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[Received: December 7, 2004]

A. In this paper we study the effect of diffusion on the stability of the
equilibria in a reaction-diffusion ratio-dependent predator-prey model and we ex-
plore under which parameter values Turing instability can occur giving rise to non-
uniform stationary solutions. Moreover, their stability is studied.

Mathematics Subject Classification:35K57, 92D25

Keywords: Turing instability, pattern formation, ratio-dependent predator-prey, reaction-
diffusion system

1. I

In this paper we are going to study the following reaction diffusion ratio dependent
predator prey model

∂N
∂t
= D1∆N + aN

(

1−
N
K

)

−
cNP

mP+ N
, x ∈ Ω, t > 0,

∂P
∂t
= D2∆P+ P

(

−d +
f N

mP+ N

)

, x ∈ Ω, t > 0,
(1.1)

subject to the Neumann boundary conditions

∂N
∂η
=
∂P
∂η
= 0, x ∈ ∂Ω, t > 0,

and initial conditions

N(x, 0) = ϕ1(x) ≥ 0, P(x, 0) = ϕ2(x) ≥ 0, x ∈ Ω.

wherea, K, c, m, f , d are positive constants andN(x, t), P(x, t) represent the pop-
ulation density of prey and predator atx ∈ Ω and at timet respectively. The prey
grows with intrinsic growth ratea and carrying capacityK in the absence of preda-
tion. The predator consumes the prey with functional response of Michaelis-Menten
typecuy/(m+ u), u = x/y and contributes to its growth with ratef uy/(m+ u). The
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constantd is the death rate of predator, andDi > 0 are constants,i = 1, 2; while∆
denotes the Laplace operator inΩ ⊂ �n,Ω bounded and connected.

The motivation to consider the above described model comes from growing evi-
dence [1, 2, 4, 7] that in some situations, specially when predators have to search for
food and therefore have to share or compete for food, a more suitable general preda-
tor prey theory should be based on the so-called ratio-dependent theory, which can
be roughly stated as that theper capitapredator growth rate should be a function
of the ratio of prey to predator abundance. This is supportedby numerous field and
laboratory experiments and observations [2–4].

Hsu et al. in [11] perform a global analysis of the Michaelis-Menten-type ratio-
dependent predator-prey system without diffusion. Moreover, they discuss the main
differences between the classical predator-prey models and theratio dependent predator-
prey system. In particular they brought into discussion thewell-known “paradox of
enrichment” or equivalently “the biological control paradox.”

In this paper we will study the effect of diffusion on the stability of the equilibria in
a reaction-diffusion ratio-dependent predator-prey model and we explore under which
parameter values Turing instability can occur giving rise to non-uniform stationary
solutions. Their stability is studied. Moreover, we give a comprehensive description,
under which parameter values this pattern formation arises. In the concluding remark
we will discuss the differences between the dynamics of this model and the classical
one.

2. P

For simplicity, we undimensionalize the system (1.1) with the scalingt → at,
N→ N/K, P→ mP/K. Then system (1.1) takes the form

∂N
∂t
= d1∆N + N(1− N) −

sNP
P+ N

, x ∈ Ω, t > 0,

∂P
∂t
= d2∆P+ δP

(

−r +
N

P+ N

)

, x ∈ Ω, t > 0,
(2.1)

where

s=
c

ma
, δ =

f
a
, r =

d
f
, d1 =

D1

a
, d2 =

D2

a
.

We will show that the reaction-diffusion system (2.1) generates a dynamical sys-
tem and it is biologically well-posed on a suitable Banach space.

Let us setF = (F1, F2), U = (N,P) andD = diag [d1, d2], where

F1(N,P) = N(1− N) −
sNP

N + P
, F2(N,P) = δP

(

−r +
N

P+ N

)

.
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Henceforth, considering also an initial condition, system(2.1) can be rewritten as

∂U(x, t)
∂t

= D∆U(x, t) + F(U), x ∈ Ω, t > 0

∂U
∂η

(x, t) = 0, x ∈ ∂Ω, t > 0

U(x, 0) = ϕ(x), x ∈ Ω.

