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A. As a generalization of algebras with involution [1], we consider algebras
(A; F ∪ {ϕ}) with an additional unary operationϕ of finite degreek. A subdirectly
irreducible algebra (A; F ∪ {ϕ}) is a subdirect product of subdirectly irreducible
algebras (A/ϕ(Θ);F ), . . . , (A/ϕd(Θ);F ) whereΘ is a certain congruence,d is a
divisor of k andϕd is the identical mapping. For a congruence modular algebra
(A; F ) also the unique smallest congruence of (A; F ∪ {ϕ}) described. Examples
areS-acts with an additional unary operation. In this case more information is given
on the subdirectly irreducible components.
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1. P

The purpose of this note is to generalize the notion of involution of universal al-
gebras and to study the structure of subdirectly irreducible universal algebras with
generalized involution, that is, with an additional unary operation of finite degree.

Let �ϕ be a variety of universal algebras (A; F ∪ {ϕ}) with finitary operations
f ∈ F and a unary operationϕ : a→ ϕ(a) subject to the identities

(i) Eλ = Eλ( fλ1, . . . , fλnλ) | fλ1, . . . , fλnλ ∈ F ), λ ∈ Λ,
involving only operations fromF ,

(ii) Eϕ : ϕk(a) = a,
wherek ≥ 2 is a fixed integer, thedegree ofϕ,

(iii) E f : ϕ
(
f (a1, . . . ,an)

)
= f

(
ϕ
(
aπ f (1), . . . , ϕ(aπ f (n))

))
for all f ∈ F ,

whereπ f is a permutation ofn elements (n the arity of the operationf ) assigned to
each operationf ∈ F .

Each permutationπ f can be written into a product of disjoint cyclic permutations
c(π f )1, . . . , c(π f )r admitting also cyclic permutations of length 1.

These identities may induce some further ones. The identityf = ϕk( f ) is a conse-
quence of (ii), andthis is not trivial if and only if the degreek of ϕ is not a multiple
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of the lengthsc(π f )1, . . . , c(π f )r . The identity f = ϕk( f ) may be viewed as agener-
alized commutativity; in the case of a binary operationf (x1, x2), cyclic permutation
c(π f ) = (12) = π f and odd degreek = 2` + 1 we have

f (x1, x2) = ϕk( f (x1, x2)) = ϕ2`+1( f (x1, x2)) = ϕ( f (x1, x2)) = f (x2, x1),

that is, the commutativity of the operationf .
Moreover, if f :→ a andg : a→ g(a) are 0-ary and unary operations, then by (iii)

it follows that
ϕ( f ) :→ a and ϕ(g(a)) = g(ϕ(a)).

In particular, for the zero element 0 and the unity element 1 (if they exist) we have

ϕ(0) = 0 and ϕ(1) = 1,

and also
ϕ(−a) = −ϕ(a)

for the additive inverse of an elementa.
We are going to scrutinize the interrelations between the variety�ϕ and the variety

� of algebras (A;F ) subject to the identities (i).
Let us observe that for any algebra (A; F ∪ {ϕ}) and congruenceΘ ∈ Con(A; F )

of the algebra (A; F ) ∈ � also

ϕ(Θ) =
{
(ϕ(a), ϕ(b)) | (a,b) ∈ Θ

}

is a congruence of (A;F ), as seen readily from (iii).

Proposition 1. (a) Let (A; F ∪ {ϕ}) ∈ �ϕ andΘ ∈ Con(A;F ). ThenΘ = ϕ(Θ) if
and only ifΘ ∈ Con(A; F ∪ {ϕ}).

(b) The latticeCon(A; F ∪ {ϕ}) is a sublattice of the latticeCon(A;F ).
(c) If Θ ∈ Con(A; F ), thenϕ(Θ) ∨ · · · ∨ ϕk(Θ) andϕ(Θ) ∧ · · · ∧ ϕk(Θ) belong to

Con(A; F ∪ {ϕ}).
P. The statements correspond to those of [1, Proposition 3.1] and their proofs

are straightforward. �

As a motivation for the subsequent investigations we give an example.
Example.Let G be an abelian group, and consider the direct sumA = G ⊕G. On

A we define a unary operationϕ by

ϕ(a,b) = (b,a + b) (∀a,b ∈ G).

