q (3.28)

and

σ1σ2

∫ t

τ

[∫ b

a
|ω1(η, s) − τ|qh21(η, s)ds

]
dη

+

∫ t

τ

[∫ b

a
|ω2(η, s) − τ|qh22(η, s)ds

]
dη ≤ γ|t − τ|q (3.29)

hold for almost everyt ∈ [a,b].
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Then the Cauchy problem(3.1), (3.2), (3.3), (3.4) has a unique solution for arbi-
trary { f1, f2} ⊂ L([a,b],�) and realc1, c2. Furthermore, if the inequalities

σ1

(∫ t

τ
f1(s)ds+ c1

)
≥ 0,

σ2

(∫ t

τ
f2(s)ds+ c2

)
≥ 0

are true for all t ∈ [a, b], then the unique solution(u1, u2) of problem(3.1), (3.2),
(3.3), (3.4)satisfies the inequalities

σ1u1(t) ≥ 0,

σ2u2(t) ≥ 0

for all t ∈ [a,b].

4. P     S 3.1 3.2

We recall the following definition [7].

Definition 4.1. An operatorl : C([a,b],�n) → L([a,b],�n) is said to be
(
~σ, τ

)
-

positivewith some~σ ∈ {−1, 1}n andτ ∈ [a,b] if relation (3.12) implies that

(lu)(t) sign(t − τ) ≥~σ 0 for a. e. t ∈ [a,b].

In other words, this means that the inequalities

(lku)(t) sign(t − τ) ≥ 0, k = 1,2, . . . ,n,

are true for a. e.t ∈ [a,b] if

σkuk(t) ≥ 0, k = 1,2, . . . ,n,

for all t ∈ [a,b]. Here, lk : C([a, b],�n) → L([a, b],�), k = 1, 2, . . . ,n, are the
components of the operatorl : C([a,b],�n)→ L([a,b],�n).

We need the following theorem on the unique solvability of the Cauchy problem
established in [3,4].

Theorem 4.2. Let us suppose that the linear operatorl in the equation

u′(t) = (lu)(t) + f (t), t ∈ [a,b], (4.1)

is (~σ, τ)-positive for some~σ ∈ {−1,1}n. Assume also that there exist real constants
α ∈ (0,1) and% ∈ (1,+∞), integersk ≥ 0 andr ≥ 1, and an absolutely continuous
function y0 : [a,b] → �n with properties(3.5) and (3.6) such that the integral-
differential inequality

[
y′0(t) − %k+1

1− α l
(
%ryk+r − αyk

)
(t)

]
sign(t − τ) ≥~σ 0 (4.2)

is satisfied for almost everyt from [a,b].
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Then the homogeneous Cauchy problem

u′(t) = (lu)(t), t ∈ [a,b], (4.3)

u(τ) = 0

has only the trivial solution, and the corresponding inhomogeneous problem(4.1),
(3.2) is uniquely solvable for arbitraryc ∈ �n and f ∈ L([a, b],�n). The unique
solutionu(·) of problem(4.1), (3.2) is, moreover, representable as the uniformly con-
vergent functional series(3.10).

If, in addition,c and f satisfy condition(4.1), then the above-mentioned solution
u(·) possesses property(3.12).

4.1. P  T 3.1

The assertion of Theorem 3.1 follows from Theorem 2 of [4], which is formulated
here as Theorem 4.2, because assumption (3.8) guarantees that the linear operator

C([a,b],�n) 3 u 7−→ lu :=
N∑

j=1

∫ b

a
H j(·, s)u(ω j(·, s))ds (4.4)

is (~σ, τ)-positive in the sense of Definition 4.1. Indeed, the following lemma is true.

Lemma 4.3. For arbitrary measurable functionsω j : [a,b] × [a,b] → [a,b]
and integrable functionsH j : [a,b] × [a,b] → L (�n), j = 1,2, . . . ,N, satisfying
condition (3.8) with some column~σ ∈ {−1,1}n, the linear operator(4.4) is (~σ, τ)-
positive.

P. Let us assume that a functionu ∈ C([a,b],�n) satisfies condition (3.12).
Consider the expression

σk

N∑

j=1

∫ b

a
H j(t, s)u(ω j(t, s))dssign(t − τ)

= σk

N∑

j=1

n∑

ν=1

∫ b

a
σνh

j
kν(t, s) sign(t − τ)σνuν(ω j(t, s))ds, t ∈ [a, b], (4.5)

whereh j
kν, k, ν = 1, 2, . . . ,n, are the corresponding coordinates of the matrixH j ,

j = 1,2, . . . ,N, i. e.,

H j(t, s) =


h j

11(t, s) . . . h j
1n(t, s)

. . . . . . . . .

h j
n1(t, s) . . . h j

nn(t, s)

 , (t, s) ∈ [a, b]2.

Everykth component of the vector
N∑

j=1

∫ b

a
H j(t, s)~σds sign(t − τ)
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has the form
N∑

j=1

n∑

ν=1

∫ b

a
σνh

j
kν(t, s)dssign(t − τ)

and, therefore, by (3.8),

σk

N∑

j=1

n∑

ν=1

∫ b

a
σνh

j
kν(t, s)dssign(t − τ) ≥ 0

for all k. Thus, in view of (3.12) and (4.5),

diag(σ1, σ2, . . . , σn)
N∑

j=1

∫ b

a
H j(t, s)u(ω j(t, s))ds sign(t − τ) ≥ 0

componentwise, i. e.,

N∑

j=1

∫ b

a
H j(t, s)u(ω j(t, s))ds sign(t − τ) ≥~σ 0

for a. e.t ∈ [a,b].
Sinceu is an arbitrary function satisfying condition (3.12), we have shown that

operator (4.4) is (~σ, τ)-positive in the sense of Definition 4.1. �

4.2. P  C 3.5

To prove Corollary 3.5, it is sufficient to apply Corollary 5 from [4] putting k = 1
andr = 1 and defining the functiony0 by formula (3.21).

4.3. P  C 3.6

Corollary 3.6 follows from Corollary 6 of [4]. Inequality (3.23) is fulfilled for
operator (4.4) and the functiony0 given by formula (3.21). Indeed, it is easy to verify
that the derivativey′0 of function (3.21) is given by the formula

y′0(t) = q|t − τ|q−1 sign(t − τ) , t ∈ [a,b].

Therefore,

y′0(t) sign(t − τ) ≥~σ 0, t ∈ [a,b],

because, obviously,

q|t − τ|q−1~σ ≥~σ 0, t ∈ [a,b].
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4.4. P  C 3.7

Let us putn = 2 andN = 4 in equation (3.1) and define the matrix-valued functions
H j , 1 ≤ j ≤ 4, by the formulae

H1(t, s) =

(
h11(t, s) 0

0 0

)
, H2(t, s) =

(
0 h12(t, s)
0 0

)
,

H3(t, s) =

(
0 0

h21(t, s) 0

)
, H4(t, s) =

(
0 0
0 h22(t, s)

)

for a. e.t ands from [a,b]. Let ω1 = ω11, ω2 = ω12, ω3 = ω21, andω4 = ω22. Then,
as is easy to see, the inhomogeneous Cauchy problem (3.24), (3.25), (3.26), (3.27)
takes form (3.1), (3.2). Applying Corollary 3.6, we obtain the required assertion.
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