(2.2)

Let X be the Banach spaceX1 × X2, whereXi = C(Ω̄), i = 1, 2. The norm onX is
defined by|ϕ| = |ϕ1| + |ϕ2|. Let A0

N andA0
P be the differential operatorsA0

NN = d1∆N
andA0

PP = d2∆P, defined on the domainsD(A0
N) andD(A0

P), respectively:

D(A0
N) =

{

N ∈ C2(Ω) ∩C1(Ω̄) : A0
NN ∈ C(Ω̄),

∂N
∂η

(x) = 0, x ∈ ∂Ω

}

,

D(A0
P) =

{

P ∈ C2(Ω) ∩C1(Ω̄) : A0
PP ∈ C(Ω̄),

∂P
∂η

(x) = 0, x ∈ ∂Ω

}

.

The closuresAN of A0
N, and AP of A0

P in Xi generate analytic semigroups of
bounded linear operatorsTN(t) andTP(t) for t ≥ 0 such thatN(t) = TN(t)ϕ1 and
P(t) = TP(t)ϕ2 are solutions of the abstract linear differential equations inXi given
by

N′(t) = ANN(t), P′(t) = APP(t).

An additional property of the semigroup is that for eacht > 0, TN(t) and TP(t)
are compact operators. In the language of partial differential equationsN(x, t) =
[TN(t)ϕ1](x) andP(x, t) = [TP(t)ϕ2](x) are classical solutions of the initial boundary
value problem (2.2) withF1 = F2 = 0.

Let T (t) : X → X be defined byT (t) = TN(t) × TP(t). ThenT (t) is a semigroup
of operators onX generated by the operatorA = AN × AP defined onD(A) =
D(AN) × D(AP) andU(x, t) = [T (t)ϕ](x) is the solution of the linear system

∂U
∂t

(x, t) = D∆U(x, t), x ∈ Ω, t > 0

∂U
∂η

(x, t) = 0, x ∈ ∂Ω, t > 0, U(x, 0) = ϕ(x), x ∈ Ω.

Observe that the nonlinear termF is twice continuously differentiable inU. There-
fore, we can define the map [F∗(ϕ)](x) = F(ϕ(x)) which mapsX into itself and
equation (2.2) can be viewed as the abstract ordinary differential equation inX given
by

u′(t) = Au(t) + F∗(u(t)), u(0) = ϕ. (2.3)

While a solutionu(t) de (2.3) can be obtained under the restriction thatϕ ∈ D(A),
a mild solution can be obtained for everyϕ ∈ X by requiring only thatu(t) is a
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continuous solution of the following integral equation

u(t) = T (t)ϕ +
∫ t

0
T (t − s)F∗(u(s)) ds, t ∈ [0, β), (2.4)

whereβ = β(ϕ) ≤ ∞. Restricting our attention to functionsϕ in the set

XΛ =
{

ϕ ∈ X : ϕ(x) ∈ Λ, x ∈ Ω̄
}

,

whereΛ =
{

U = (N,P) ∈ R2 : N ≥ 0,P ≥ 0
}

, and taking into account the definition
of the functionsFi, we obtain thatF1(0,P) = 0 andF2(N, 0) = 0 for U ∈ Λ. Thus,
Corollary 3.2 from [16, p. 129] implies that the Nagumo condition for the positive
invariance ofΛ is satisfied, i. e.,

lim
h→0+

h−1 dist (Λ,U + hF(U)) = 0, U ∈ Λ. (2.5)

On the other hand, the direct application of the strong parabolic maximum principle
can be used to show that the linear semigroupT (t) leavesXΛ positively invariant,
i. e.,

T (t) XΛ ⊂ XΛ, t ≥ 0. (2.6)

Finally, conditions (2.5) and (2.6) together allow us to apply Theorem 3.1 from [16,
p. 127], which gives us

Lemma 1. For eachϕ ∈ XΛ, (2.1) has a unique mild solution u(t) = u(ϕ, t) ∈
XΛ and a classical solution U(x, t) = [u(t)](x). Moreover, the set XΛ is positively
invariant under the flowΨt(ϕ) = u(ϕ, t) induced by(2.1).