Since
ϕ((a,b) + (c, d)) = (b + d,a + b + c + d) = ϕ(a,b) + ϕ(c,d),

the operation fulfils the requirement of condition (iii). One readily sees that ifA is an
elementary 2-group, then

ϕ3(a,b) = (a + 2b,2a + 3b) = (a,b),
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so the degree ofϕ is 3. Clearly, (0,G) defines a congruence of (A; +),

ϕ(0,G) = {(a, a) | a ∈ G}
gives the diagonal congruence ofA andϕ2(0,G) is the congruence determined by
(G,0). If |G| = 2, then all the three factors of (A; +) by these congruences are sub-
directly irreducible, and (A; +) is a subdirect product of these factors. Nevertheless,
(A; {+, ϕ}) itself is subdirectly irreducible.

For elementary 3−, 5−,7−,11− groups, the degree ofϕ is 8, 20, 16, 10, respec-
tively. If G is a cyclic group of 4 elements or a direct sum of such groups, then the
degree ofϕ is 12.

2. S 

As seen in [1], a subdirectly irreducible algebra (A; F ∪{ϕ}) with involutionϕ (that
is the degree ofϕ is k = 2) is either subdirectly irreducible as an algebra (A; F ) ∈ �
or a certain subdirect product of two subdirectly irreducible algebras of�. We shall
generalize this result, and describe the subdirectly irreducible algebra (A; F ∪ {ϕ}) ∈
�ϕ as a subdirect product of subdirectly irreducible algebras of� and see that the
numberd of the subdirect components is a divisor of the degreek of ϕ.

The smallest congruence of an actA will be denoted byωA or briefly byω. We
shall call the unique atom of the lattice of congruences of a subdirectly irreducible
algebra theheartof that algebra. This terminology corresponds to that of ring theory:
the unique atom in the lattice of ideals of a subdirectly irreducible ring used to be
called the heart of that ring.

Theorem 2. If (A; F ∪{ϕ}) is a subdirectly irreducible algebra with heartχϕ, then
there exists a congruenceΘ ∈ Con(A; F ) such thatχϕ � Θ and(A; F ) is isomorphic
to a subdirect product of subdirectly irreducible algebras

(A/ϕ(Θ);F ), (A/ϕ2(Θ);F ), . . . , (A/ϕd(Θ);F ), (1)

whered is the least positive integer such thatϕd(Θ) = Θ. The heart of(A/ϕi(Θ);F )
is χi = (χϕ ∨ ϕi(Θ))/ϕi(Θ) for eachi = 1, . . . ,d. The isomorphism between(A; F )

and the subdirect product
⊗d

i=1(A/ϕi(Θ);F ) is given by the correspondence

a 7−→ ([a]ϕ(Θ), . . . , [a]ϕd(Θ)) (∀a ∈ A),

where[a]ϕi (Θ) stands for theϕi(Θ)-coset represented bya ∈ A.

P. If (A; F ) is subdirectly irreducible, thend = 1 andΘ = ω = ϕ(ω) = ϕ(Θ)
does the job.

Suppose, next, that (A;F ) is not subdirectly irreducible. Sinceχϕ ∈ Con(A; F ),
there exists a congruenceΘ ∈ Con(A; F ) such thatω , Θ , ϕ(Θ), χϕ * Θ and
by an appropriate choice ofΘ it can be achieved (Zorn’s Lemma) that (A/Θ;F )
is subdirectly irreducible and in this case the heart of (A/Θ;F ) is obviouslyχ1 =

(χϕ ∨ Θ)/Θ. Let d be the smallest integer such thatϕd(Θ) = Θ. Such an integerd
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does exist, andd must dividek, the degree ofϕ. Moreover, by (ii) also (A/ϕi(Θ);F )
is subdirectly irreducible with heartχi for every i = 1, . . . ,d. Sinceχϕ * Θ and
ϕ(Θ) ∧ ϕ2(Θ) ∧ · · · ∧ ϕd(Θ) is in Con(A; F ∪ {ϕ}), we conclude that

ϕ(Θ) ∧ ϕ2(Θ) ∧ · · · ∧ ϕd(Θ) = ω.

