

Miskolc Mathematical Notes Vol. 8 (2007), No 2, pp. 135-146

HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2007.116

On directional derivative sets of the max-min set-valued maps

Erdal Ekici

Miskolc Mathematical Notes Vol. 8 (2007), No. 2, pp. 135-146

ON DIRECTIONAL DERIVATIVE SETS OF MAX-MIN SET-VALUED MAPS

ERDAL EKICI

Received 2 February, 2005

Abstract. In this paper, necessary statements are given for a minimum point and a maximum point of the max-min function. Moreover estimations for the directional lower and upper derivative sets of the max-min set-valued map which are used to state a characterization of the directional derivative of the max-min functions are given. Furthermore, a sufficient condition ensuring the existence of the directional derivative of the max-min function is obtained by using the lower differentiability of the max-min set-valued maps.

1991 Mathematics Subject Classification: 26E25

Keywords: set-valued map, derivative set, max-min function

1. INTRODUCTION

The directional derivatives of max-min functions were studied in [7]. It is wellknown that max-min functions are considered and occur in control theory problems, parametric optimization problems and differential game theory problems [4]. Moreover marginal functions are max-min functions (see [3–6, 10–14]).

In this paper, necessary statements are given for a minimum point and a maximum point of the max-min function. It is well-known that the directional lower and upper derivative sets of max-min set valued maps are used to state a characterization of the directional derivative of max-min function [7]. In this paper, estimations for the directional lower and upper derivative sets of max-min set valued maps are given. Furthermore, a sufficient condition ensuring the existence of the directional derivative of max-min function is obtained by using the lower differentiability of max-min setvalued maps.

In this study, $cl(\mathbb{R}^m)$ (comp (\mathbb{R}^m)) denotes the set of all nonempty closed (compact) subsets in \mathbb{R}^m . Let $a(\cdot) : \mathbb{R}^n \to cl(\mathbb{R}^m)$ be an upper semi-continuous set-valued map. For $(x, y) \in \mathbb{R}^n \times \mathbb{R}^m$ and vector $f \in \mathbb{R}^n$, let us consider the following sets:

$$Da(x, y) \mid (f) = \left\{ d \in \mathbb{R}^m : \liminf_{\delta \to +0} \delta^{-1} \operatorname{dist} \left(y + \delta d, a(x + \delta f) \right) = 0 \right\},$$
$$D^*a(x, y) \mid (f) = \left\{ v \in \mathbb{R}^m : \lim_{\delta \to +0} \delta^{-1} \operatorname{dist} \left(y + \delta d, a(x + \delta f) \right) = 0 \right\},$$

© 2007 MISKOLC UNIVERSITY PRESS

where $x \in \mathbb{R}^n$, $D \subset \mathbb{R}^n$, dist $(x, D) = \inf_{d \in D} ||x - d||$. $Da(x, y) | (f) (D^*a(x, y) | (f))$ is called the upper (lower) derivative set of the set-valued map $a(\cdot)$ at (x, y) in direction f. Note that the directional upper (lower) derivative set of the set-valued map $a(\cdot)$ is closed and there is a connection between the upper (lower) derivative set of a set-valued map and the upper (lower) contingent cone which is used to investigate several problems in nonsmooth analysis [1,2,8]. It is obvious that $D^*a(x, y) | (f) \subset Da(x, y) | (f)$. The symbol

$$A = \operatorname{gr} a(\cdot) = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^m : y \in a(x)\}$$

denotes the graph of the set-valued map $a(\cdot)$. Since $a(\cdot)$ is upper semicontinuous, A is a closed set. It is possible to show that $Da(x, y) | (f) = D^*a(x, y) | (f) = \emptyset$ if $(x, y) \notin A$, $Da(x, y) | (f) = D^*a(x, y) | (f) = \mathbb{R}^m$ if $(x, y) \in int A$, where int A denotes the interior of A.

Let $f(\cdot) : \mathbb{R}^n \to \mathbb{R}$ be a function. The lower and upper derivative of $f(\cdot)$ at the point x in direction v are denoted by the symbols $\frac{\partial^- f(x)}{\partial v}$ and $\frac{\partial^+ f(x)}{\partial v}$ respectively, and defined by the formulas

$$\frac{\partial^{-} f(x)}{\partial v} = \liminf_{\delta \to +0} [f(x + \delta v) - f(x)] \delta^{-1},$$

and

$$\frac{\partial^+ f(x)}{\partial v} = \limsup_{\delta \to +0} [f(x + \delta v) - f(x)] \delta^{-1}$$

If

$$\frac{\partial f(x)}{\partial v} = \lim_{\delta \to +0} \left[f(x + \delta v) - f(x) \right] \delta^{-1}$$

exists and is finite, then $f(\cdot)$ is said to be differentiable at the point x in direction v and $\frac{\partial f(x)}{\partial v}$ denotes the derivative of $f(\cdot)$ at the point x in direction v.