So, the model (2.1) is biologically well-posed and its relevant dynamic is concen-
trated inXΛ.

Finally, we are going to prove that all solutions of system (2.1) are bounded and
therefore defined for allt ≥ 0. Actually, from the following result by using the general
theory of infinite dynamical system it follows that the relevant dynamic of the system
(2.1) is concentrated in a compact set of the spaceXΛ.

Theorem 1. Let (N,P) be any solution of(2.1). Then

lim sup
t→∞

max
x∈Ω

N(x, t) ≤ 1, lim sup
t→∞

max
x∈Ω

P(x, t) ≤
1
r
.

P. From the first equation of the system (2.1), it follows that

∂N
∂t
≤ d1∆N + N(1− N),

as longN is defined as a function oft.
Let zbe the solution of the equation

z′(t) = z(t)(1− z(t)), z(0) = max
x∈Ω

N(x, 0).
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From the comparison principle, we obtainN(x, t) ≤ z(t). Now, taking into account
that for anyε > 0 there exists aTε > 0 such thatz(t) < 1+ ε for anyt ≥ Tε , which in
turn implies thatN(x, t) is defined for allt ≥ 0, and lim supt→∞maxx∈Ω N(x, t) ≤ 1.

Having in mind that for a givenε > 0 there exists aTε > 0 such thatN(x, t) ≤ 1+ ε
for anyx ∈ Ω andt ≥ Tε , and by using the second equation of (2.1), we get

∂P
∂t
− d2∆P ≤ δP

(

−r +
1+ ε

P

)

= −δrP + δ(1+ ε),

for anyx ∈ Ω andt ≥ Tε .
Let z be the solution of the following initial value problem

z′(t) = −δrz(t) + δ(1+ ε), z(Tε ) = max
x∈Ω

P(x,Tε ).

After a straightforward computation we get

z(t) ≤
1+ ε

r
+ z(Tε )e

−δr(t−Tε ) (∀t ≥ Tε ).

Finally, by using the comparison principle we know thatP(x, t) ≤ z(t) as long asP is
defined as a function oft. This, together with the previous inequality, implies that

lim sup
t→∞

max
x∈Ω

P(x, t) ≤
1
r
,

which completes the proof. �

3. A     

In this section we will study the system (2.1) without diffusion, i. e.,

N′(t) = F1(N,P), P′(t) = F2(N,P). (3.1)

In particular, we will focus our attention on the existence of equilibria and their local
stability. This information will be crucial in the next section where we study the
effect of the diffusion parameters on the stability of the steady states.

The equilibria of the system (3.1) are given by the solution of the following equa-
tions

N
(

1− N −
sP

P+ N

)

= 0, δP
(

−r +
N

P+ N

)

= 0.

The system (3.1) has in the first quadrant the equilibrium points (0, 0) and (1, 0) for
all values of the parameters. If 0< r < 1 and 0< s < 1/(1 − r), then (3.1) admits a
nontrivial equilibrium, which is given by

(N∗,P∗) =

(

s(r − 1)+ 1,
(1− r)[s(r − 1)+ 1]

r

)

.

We point out that forr = 1 we get that (N∗,P∗) = (1, 0).
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Hereafter, we will assume that (r, s) ∈ D, whereD is the region given by

D =

{

(r, s) : 0 < r < 1, 0 < s<
1

1− r

}

.

In the system (3.1), the origin is a non-analytical complicated equilibrium point.
The structure of a neighborhood of point (0, 0) in the first quadrant of the plane (x, y)
and the asymptotes of trajectories forx, y → 0 depend on parameter values and
change in an essential way with a change of parameter (see [6]).