Thus, (A; F ) has the desired subdirect product representation.
The last assertion is obvious. �

In the next two theorems we shall use the assumption that the congruence lattice
of the algebra (A; F ) is modular. This is always so for groups, rings, and in many
other cases, but in general the congruence lattice of an algebra, in particular of an
S-act, need not be modular.

Remark.In [1, Theorem 3.2]it has to be assumed that the congruence lattice of
(A; F ) is modular(this was used on line 8 of its proof). This inaccuracy, however,
does not affect the further results of [1].

Theorem 3. Let (A; F ∪ {ϕ}) be an algebra as in Theorem 2. If(A; F ) is con-
gruence modular andχϕ ∧ Θ = ω, thenχϕ is an atom in Con(A; F ) and there is
a one-to-one correspondence between theχϕ-cosets of(A; F ) and theχi-cosets of
(A/ϕi(Θ);F ) given by the correspondence

[a]χϕ 7−→ [[a]ϕi (Θ)]χi ,

which can be expressed also in terms of relations as

aχϕb 7−→ [a]ϕi (Θ)χi [b]ϕi (Θ).

P. If d = 1, then there is nothing to prove.

Suppose thatd > 1, and letκ ∈ Con(A; F ) be a congruence such thatκ < χϕ.
Then eitherκ ≤ Θ andκ ≤ χϕ ∧ Θ = ω, or Θ < κ ∨ Θ. In the latter case, taking into
account that (χϕ ∨ Θ)/Θ is the heart of (A/Θ;F ), we haveχϕ ∨ Θ ≤ κ ∨ Θ whence
κ∨Θ = χϕ∨Θ. Now, the sublattice{ω, κ, χϕ,Θ, χϕ∨Θ} is not modular unlessκ = ω.
This proves thatχϕ is an atom in Con(A; F ).

In view of the relationχϕ ∧Θ = ω, a moment’s reflection shows the validity of the
further statements. �

Theorem 4. Let (A; F ∪ {ϕ}) be an algebra as in Theorem 2. If(A; F ) is congru-
ence modular andχϕ ∧ Θ , ω, then

(1)
∧d

i, j=1
(
χϕ ∧ ϕ j(Θ)

)
is an atom inCon(A; F ),

(2)
∨d

i=1
(∧d

i, j=1(χϕ ∧ ϕ j(Θ))
)

= χϕ,

(3)
∧d

i, j=1

(
χϕ ∧ ϕ j(Θ)

)
∧∨d

i, j=1
(∧d

j,k=1(χϕ ∧ ϕk(Θ))
)

= ω.

P. (1) It suffices to prove the statement fori = d. SinceA/Θ is subdirectly
irreducible with heart (χϕ ∨ Θ)/Θ, the congruenceχϕ ∧ Θ coversΘ in Con(A; F ).
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Let us consider a congruenceκ ∈ Con(A; F ) such thatχϕ ∧Θ < κ ≤ χϕ. Thenκ � Θ

and by the subdirectly irreducibility ofA/Θ we have

χϕ ∨ Θ ≤ κ ∨ Θ ≤ χϕ ∨ Θ,

that is,κ ∨ Θ = χϕ ∨ Θ. Thus byκ ≤ χϕ the modularity of Con(A;ϕ) yields

χϕ = (χϕ ∨ Θ) ∧ χϕ = (κ ∨ Θ) ∧ χϕ = κ ∨ (Θ ∧ χϕ) = κ,

showing thatχϕ coversχϕ ∧ Θ.
Next, we consider a congruenceτ ∈ Con(A; F ) such that

ω , τ ≤
d−1∧

i=1

(χϕ ∧ ϕi(Θ)).