Let $a(\cdot) : \mathbb{R}^n \to \operatorname{comp}(\mathbb{R}^m), b(\cdot) : \mathbb{R}^n \to \operatorname{comp}(\mathbb{R}^k)$ be set-valued maps and $\sigma(\cdot, \cdot, \cdot) : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^k \to \mathbb{R}$ be a continuous function on $\mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^k$. The max-min function is denoted by $m(\cdot)$ and is defined by

$$m(x) = \max_{y \in a(x)} \min_{z \in b(x)} \sigma(x, y, z).$$

$$(1.1)$$

In this paper, we will assume that $a(\cdot) : \mathbb{R}^n \to \operatorname{comp}(\mathbb{R}^m), b(\cdot) : \mathbb{R}^n \to \operatorname{comp}(\mathbb{R}^k)$ are continuous set-valued maps and $\sigma(\cdot, \cdot, \cdot) : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^k \to \mathbb{R}$ is a continuous function on $\mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^k$ and locally Lipschitz on $\mathbb{R}^m \times \mathbb{R}^k$, i. e., for every bounded $D \subset \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^k$, there exists L(D) > 0 such that

$$|\sigma(x, y_1, z_1) - \sigma(x, y_2, z_2)| \le L(D) \, \| (y_1 - y_2, z_1 - z_2) \|$$

for any (x, y_1, z_1) , $(x, y_2, z_2) \in D$. Under these conditions $m(\cdot)$ is a continuous function (see [1]). Let

$$Y_*(x) = \{(y_*, z_*) \in a(x) \times b(x) : \\ m(x) = \max_{y \in a(x)} \min_{z \in b(x)} \sigma(x, y, z) = \sigma(x, y_*, z_*)\}.$$
(1.2)

The map $x \mapsto Y_*(x)$ is an upper semicontinuous set-valued map and it is called a max-min set-valued map.

2. MINIMIZATION AND MAXIMIZATION PROBLEMS OF MAX-MIN FUNCTION

Now we give necessary statements for a minimum point and a maximum point of max-min function.

Theorem 1. Let the function $m(\cdot) : \mathbb{R}^n \to \mathbb{R}$ be in the form (1.1). Suppose that $x_* \in \mathbb{R}^n$ is a minimum point of max-min function $m(\cdot)$. Then

$$\inf_{f\in\mathbb{R}^n}\inf_{(y,z)\in Y_*(x_*)}\inf_{(d,n)\in DY_*(x_*,y,z)|(f)}\frac{\partial^+\sigma(x_*,y,z)}{\partial(f,d,n)}\geq 0.$$

Proof. Let $f \in \mathbb{R}^n$. Since $x_* \in \mathbb{R}^n$ is a minimum point of max-min function $m(\cdot)$, then it follows that $m(x_* + \delta f) \ge m(x_*)$ for all $\delta > 0$. In that case, it follows from here that

$$\frac{\partial^{-}m(x_{*})}{\partial f} = \liminf_{\delta \to +0} \frac{1}{\delta} \left[m(x_{*} + \delta f) - m(x_{*}) \right] \ge 0.$$

Hence, from here and of [7, Proposition 7], we have

$$0 \le \frac{\partial^{-}m(x_{*})}{\partial f} \le \inf_{(y,z)\in Y_{*}(x_{*})} \inf_{(d,n)\in DY_{*}(x_{*},y,z)|(f)} \frac{\partial^{+}\sigma(x_{*},y,z)}{\partial(f,d,n)}$$

and hence we obtain the inequality.

Theorem 2. Let the function $m(\cdot) : \mathbb{R}^n \to \mathbb{R}$ be in the form (1.1). Suppose that $x_* \in \mathbb{R}^n$ is a maximum point of max-min function $m(\cdot)$ and there exists a $(y,z) \in Y_*(x_*)$ such that $DY_*(x_*, y, z) \mid (f) \neq \emptyset$ for all $f \in \mathbb{R}^n$. Then

$$\sup_{f \in \mathbb{R}^n} \inf_{(y,z) \in Y_*(x_*)} \inf_{(d,n) \in DY_*(x_*,y,z)|(f)} \frac{\partial^- \sigma(x_*,y,z)}{\partial(f,d,n)} \le 0.$$

Proof. Let $f \in \mathbb{R}^n$. Since $x_* \in \mathbb{R}^n$ is a maximum point of max-min function $m(\cdot)$, then it follows that $m(x_* + \delta f) \le m(x_*)$ for all $\delta > 0$. In that case, it follows from here that

$$\frac{\partial^+ m(x_*)}{\partial f} = \limsup_{\delta \to +0} \frac{1}{\delta} \left[m(x_* + \delta f) - m(x_*) \right] \le 0.$$

Hence, from here and [7, Proposition 8], we have

$$0 \ge \frac{\partial^+ m(x_*)}{\partial f} \ge \inf_{(y,z) \in Y_*(x_*)} \inf_{(d,n) \in DY_*(x_*,y,z)|(f)} \frac{\partial^- \sigma(x_*,y,z)}{\partial(f,d,n)}$$

and hence we obtain the inequality.