A straightforward computation shows us that the equilibrium point (1, 0) is locally
asymptotically stable forr > 1, and unstable if 0< r < 1.

Linearizing the system (3.1) around the nontrivial equilibrium (N∗,P∗), we obtain
that the characteristic equation is given by

λ2 − traceAλ + detA = 0.

where

A =

(

s(1− r2) − 1 −sr2

δ(1− r)2 −δr(1− r)

)

.

Taking into account that Reλ < 0 if and only if traceA < 0 and detA > 0, we get
that (N∗,P∗) is locally asymptotically stable if and only ifr, s, δ ∈ Ds, whereDs is
the set determined by the following inequalities:

0 < r < 1, 0 < s<
1

1− r2
+

δr
1+ r

, s<
1

1− r
, δ > 0. (3.2)

Let us setf (r) = (1− r)−1 and

gδ(r) =
rδ

1+ r
+

1
1− r2

,

whereδ is a positive parameter. We present on Fig. 1a and Fig. 1b the regions of the
asymptotic stability of the nontrivial equilibrium.

4. T 

It is obvious that the equilibria of the system (3.1) are solutions of (2.1). We shall
focus our attention on the nontrivial equilibriumU∗ = (N∗,P∗) of the system (3.1).
More concretely, in this section we will analyze the stability of nontrivial steady-state
solutions of (2.1).

Definition 1 (see [14]). The equilibriumU∗ of (2.1) is said to be diffusionally
(Turing) unstable if it is an asymptotically stable equilibrium of (3.1) but it is unstable
with respect to (2.1).

The stability of a homogeneous stationary solutionU∗ of (3.1) will be studied via
the linearized stability analysis (see, e. g., [10, pp. 68–70]). SettingW = U −U∗ and
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f (r)

gδ(r)

r0 1

1

Rs

f (r)

gδ(r)

rr00 1

1

Rs

(a) (b)

F 1. (a): Rs, the region of the local asymptotic stability for
0 < δ ≤ 1; (b): Rs, the region of the local asymptotic stability for
δ > 1.

recalling thatA = F′(U∗), as given previously, the linearized system of the reaction-
diffusion equation (2.1) aroundU∗ is given by

∂W
∂t
= D∆W+ AW,

∂W
∂η

(x, t) = 0, x ∈ ∂Ω, t > 0. (4.1)

The trivial solution,W = 0, is asymptotically stable if and only if every solution
of (4.1) decays to zero ast → ∞.

Let φ j(x) denote thejth eigenfunction of the Laplacian operator−∆ on Ω with
no-flux boundary conditions. That is,

∆φ j + λ jφ j = 0, x ∈ Ω, n.∇φ j = 0, x ∈ ∂Ω,

for scalarsλ j satisfying
0 = λ0 < λ1 < λ2 < . . . .

The determination of the pairs (φ j , λ j) is a standard problem (see, e. g., [9, pp. 205–
208]). The differential operator−∆, with no-flux boundary conditions, is self-adjoint
in L2(Ω), i. e.,

∫

Ω

−∆ψ1 · ψ2dx=
∫

Ω

−∆ψ2 · ψ1dx,

and it is easy to see that

λ j =

∫

Ω
|∇φ j |

2dx
∫

Ω
φ2

j dx
> 0
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for all j ≥ 1. We can suppose without loss of generality that theφ j′s are normalized
so that‖φ j‖L2(Ω) = 1. Moreover, the set ofφ j forms an orthogonal basis forL2(Ω) and
any function may be expanded as a Fourier series or eigenfunction expansion

u(x) =
∞
∑

j=0

u jφ j(x).

Using these preliminaries, we can solve (4.1) by expanding our solutionW via

W(x, t) =
∞
∑

j=0

sj(t)φ j(x) (4.2)

where eachsj(t) ∈ �2. Substituting (4.2) into (4.1) and equating the coefficients at
everyφ j, we have

dsj

dt
= B j sj ,

whereB j is the matrix
B j = A− λ jD.

