

A characterization of cone preserving mappings of quasiordered sets

Ivan Chajda and Šárka Hošková

Miskolc Mathematical Notes Vol. 6 (2005), No. 2, pp. 147–152

A CHARACTERIZATION OF CONE PRESERVING MAPPINGS OF QUASIORDERED SETS

IVAN CHAJDA AND ŠÁRKA HOŠKOVÁ

[Received: October 7, 2004]

ABSTRACT. By a cone of a quasiordered set (A, Q), any $U_Q(a) = \{x \in A : \langle a, x \rangle \in Q\}$ is meant. A mapping $f: A \to B$ is a cone preserving mapping of (A, Q) into (B, Q') if $f(U_Q(a)) = U_{Q'}(f(a))$ for each $a \in A$. We characterize these mappings by using certain relational inclusions. The result can be applied for construction of a quotient quasiorder hypergroup.

Mathematics Subject Classification: 08A02, 08A30, 20N20

Keywords: quasiorder, quasiorder hypergroup, factorization of quasiordered set, quotient hypergroup

Let $H \neq 0$ be a set and "*" be a mapping of $H \times H$ into $\mathcal{P}^*(H)$ (the set of all non-void subsets of H). The pair (H, *) is called *a hypergroupoid* (see, e. g., [2, 5]). For $A, B \in \mathcal{P}^*(H)$, we define $A * B = \bigcup \{a * b; a \in A, b \in B\}$.

A hypergroupoid (H, *) is called *a hypergroup*, see [1,2,5], if (a*b)*c = a*(b*c) for all $a, b, c \in H$, and the so-called *reproduction axiom*, i. e., a*H = H = H*a for any $a \in H$, is satisfied.

For a binary relation R on A and $a \in A$ denote $U_R(a) = \{b \in A; \langle a, b \rangle \in R\}$. A binary relation Q on a set A is called *quasiorder* if it is reflexive and transitive. The set $U_Q(a)$ is called a *cone* of a. In the case when a quasiorder Q is an equivalence one can prove that $U_Q(A) = \{x \in H : \exists y \in A, \langle x, y \rangle \in \theta\}$ for any $A \subseteq H$. Analogously, for $M \subseteq A$ we set $U_Q(M) = \bigcap \{U_Q(a) : a \in M\}$. The concept of a quasiorder hypergroup can be found, e. g., in [1]:

Definition 1. Let (H, Q) be a quasiordered set. For $a, b \in H$ define

$$a \star b = U_Q(a) \cup U_Q(b). \tag{1}$$

Then (H, \star) is a hypergroup which is called a *quasiorder hypergroup induced by* (H, Q).

To produce quotient hypergroups from a given general hypergroup, we need a concept of congruence. This was introduced independently by several authors but it was shown by J. Chvalina [4] that all of these definitions are equivalent to the following one:

© 2005 MISKOLC UNIVERSITY PRESS

Definition 2. Let $\mathcal{H} = (H, *)$ be a hypergroupoid. An equivalence θ on H is called a *congruence on* \mathcal{H} if $\langle a, b \rangle \in \theta$ and $\langle c, d \rangle \in \theta$ imply

$$U_{\rho}(a * c) = U_{\rho}(b * d).$$

Giving an equivalence θ on a set A, denote by h_{θ} the so-called *natural mapping* of A onto A/θ defined by $h_{\theta}(a) = [a]_{\theta}$.

It can be shown that if θ is a congruence on a hypergroupoid (H, *), then $(H/\theta, *_{\theta})$, where

$$[a]_{\theta} *_{\theta} [b]_{\theta} = h_{\theta}(a * b),$$

is also a hypegroupoid. If, moreover, $\mathcal{H} = (H, *)$ is a hypergroup, then $\mathcal{H}/\theta = (H/\theta, *_{\theta})$ is a quotient hypergroup—see Chvalina [4, p. 155].

The following question was solved in [3]: Let (H, Q) be a quasiordered set and $\mathcal{H} = (H, \star)$ be the induced hypergroup. Let θ be an equivalence on (H, \star) .