3. DIRECTIONAL DERIVATIVE SETS OF MAX-MIN SET-VALUED MAPS

Now we give the estimations for the directional lower and upper derivative sets of max-min set-valued map which are used to state a characterization of the directional derivative of the max-min functions in [7].

Let us take the max-min function $m(\cdot)$ such as:

$$m(x) = \min_{y \in a(x)} \sigma(x, y) \tag{3.1}$$

where $a(\cdot) : \mathbb{R}^n \to \operatorname{comp}(\mathbb{R}^m)$ is a continuous set-valued map and $\sigma(\cdot, \cdot) : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is a continuous function on $\mathbb{R}^n \times \mathbb{R}^m$ and locally Lipschitz on \mathbb{R}^m , i. e., for every bounded $D \subset \mathbb{R}^n \times \mathbb{R}^m$, there exists L(D) > 0 such that

$$|\sigma(x, y_1) - \sigma(x, y_2)| \le L(D) \|y_1 - y_2\|$$

for any (x, y_1) , $(x, y_2) \in D$. Under these conditions $m(\cdot)$ is a continuous function (see [1]). Then we take

$$Y_*(x) = \left\{ y_* \in a(x) : m(x) = \min_{y \in a(x)} \sigma(x, y) = \sigma(x, y_*) \right\}.$$
 (3.2)

Theorem 3. Let the set-valued map $Y_*(\cdot) : \mathbb{R}^n \to \text{comp}(\mathbb{R}^m)$ be in the form (3.2). Suppose that there exists a $y_* \in Y_*(x_*)$ such that $\sigma(\cdot, \cdot)$ is a derivable function at the point (x_*, y_*) in direction (f, d) for all $d \in \mathbb{R}^m$. Then

$$D^*Y_*(x_*, y_*) \mid (f) \subset \left\{ p \in \mathbb{R}^m : \inf_{\substack{d \in Da(x_*, y_*) \mid (f)}} \frac{\partial \sigma(x_*, y_*)}{\partial (f, d)} = \frac{\partial \sigma(x_*, y_*)}{\partial (f, p)} \right\}.$$
 (3.3)

Proof. Let $y_* \in Y_*(x_*)$ such that $\sigma(\cdot, \cdot)$ is a derivable function at the point (x_*, y_*) in direction (f, d) for all $d \in \mathbb{R}^m$.

Let $D^*Y_*(x_*, y_*) | (f) = \emptyset$. Then the statement (3.3) holds. Let $Da(x_*, y_*) | (f) = \emptyset$. Then

$$\inf_{d \in Da(x_*, y_*)|(f)} \frac{\partial \sigma(x_*, y_*)}{\partial (f, d)} = +\infty.$$

Since $D^*Y_*(x_*, y_*) | (f) \subset D^*a(x_*, y_*) | (f) \subset Da(x_*, y_*) | (f)$, then it follows that statement (3.3) holds.

Now $D^*Y_*(x_*, y_*) \mid (f) \neq \emptyset$. Take $p \in D^*Y_*(x_*, y_*) \mid (f)$. Then from the definition of $D^*Y_*(x_*, y_*) \mid (f)$, there exists a $\delta_* > 0$ such that for all $\delta \in [0, \delta_*]$,

$$y_*(\delta) = y_* + \delta p + o_1(\delta) \in Y_*(x_* + \delta f)$$

where $||o_1(\delta)|| \delta^{-1} \to 0$ as $\delta \to +0$. Since

$$Y_*(x) = \{y_* \in a(x) : \sigma(x, y) \ge \sigma(x, y_*), \forall y \in a(x)\},\$$

then it follows that for any $y \in a(x_* + \delta f)$,

$$\sigma(x_* + \delta f, y) \ge \sigma(x_* + \delta f, y_* + \delta p + o_1(\delta)). \tag{3.4}$$