Now the trivial solutionW = 0 of (4.1) is asymptotically stable if and only if each
sj(t) decays to zero ast → ∞. This is equivalent to the condition that eachB j has
two eigenvalues with negative real parts for allj. The eigenvalues of the matrixB j

are given by

det
[

B j − %I
]

= %2 − traceB j% + detB j = 0.

Hereafter, we are going to assume that parametersr, s, δ ∈ Ds; i. e. r, s, δ belong to
the region where the nontrivial equilibriumU∗ of the system (3.1) is asymptotically
stable. Now we shall study the stability ofU∗ with respect to the system (2.1) in the
(d1, d2) plane.

Taking into account thatr, s, δ ∈ Ds, it follows that traceA < 0 and detA > 0.
Therefore, traceB j = traceA − λ j(d1 + d2) < 0, due toλ j ≥ 0, j = 0, 1, 2, . . . , and
d1, d2 > 0. Henceforth, for the Turing instability to occur, it should be satisfied that
detB j ≤ 0, for some j ≥ 1, where detB j = (A11− λ jd1)(A22− λ jd2) − A12A21.

For fixedλ let us denote the hyperbola in the (d1, d2) plane by

Hλ : (λd1 − A11)(λd2 − A22) − A12A21 = 0.

We know thatA22 = −δr(1− r) < 0 on the admissible region. Hence, the location
of the graph of the hyperbolaHλ on the (d1, d2)-plane is dictated by the sign ofA11 =

s(1− r2) − 1. A straightforward computation gives us that the graph of the function
h(r) = 1/(1− r2) lies strictly below the boundary of the region of asymptotic stability
for anyδ > 0, see Fig. 2a and Fig. 2b.

Let us suppose thatA11 < 0. In this case detB j > 0 for any j ≥ 0 andd1 > 0,
d2 > 0. We disregard this situation because we are looking for conditions of the
Turing instability, see Fig. 3a. Assuming thatA11 > 0, we obtain that there exist



PATTERN FORMATION IN A REACTION-DIFFUSION MODEL 209

gδ(r)

h(r)

r0 1

1

D1
s

gδ(r)

h(r)

f (r)

r0 1

1

D2
s

(a) (b)

F 2. (a): 0< δ ≤ 1; (b): δ > 1.

positive parametersd1 and d2 whereU∗ is diffusionally unstable. That region is
depicted on Fig. 3b.

From Fig. 3b, it follows that the set of (d1, d2) ∈ �2
+ satisfying that detB j ≤ 0 for

some j ∈ � consists of all points which are above the graph of the hyperbola Hλ j .
Clearly, for eachj ∈ � this set is nonempty and therefore we can always choose
(d1, d2) ∈ �2

+
in such a way thatU∗ is diffusionally unstable. Let us fixd2 > 0. Since

λ j → ∞ as j → ∞, then there exists ak ∈ � such thatd∗k =
detA
λkA11

< d2. Therefore,
the point (dA, d2) belongs to the hyperbolaHλk, where

dA =
A11λkd2 − detA
λk(λkd2 − A22)

.

Moreover, if 0 < d1 < dA, then (d1, d2) will lie above the graph ofHλk and the
homogeneous steady-state solutionU∗ = (N∗,P∗) will be diffusionally unstable. We
can also remark that ifd2→∞, we have

A11λkd2 − detA
λk(λkd2 − A22)

→
A11

λk
.

5. P 

In this section we shall show how the diffusion-driven instability phenomenon
gives rise to nonhomogeneous steady-state solutions of (2.1) that bifurcate from the
uniform stationary solution. For this purpose, we start by introducing a definition.
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d1

d2

Rs

A11
λ

detA
λA22

detA
λA11

A22
λ

d1

d2

Ru

Rs

C
A11
λ

A22
λ

detA
λA22

detA
λA11

(a) (b)

F 3. (a): Rs, the stability region forA11 < 0, r, s, δ ∈ Ds, and
λ > 0; (b): Rs, the stability region, andRu, the instability region for
A11 > 0, r, s, δ ∈ Ds, andλ > 0.