- (i) How to define a quotient relation Q/θ on the quotient set H/θ to be a quasiorder again?
- (ii) Under what condition the quasiorder hypergroup $(H/\theta, \bullet)$ induced by the quasiordered set $(H/\theta, Q/\theta)$, i. e., $[a]_{\theta} \bullet [b]_{\theta} = U_{Q/\theta}([a]_{\theta}) \cup U_{Q/\theta}([b]_{\theta})$, is the quotient hypergroup \mathcal{H}/θ ?

It can be visualized by the following diagram:

In Corollary 1 from [3] it was proved that if θ is a congruence, then the preceding diagram commutes.

We are going to use another approach to solve these problems in terms of relational products. Recall that for two binary relations R and S on a set A we have

$$R \circ S = \{ \langle x, y \rangle \in A^2 : \exists z \in A \text{ with } \langle x, z \rangle \in R, \langle z, y \rangle \in S \}.$$

Further, let $f: A \to B$ be a mapping. Denote by θ_f the so-called *induced equivalence* (on A), i. e., $\langle x, y \rangle \in \theta_f$ if and only if f(x) = f(y).

If $f: A \to B$ is a mapping and $M \subseteq A$, denote by $f(M) = \{f(m) : m \in M\}$. It is well-known that for any $X, Y \subseteq A$, $f(X \cup Y) = f(X) \cup f(Y)$.

We have to introduce a quotient quasiordered set. For this purpose, we introduce the following

148

Definition 3. Let *R* be a binary relation on a set *A* and θ be an equivalence on *A*. Define R/θ on A/θ as follows

 $\langle [a]_{\theta}, [b]_{\theta} \rangle \in R/\theta$ if and only if there exist $x \in [a]_{\theta}, y \in [a]_{\theta}$ with $\langle x, y \rangle \in R$. (2) The couple $(A/\theta, R/\theta)$ is called a *quotient of* (A, R) by θ .

Lemma 1. Let (H, Q) be a quasiordered set and (H, \star) , where \star is given by (1), be a corresponding quasiorder hypergroup. Let θ be an equivalence on H. Then θ is a congruence on (H, \star) if and only if

$$h_{\theta}(U_{Q}(a)) = U_{Q/\theta}(h_{\theta}(a)) \quad (= U_{Q/\theta}([a]_{\theta})) \tag{3}$$

holds for any $a \in H$ *.*

PROOF. Assume first that θ is a congruence on (H, \star) . If $x \in U_Q(a)$, i. e., $\langle a, x \rangle \in Q$, then $\langle h_{\theta}(a), h_{\theta}(x) \rangle \in Q/\theta$, i. e., $h_{\theta}(x) \in U_{O/\theta}(h_{\theta}(a))$, which means that

$$h_{\theta}(U_{O}(a)) \subseteq U_{O/\theta}(h_{\theta}(a))$$

To prove the opposite inclusion consider $z \in U_{Q/\theta}(h_{\theta}(a))$. The mapping h_{θ} is a surjection, so there exists $x \in H$ such that $z = h_{\theta}(x)$. Therefore $h_{\theta}(x) \in U_{Q/\theta}(h_{\theta}(a))$, which implies $\langle h_{\theta}(a), h_{\theta}(x) \rangle \in Q/\theta$. From the definition of Q/θ there exist $b, y \in H$ such that $\langle b, y \rangle \in Q$, $h_{\theta}(b) = h_{\theta}(a)$, $h_{\theta}(x) = h_{\theta}(y) = z$. As θ is a congruence we get $U_{\theta}(a \star a) = U_{\theta}(b \star b)$, $U_{\theta}(x \star x) = U_{\theta}(y \star y)$ that is $h_{\theta}(U_Q(a)) = h_{\theta}(U_Q(b))$, $h_{\theta}(U_Q(x)) = h_{\theta}(U_Q(y))$. Further from $\langle b, y \rangle \in Q$ we have $U_Q(b) \supseteq U_Q(y)$. From this we obtain $z \in h_{\theta}(U_Q(y)) \subseteq h_{\theta}(U_Q(b)) = h_{\theta}(U_Q(a))$, which gives

$$U_{\Omega/\theta}(h_{\theta}(a)) \subseteq h_{\theta}(U(a)).$$

Assume now that (3) is true. We have to prove that θ is a congruence, i. e., $h_{\rho}(a \star c) = h_{\rho}(b \star d)$ for $\langle a, b \rangle \in \theta$, $\langle c, d \rangle \in \theta$. We have