Sinceχϕ coversχϕ ∧Θ, by τ , ω =
∧d

i=1(χϕ ∧ ϕi(Θ)) we haveτ ∨ (χϕ ∧Θ) = χϕ. If
τ ,

∧d
i, j=1(χϕ ∧ ϕ j(Θ)) then

{
ω, τ,

∧d
i, j=1(χϕ ∧ ϕ j(Θ)), χϕ ∧ Θ, χϕ

}
is a non-modular

sublattice in Con(A; F ). This contradiction proves the assertion in (1).
(2) Sinceχϕ ∧ Θ , ω andϕ(

∨d
i=1(χϕ ∧ ϕi(Θ))) =

∨d
i=1(χϕ ∧ ϕi(Θ)), the assertion

holds.
(3) Assume that the expression in (3) is not equalω. Then, by (1), it equals∧d

i, j=1

(
χϕ ∧ ϕ j(Θ)

)
, Hence by ii) we have

d∧

i, j=1

(χϕ ∧ ϕ j(Θ)) ≤
d∨

i, j=1


d∧

j,k=1

(χϕ ∧ ϕk(Θ))

 = χϕ.

This, however, contradictsϕ(χϕ) = χϕ. �

Restricting the considerations to an algebra (A; F ) the congruences of which are
determined by certain subalgebras (ideals, normal subgroups, etc.), then (A; F ) is
congruence modular. We shall use the language and notions of ring theory, and denote
the unique minimal ideal (i. e., theheart) of (A; F ∪ {ϕ}) by Hϕ, and writeI for the
ideal determined by the congrunceΘ. Then Theorems 3 and 4 have the following
meaning.

Corollary 5. If Hϕ∧ I = 0, thenHϕ is an atom in the lattice of ideals of(A; F ) and
Hϕ is isomorphic to the heart(Hϕ + ϕi(I ))/ϕi(I ) of (A/ϕi(I );F ) for eachi = 1, . . .d.

If Hϕ ∧ I , 0, then
⋂d

i, j=1(Hϕ ∩ ϕi(I )) is an atom in the lattice of ideals of(A; F )
for eachi = 1, . . . ,d, andHϕ is isomorphic to the direct sum of these ideals.

3. S-

An S-act A over a semigroupS is a setA with scalar multiplicationsa (s ∈ S,
a ∈ A) subject to the rules(ta) = (st)a. A one-element subact is called asink. We
call anS-actA simple, if it has only two congruences: the all congruenceιA and the



222 N. V. LOI AND R. WIEGANDT

equality congruenceωA. Recall that anS-act isstrongly connectedif A = S a for
every elementa ∈ A. For details the reader may consult [2].

An S-actA is, in fact, an algebra (A; S) where each elements of the semigroupS
is a unary operations : a 7→ sa, a ∈ A, subject to the identity

(st)a = s(ta) (∀s, t ∈ S, ∀a ∈ A).

Having one more operationϕ on A subject to conditions (ii) and (iii) of Sec. 1, the
(S, ϕ)-act (A; S ∪ {ϕ}) satisfies the identity

ϕ(sa) = s(ϕ(a) (∀s ∈ S, ∀a ∈ A),

in other words,ϕ is an automorphism of theS-actA of orderk.
Let (A : S ∪ {ϕ}) be a subdirectly irreducible (S, ϕ)-act with heartχϕ, and|A| > 1

Beside the decomposition Theorems 2, 3 and 4 we can say more on the structure of
the (S, ϕ)-actA in terms of theS-actA.