Consider the following reaction-diffusion system

∂U
∂t
= D∆U + F(U),

∂U
∂η

(x, t) = 0, x ∈ ∂Ω, t > 0 (5.1)

whereU ∈ �2, D is a 2× 2 nonnegative diagonal matrix andF : �2 → �2 is
a smooth function, where∂/∂η denotes the normal derivate. Assume thatU∗ is an
uniform stationary solution of (5.1), i. e.,F(U∗) = 0.

Definition 2. We say thatU∗ undergoes a Turing bifurcation atµ0 ∈ (0,∞) if the
solutionU∗ changes its stability atµ0 and in some neighborhood ofµ0 there exists a
one-parameter family of nonconstant stationary solution of systems (5.1).

Now we use Theorem 13.5 from [17] for to determine the nonhomogeneous sta-
tionary solutions of (5.1), in this case taked2 as bifurcation parameter.

Theorem 2. Letυ1k andυ2k be the eigenvectors of Bk corresponding to the eigen-
valuesλ1k andλ2k, respectively. Assume that

(1) r, s, δ ∈ Di
s, i = 1, 2,

(2) υ1k =
(

ξ1
ξ2

)

andυ2k is not parallel to
(

ξ1
0

)

,

(3) 0< d1 < D∗, where D∗ = A11λk
−1.
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Then there exists a k∈ � such that at

d∗2 =
A22λkd1 − detA
λk(λkd1 − A11)

the uniform steady-state solution U∗ of (5.1)undergoes the Turing bifurcation.

P. Hereafter, the role of the spaceX will be played by

X =

{

W ∈ C(Ω,�2) ×C(Ω,�2) :
∂W
∂η

(x, t) = 0, t > 0 x ∈ ∂Ω

}

with the supremum norm involving the first and second derivatives, andY = C(Ω,�2)
with the usual supremum norm. However, when choosing the subspaceZ, we shall
use the orthogonality induced by the scalar product

〈V,W〉 =
∫

Ω

(V1(x)W1(x) + V2(x)W2(x))dx,

whereV = (V1,V2) y W = (W1,W2).
SettingW = U − U∗, whereU∗ is a nontrivial homogeneous steady-state solution

of (5.1), we get

Wt = D∆W+ AW+G(W),
∂W
∂η

(x, t) = 0, t > 0, x ∈ ∂Ω, (5.2)

whereA is the Jacobian matrix ofF in U∗ andG(W) = F(U∗ +W) − AW.
For any nonhomogeneous stationary solutionU of (5.1),W = U −U∗ satisfies the

elliptic equation

D∆W+ AW+G(W) = 0,
∂W
∂η

(x, t) = 0, t > 0 x ∈ ∂Ω. (5.3)

Taking into account this observation, define the functionf : � × X → Y and linear
operatorL0 considered in Theorem 13.5 of [17] as follows:f (d2,W) = D∆W+AW+
G(W) and

L0 = D2 f (d∗2, 0) =
∂ f (d∗2, 0)

∂W
,

whered2 is the diffusion coefficient of the susceptible class. The spectrum of the
linear operatorL0 is given by the eigenvaluesλi j of the matrices

B j = A− λ jD

evaluated atd2 = d∗2, wherei = 1, 2, and j = 0, 1, 2, . . . . Since 0< d1 < D∗, there
exists a uniquek ∈ � such that (d1, d∗2) belongs to the hyperbolaHλk.
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d1

d2

D∗

d1

d∗2

Hλ1

Hλk

Hλk+1

F 4. Turing Bifurcation. Whend1 < D∗, the uniform steady-
state solutionU∗ of (5.1) undergoes a Turing bifurcation atd2 = d∗2

In other words, detB j > 0 for j , k and detB j = 0 just for j = k. Therefore, for
i = 1, 2 and j = 0, 1, 2, . . . , k−1, k+1, . . . all eigenvaluesλi j have negative real parts.
For j = k, one eigenvalue, sayλ1k, is zero and the other one is negative, i. e.,λ2k < 0.