$$\begin{split} h_{\theta}(a \star c) &= h_{\theta}(U_{Q}(a) \cup U_{Q}(c)) = h_{\theta}(U_{Q}(a)) \cup h_{\theta}(U_{Q}(c)) \\ &= U_{Q/\theta}(h_{\theta}(a)) \cup U_{Q/\theta}(h_{\theta}(c)) = U_{Q/\theta}(h_{\theta}(b)) \cup U_{Q/\theta}(h_{\theta}(d)) \\ &= h_{\theta}(U_{Q}(b)) \cup h_{\theta}(U_{Q}(d)) = h_{\theta}(U_{Q}(b) \cup U_{Q}(d)) = h_{\theta}(b \star d). \end{split}$$

Hence, we must solve the above mentioned problem (i) and classify the mappings having the property (ii). For this sake, let us introduce the following

Definition 4. Let $\mathcal{A} = (A, R)$ and $\mathcal{B} = (B, S)$ be quasiordered sets. A mapping $h: A \to B$ is called *cone preserving* if $h(U_R(a)) = U_S(h(a))$ for each $a \in A$.

Let us recall that for $\mathcal{A} = (A, R)$, $\mathcal{B} = (B, S)$ (where *R* or *S* is a binary relation on *A* or *B*, respectively) a mapping $h: A \to B$ is called a *homomorphism* if $\langle a, b \rangle \in R$ implies $\langle h(a), h(b) \rangle \in S$. It is called a *strong homomorphism* if, moreover, for every $\langle h(a), h(b) \rangle \in S$ there exist $c, d \in A$ such that $\langle c, d \rangle \in R$ and h(c) = h(a), h(d) = h(b).

The proof of the following lemma is almost evident (see, e. g., Lemma 2 in [3]):

Lemma 2. Let $\mathcal{A} = (A, R)$ and $\mathcal{B} = (B, S)$ be quasiordered sets. If $h: A \to B$ is a cone preserving mapping, then h is a strong homomorphism of \mathcal{A} into \mathcal{B} .

It is an easy exercise to verify that the converse assertion is not valid in general.

We are ready to solve our first question.

Lemma 3. Let $\mathcal{A} = (A, R)$ be a quasiordered set and θ an equivalence on A. If

$$\theta \circ R \subseteq R \circ \theta,$$

then $\mathcal{A}/\theta = (A/\theta, R/\theta)$ is a quasiordered set.

PROOF. It is clear from Definition 3 that if *R* is reflexive, then R/θ has this property. We have to show transitivity of R/θ . Suppose that $\langle [a]_{\theta}, [b]_{\theta} \rangle \in R/\theta$ and $\langle [b]_{\theta}, [c]_{\theta} \rangle \in R/\theta$. Then there exist $x \in [a]_{\theta}, y, y' \in [b]_{\theta}$ and $z \in [c]_{\theta}$ such that $\langle x, y \rangle \in R, \langle y', z \rangle \in R$. Moreover, $\langle y, y' \rangle \in \theta$ thus $\langle x, z \rangle \in R \circ \theta \circ R$. Due to the assumption, we have

$$\langle x, z \rangle \in R \circ \theta \circ R \subseteq R \circ R \circ \theta = R \circ \theta,$$

i. e., there exists $w \in A$ with $\langle x, w \rangle \in R$, $\langle w, z \rangle \in \theta$, thus $w \in [z]_{\theta} = [c]_{\theta}$. Altogether, $\langle [a]_{\theta}, [c]_{\theta} \rangle \in R/\theta$ proving transitivity of R/θ .

In the remaining part of our paper, we will solve the problem whether a mapping f of a quasiordered set $\mathcal{A} = (A, R)$ into a quasiordered set $\mathcal{B} = (B, S)$ is a cone preserving mapping.

Theorem 1. Let $\mathcal{A} = (A, R)$, $\mathcal{B} = (B, S)$ be quasiordered sets and $f : A \to B$ a surjective mapping. The following conditions are equivalent:

- (a) f is a cone preserving mapping,
- (b) f is a homomorphism of \mathcal{A} onto \mathcal{B} and the relation $\langle f(x), f(y) \rangle \in S$ implies that $\langle x, y \rangle \in R \circ \theta_f$.