First, we make some obserations.
Let us consider the intersectionB = ∩(Cλ | λ ∈ Λ) of all (S, ϕ)-subactsCλ of

A with |C| > 1. If the corresponding Rees congruence%B to B is ω, thenA is not
subdirectly irreducible, a contradiction. Henceχϕ ≤ %B, and soχ% is a partition of
B and each elementa ∈ A \ B forms aχϕ-coset.The setT of all (S, ϕ)-sinks ofA is
an (S, ϕ)-subact, and so either|T | ≤ 1 or B ⊆ T. SinceA is a subdirectly irreducible
(S, ϕ)-act, the setT cannot have more than 2 elements. By the minimality ofB in the
latter case only|B| = |T | = 2 is possible.

Thus,there exists a unique smallest(S, ϕ)-subactB of A with |B| > 1, and one of
the following cases may occur.

Case 1.χϕ = ιA.
χϕ , ιA and
Case 2.There is no (S, ϕ)-sink in B.
Case 3.There is exactly one (S, ϕ)-sink in B.
Case 4.B consists of two (S, ϕ)-sinks.
Next, we discuss these cases.
Case 1.The subdirectly irreducible (S, ϕ)-act A is simple. ¿From Theorem 2 we

infer thatΘ = ω. Sinceϕ(ω) = ω, it follows that d = 1 and that theS-act A is
subdirectly irrecducible by Theorem 3. Thus,A is a simpleS-act which may possess
oneS-sink.

Case 2.LetC be a non-emptyS-subact ofB. SinceBdoes not contain (S, ϕ)-sinks,
necessarily

C ∪ ϕ(C) ∪ · · · ∪ ϕd−1(C) = B

and
C ∩ ϕ(C) ∩ · · · ∩ ϕd−1(C) = ∅.

Let j1 be the least integer such thatC ∩ ϕ j1(C) , ∅. If such an integerj1 does not
exist, thenC is disjoint to eachϕi(C) for every i = 1, . . . ,d − 1, and so isϕi(C) to
eachϕ j(C) where i , j ∈ {1, . . . ,d}. Further, let j2 be the next integer such that
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C ∩ ϕ j1(C) ∩ ϕ j2(C) , ∅, and so on. In this way we get integers 0< j1 < j2 < · · · <
d − 1 such that

D = C ∩ ϕ j1(C) ∩ · · · ∩ ϕ jr (C) , ∅,

and the numberr is maximal. One readily sees that

D ∩ ϕi(D) , ∅ if i = j1 and j2 = 2 j1 , . . . , jr = r j1, d = (r + 1) j1.

By the same token we see thatD ∩ ϕi(D) , ∅ if and only if i = js for some divisors
of d. Now D ∩ ϕi(D) = ∅ for everyi < { js,2 j2, . . . ,d}. HenceD, ϕ(D), . . . , ϕ j1−1(D)
are disjointS-subacts. Since

D = ϕ j1(D) = ϕ j2(D) = · · · = ϕ jr (D),

we conclude thatB is the disjoint union, that is,the coproduct

B = D
∐
ϕ(D)

∐
. . .

∐
ϕ j1−1(D).

By the minimality ofB the disjoint componentsD, ϕ(D), . . . , ϕ j1−1(D) are strongly
connectedS-acts. Observe thatϕ js(a) ∈ D for everya ∈ D, butϕi need not be the
identical mapping. Thus, in Case 2,the(S, ϕ)-subactB is a coproduct ofj1 S-subacts
D, ϕ(D), · · · ∪ ϕ j1−1(D), and each component is a strongly connectedS-subact.

Case 3.We can proceed as in Case 2, but now all the intersections contain the sink
{0} and so for anyS-subactC of at least two elements and for

D = C ∩ ϕ j1(C) ∩ · · · ∩ ϕ jr (C)

the(S, ϕ)-subactB is the0-disjoint union of theS-subactsD, ϕ(D), . . . , ϕ j1−1(D) and
D = S afor every elementa ∈ D \ {0}.

Case 4.Now χϕ is the Rees congruence determined byB.

A
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