Sinceυ1k is the eigenvector ofBk corresponding to the zero eigenvalueλ1k, the
eigenfunction of the linear operatorL0 corresponding toλ1k = 0 is given byψk =

υ1kΦk(x) which is a non-uniform stationary solution of the linearized system (4.1),
i. e.,

D∆ψk(x) + Aψk(x) = 0,
∂ψk

∂η
(x) = 0, x ∈ ∂Ω.

Therefore, the null subspaceN(L0) of the operatorD2 f (d∗2, 0) is one-dimensional,
spanned byψk. Because of the orthogonality of the system,Φn(x), n = 0, 1, 2, . . .
obtained by solving the eigenvalue problem

∆Φn(x) + λnΦn(x) = 0, x ∈ Ω,

n.∇Φn(x) = 0, x ∈ ∂Ω.

The rangeR(L0) of this operator is given by the relation

R(L0) =
{

U ∈ [C(Ω,�)]2 : the Fourier expansion ofU

does not contain the termΦn(x)
}

∪ {υ2kΦn(x)},
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and has codimension one. So conditions (i) and (ii) of Theorem 13.5 from [17] are
satisfied. It still remains to verify condition (iii). Let

L1 = D1D2 f (d∗2, 0) =
∂

∂d

(

∂ f
∂W

)

(d∗2, 0).

ThenL1 =
(

∆ 0
0 0

)

and

L1ψk =

(

∆ 0
0 0

)

υ1kΦn(x) = −λn

(

ξ1

0

)

Φn(x),

with ξ1 , 0, and
(

ξ1
0

)

not being parallel toυ2k. Then,L1ψ1k < R(L0) and condition
(iii) of Theorem 13.5 from [17] is satisfied. So, by choosingZ = R(L0) we conclude
that there exists aγ > 0 and aC1 curve (d, φ) : (−γ, γ) → � × Z with d(0) = d∗2 and
φ(0) = 0 such that

W(x, s) = sυ1kΦn(x) + sφ(x, s)

is a solution of the elliptic equation (5.3) withd2 = d(s), s ∈ (−γ, γ). Finally, taking
into account thatW = U − U∗, we obtain

U(x, s) = U∗ + sυ1kΦn(x) +O(s2)

are non-uniform stationary solutions of (5.1) withd2 = d(s), ands ∈ (−γ, γ).
Therefore, atd2 = d∗2, the uniform steady-state solutionU∗ undergoes a Turing

bifurcation.
�

6. S   

In this section we will study the stability of the one parameter family of non-
uniform stationary solutionU(x, s) of the system (2.1) that arise from the bifurcation
of the homogeneous steady stateU∗.

We showed thatλ1k is a L1-simple eigenvalue ofL0, whereL1 = D1D2 f (d∗2, 0)
andL0 = D2 f (d∗2, 0). On the other hand, for|ε| and |s| small enough, the operators
D2 f (d∗2 + ε, 0) andD2 f (d(s), sψk + sφ(x, s)) are close toL0. Applying Lemma 13.7
of [17], we obtain that there exist functions

d 7−→ (%(d), ψc(d)), s 7−→ (η(s), ψb(s))

defined on neighborhoods ofd∗2 and 0, respectively, such that

D2 f (d, 0)ψc(d) = %(d)ψc(d),

D2 f (d(s), sψk + sφ(x, s))ψb(s) = η(s)ψb(s),

and

(%(d∗2), ψc(d
∗
2)) = (0, ψk) = (η(0), ψb(0)).
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Note that the functions

η(s) = η(D2 f (d(s), sψk + sφ(x, s))),

ψb(s) = ψb(D2 f (d(s), sψk + sφ(x, s))),

%(d) = η(D2 f (d, 0)), ψc(d) = ψb(D2 f (d, 0))

given by Lemma 13.7 of [17] are smooth functions.
The following result is the Crandall-Rabinowitz Theorem 1.16 from [8, p. 165].