PROOF. (a) \Rightarrow (b): By Lemma 2, f is a homomorphism of \mathcal{A} onto \mathcal{B} . Suppose $\langle f(x), f(y) \rangle \in S$. Then $f(y) \in U_S(f(x)) = f(U_R(x))$. Hence, there exists $z \in U_R(x)$ with f(z) = f(y), i. e., $\langle x, z \rangle \in R$ and $\langle z, y \rangle \in \theta_f$ giving $\langle x, y \rangle \in R \circ \theta_f$.

(b) \Rightarrow (a): Since *f* is a homomorphism of \mathcal{A} onto \mathcal{B} , we have $f(U_R(x)) \subseteq U_S(f(x))$ for each $x \in A$. Suppose $z \in U_S(f(x))$. Since *f* is surjective, it follows that z = f(w)and $\langle f(x), f(w) \rangle \in S$. By (b) we have $\langle x, w \rangle \in R \circ \theta_f$, i. e., there exists $c \in A$ with $\langle x, c \rangle \in R$ and $\langle c, w \rangle \in \theta_f$. Hence f(c) = f(w) = z proving that $U_S(f(x)) \subseteq f(U_R(x))$. Thus *f* is cone preserving.

As mentioned, an equivalence θ on a quasiordered set is a congruence of the induced quasiorder hypergroup if the quotient relation is a quasiorder again and the natural mapping h_{θ} is a cone preserving mapping. Hence, we can solve our second problem:

150

Theorem 2. Let θ be an equivalence on a quasiordered set $\mathcal{A} = (A, R)$. If

$$\theta \circ R \subseteq R \circ \theta \tag{4}$$

then $\mathcal{A}/\theta = (A/\theta, R/\theta)$ is a quasiordered set and the natural mapping h_{θ} is cone preserving.

PROOF. By Lemma 3, (4) implies that $\mathcal{A}/\theta = (A/\theta, R/\theta)$ is a quasiordered set. Suppose now that

$$\langle [x]_{\theta}, [y]_{\theta} \rangle \in R/\theta.$$

Then there exists $a, b \in A$, such that $a \in [x]_{\theta}$, $b \in [y]_{\theta}$ and $\langle a, b \rangle \in R$, i. e., $\langle x, a \rangle \in \theta$ and $\langle x, b \rangle \in \theta \circ R$. By (4), $\langle x, b \rangle \in R \circ \theta$, i. e., there exists $w \in A$ such that $\langle x, w \rangle \in R$ and $\langle w, b \rangle \in \theta$. Hence and $[w]_{\theta} = [b]_{\theta} = [y]_{\theta}$, i. e., $\langle w, y \rangle \in \theta$. Altogether, we obtain $\langle x, y \rangle \in R \circ \theta$. Clearly $\theta_{h_{\theta}} = \theta$. Applying Theorem 1, we conclude that the natural mapping h_{θ} : $a \mapsto [a]_{\theta}$ is cone preserving.

By Lemma 2, every cone preserving mapping is a strong homomorphism. Hence, we will characterize which strong homomorphisms are cone preserving mappings.

Lemma 4. Let $\mathcal{A} = (A, R)$, $\mathcal{B} = (B, S)$ be quasiordered sets and $f : A \to B$ be a surjective mapping. The following conditions are equivalent:

(a) f is a strong homomorphism of \mathcal{A} onto \mathcal{B} ;

(b) $\langle f(x), f(y) \rangle \in S$ if and only if $\langle x, y \rangle \in \theta_f \circ R \circ \theta_f$.

PROOF. (a) \Rightarrow (b): Suppose $\langle f(x), f(y) \rangle \in S$. Since f is a strong homomorphism, there exist $a, b \in A$ with $\langle a, b \rangle \in R$, f(a) = f(x), f(b) = f(y), thus $\langle x, y \rangle \in \theta_f \circ R \circ \theta_f$. Conversely, if $\langle x, y \rangle \in \theta_f \circ R \circ \theta_f$ then there exist $c, d \in A$ with $f(x) = f(c), \langle c, d \rangle \in R$, f(d) = f(y). Since f is a homomorphism, it follows that $\langle f(c), f(d) \rangle \in S$, i. e., $\langle f(x), f(y) \rangle \in S$ as well.