Theorem 3. Let the assumptions of Theorem 13.5 of[17] hold, and let the func-
tions%(d) andη(s) be defined as above. Then%′(d∗2) , 0, and ifη(s) , 0 for s close
to 0, then

lim
s→0

sd′(s)%′(d∗2)

η(s)
= −1. (6.1)

First we determine%′(d∗2). It is known that%(d2) satisfies the equation

%2(d2) − traceBk%(d2) + detBk = 0.

Differentiating implicitly the former equation with respect tod2, we have

%′(d2) =
λkA11− λ

2
kd1 − λk%(d2)

2%(d2) − traceBk
.

Evaluating atd∗2, we obtain

%′(d∗2) =
λ2

kd1 − λkA11

traceA− λk(d1 + d∗2)
=

λk(λkd1 − A11)
traceA− λ(d1 + d∗2)

.

SinceA11 > 0 and 0< d1 < A11λk
−1, we see thatλkd1−A11 < 0 and traceA−λk(d1+

d∗2) < 0. Therefore,
%′(d∗2) > 0.

Proposition. Let (d(s),U(x, s)) be the one parameter family of bifurcating solu-
tions given by the formula

U(x, s) =W∗ + sυ1kΦn(x) +O(s2).

Assume that the conditions of Theorem 2 are satisfied, d′(0) , 0, and that the eigen-
valuesη(s) of the nonhomogeneous steady state bifurcating from the critical value
λ1k = 0 are non-zero for small|s| , 0 . Then if d(s) < d∗2 the corresponding solution
U(x, s) is stable and if d(s) > d∗2, the corresponding solution U(x, s) is unstable.

P. We know that%′(d∗2) > 0. Let us determine the sign ofη(s). Sinced′(0) ,
0, we may assume thatd′(0) > 0. Then by continuity we have thatd′(s) > 0 for |s|
small enough. Therefore, using (6.1), it follows thatη(s) < 0 for s> 0 small enough,
which in turn implies that the bifurcating solution is asymptotically stable. For small
s < 0, η(s) > 0. Hence, the bifurcating nonhomogeneous stationary solution is
unstable.
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The cased(s) < 0 can be analyzed similarly . This completes the proof of our
claim. �

7. D

In this paper, we discussed the main mathematical features exhibited by the reaction-
diffusion system (1.1). More concretely, we showed that whenA11 = s(1− r2) − 1 is
positive, a nontrivial geotemporal dynamics of the reaction-diffusion ratio-dependent
predator-prey model (1.1) can be obtained. In the case wherethe 0< d1 < A11/λ j ,
we showed that for a wide range of parameter values and diffusion coefficientsd1 and
d2, see Fig. 3b, the nonlinear system (1.1) can exhibit stable spatially heterogeneous
solutions which arise from Turing bifurcations. It is worthpointing out that a Turing
bifurcation can not occur for a large diffusive coefficient of the prey, nevertheless the
diffusive coefficient of the predator can be large enough.

The existence of this pattern formation for system (1.1) shows that the reaction-
diffusion ratio-dependent predator-prey model exhibits features which were not pos-
sible for the classical model. More specifically, one can show that for a classical
Lotka–Volterra prey-predator system with diffusion on a finite domain and zero flux,
boundary condition cannot give rise to temporally or spatially inhomogeneous solu-
tions asymptotically ast → ∞.

In conclusion, we note that the mathematical analysis of model (1.1) shows how a
reaction-diffusion ratio-dependent predator-prey model can stably regulate its growth
around either spatially homogeneous or heterogeneous solutions through a Turing
instability mechanism.

A

We are deeply indebted to Professor Miklós Farkas for his detailed criticism that
helped us to improve this paper.
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V
E-mail address: jjmarinv@hotmail.com