(b) \Rightarrow (a): Suppose $\langle a, b \rangle \in R$. Then also $\langle a, b \rangle \in \theta_f \circ R \circ \theta_f$ and, by virtue of (b), $\langle f(a), f(b) \rangle \in S$. Thus *f* is a homomorphism of \mathcal{A} onto \mathcal{B} .

Suppose now $\langle c, d \rangle \in S$. Since f is surjective, there are $x, y \in A$ with f(x) = c, f(y) = d, i. e., $\langle f(x), f(y) \rangle \in S$. By (b) we have $\langle x, y \rangle \in \theta_f \circ R \circ \theta_f$, i. e., there exist $a, b \in A$ such that f(x) = f(a), f(y) = f(b) and $\langle a, b \rangle \in R$, i. e., f is a strong homomorphism.

Theorem 3. Let $\mathcal{A} = (A, R)$, $\mathcal{B} = (B, S)$ be quasiordered sets and f be a surjective strong homomorphism of \mathcal{A} onto \mathcal{B} . The following assertions are equivalent:

(a) f is cone preserving,

(b)
$$\theta_f \circ R \subseteq R \circ \theta_f$$
.

PROOF. (a) \Rightarrow (b): Suppose $\langle x, y \rangle \in \theta_f \circ R$. Then there exists $z \in A$ with $\langle x, z \rangle \in \theta_f$, $\langle z, y \rangle \in R$. Hence f(x) = f(z) and $\langle f(z), f(y) \rangle \in S$; i. e., also $\langle f(x), f(y) \rangle \in S$. Thus

 $f(y) \in U_S(f(x)) = f(U_R(x))$. Hence, there is $a \in A$ with $\langle x, a \rangle \in R$ and f(a) = f(y) thus $\langle x, y \rangle \in R \circ \theta_f$ proving (b).

(b) \Rightarrow (a): Suppose $\langle f(x), f(y) \rangle \in S$. By Lemma 4 we have $\langle x, y \rangle \in \theta_f \circ R \circ \theta_f$. Applying (b) we conclude $\langle x, y \rangle \in \theta_f \circ R \circ \theta_f \subseteq R \circ \theta_f \circ \theta_f = R \circ \theta_f$. By Theorem 1, *f* is a cone preserving mapping.

Corollary 1. Let $\mathcal{A} = (A, R)$, $\mathcal{B} = (B, S)$ be quasiordered sets and f be a surjective strong homomorphism of \mathcal{A} onto \mathcal{B} . Suppose R is symmetric (i. e., an equivalence on A). Then f is cone preserving if and only if $\theta_f \circ R = R \circ \theta_f$.

PROOF. Due to Theorem 3, we need only to show the converse inclusion of that in (b). However, by symmetry of R and θ_f we have

$$R \circ \theta_f = R^{-1} \circ \theta_f^{-1} = (\theta_f \circ R)^{-1} \subseteq (R \circ \theta_f)^{-1} = \theta_f^{-1} \circ R^{-1} = \theta_f \circ R.$$

References

- [1] CORSINI, P.: Prolegomena of Hypergroup Theory, Aviani Editore, Tricesimo, 1993.
- [2] CORSINI, P. AND LEOREANU, V.: Applications of Hyperstructure Theory, Kluwer Academic Publishers, Dordrecht, 2003.
- [3] CHAJDA, I. AND HOŠKOVÁ, Š.: A factorization of quasiordered hypergroups, Comment. Math. Univ. Carolin., 45 (2004), No. 4, 573–581.
- [4] CHVALINA, J.: Functional Graphs, Quasi-Ordered Sets and Commutative Hypergroups, Masarykova Universita, Brno, 1995 (in Czech).
- [5] VOUGIOUKLIS, T.: *Hyperstructures and Their Representations*, Hadronic Press, Palm Harbor, Florida, 1994.

Authors' addresses

Ivan Chajda:

DEPARTMENT OF ALGEBRA AND GEOMETRY, FACULTY OF SCIENCE, PALACKÝ UNIVERSITY, TOMKOVA 40, 779 00 Olomouc, Czech Republic

E-mail address: chajda@inf.upol.cz

Šárka Hošková:

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DEFENCE, KOUNICOVA 65, 612 00 BRNO, CZECH REPUBLIC *E-mail address*: sarka.hoskova@seznam.cz

152