Choose any $d \in Da(x_*, y_*) \mid (f)$. Then from the definition of $Da(x_*, y_*) \mid (f)$, there exists a sequence $y_k \in a(x_* + \delta_k f)$ where $\delta_k > 0$ and $\delta_k \to +0$ as $k \to \infty$, such that

$$y_k = y_* + \delta_k d + o_2(\delta_k)$$

where $||o_2(\delta_k)|| \delta_k^{-1} \to 0$ as $k \to \infty$. In that case from (3.4) since $\delta_k \to +0$, then it follows that there exists a $k_0 \in \mathbb{N}$ such that $\delta_k \in [0, \delta_*]$ for all $k \ge k_0$ and

$$\sigma(x_* + \delta_k f, y_* + \delta_k d + o_2(\delta_k)) - \sigma(x_*, y_*)$$

$$\geq \sigma(x_* + \delta_k f, y_* + \delta_k p + o_1(\delta_k)) - \sigma(x_*, y_*).$$

Since the function $\sigma(\cdot, \cdot)$ is locally Lipschitzian on \mathbb{R}^m , then it follows that for k = 1, 2,..., there exists $L_1 > 0$ and $L_2 > 0$ such that

$$| \sigma(x_* + \delta_k f, y_* + \delta_k p + o_1(\delta_k)) - \sigma(x_* + \delta_k f, y_* + \delta_k p) | \le L_1 ||o_1(\delta_k)||,$$

$$| \sigma(x_* + \delta_k f, y_* + \delta_k d + o_2(\delta_k)) - \sigma(x_* + \delta_k f, y_* + \delta_k d) | \le L_2 ||o_2(\delta_k)||.$$

Consequently, we obtain

$$\begin{aligned} \frac{\partial \sigma(x_*, y_*)}{\partial(f, p)} &= \lim_{\delta \to +0} \left[\sigma(x_* + \delta f, y_* + \delta p) - \sigma(x_*, y_*) \right] \delta^{-1} \\ &= \lim_{k \to \infty} \left[\sigma(x_* + \delta_k f, y_* + \delta_k p) - \sigma(x_*, y_*) \right] \delta_k^{-1} \\ &= \lim_{k \to \infty} \left[\sigma(x_* + \delta_k f, y_* + \delta_k p) - \sigma(x_* + \delta_k f, y_* + \delta_k p + o_1(\delta_k)) \right. \\ &+ \sigma(x_* + \delta_k f, y_* + \delta_k p + o_1(\delta_k)) - \sigma(x_*, y_*) \right] \delta_k^{-1} \\ &\leq \lim_{k \to \infty} \left[L_1 \| o_1(\delta_k) \| + \sigma(x_* + \delta_k f, y_* + \delta_k p + o_1(\delta_k)) - \sigma(x_*, y_*) \right] \delta_k^{-1} \\ &= \lim_{k \to \infty} \left[\sigma(x_* + \delta_k f, y_* + \delta_k p + o_1(\delta_k)) - \sigma(x_*, y_*) \right] \delta_k^{-1} \\ &\leq \lim_{k \to \infty} \left[\sigma(x_* + \delta_k f, y_* + \delta_k d + o_2(\delta_k)) - \sigma(x_*, y_*) \right] \delta_k^{-1} \\ &= \lim_{k \to \infty} \left[\sigma(x_* + \delta_k f, y_* + \delta_k d + o_2(\delta_k)) - \sigma(x_*, y_*) \right] \delta_k^{-1} \\ &= \lim_{k \to \infty} \left[\sigma(x_* + \delta_k f, y_* + \delta_k d - \sigma(x_*, y_*) \right] \delta_k^{-1} \\ &\leq \lim_{k \to \infty} L_2 \| o_2(\delta_k) \| \delta_k^{-1} + \lim_{k \to \infty} \left[\sigma(x_* + \delta_k f, y_* + \delta_k d) - \sigma(x_*, y_*) \right] \delta_k^{-1} \\ &= \lim_{k \to \infty} \left[\sigma(x_* + \delta_k f, y_* + \delta_k d) - \sigma(x_*, y_*) \right] \delta_k^{-1} \\ &= \lim_{k \to \infty} \left[\sigma(x_* + \delta_k f, y_* + \delta_k d) - \sigma(x_*, y_*) \right] \delta_k^{-1} \\ &= \lim_{k \to \infty} \left[\sigma(x_* + \delta_k f, y_* + \delta_k d) - \sigma(x_*, y_*) \right] \delta_k^{-1} \\ &= \lim_{k \to \infty} \left[\sigma(x_* + \delta_k f, y_* + \delta_k d) - \sigma(x_*, y_*) \right] \delta_k^{-1} \\ &= \lim_{\delta \to +0} \left[\sigma(x_* + \delta_k f, y_* + \delta_k d) - \sigma(x_*, y_*) \right] \delta_k^{-1} \\ &= \lim_{\delta \to +0} \left[\sigma(x_* + \delta_k f, y_* + \delta_k d) - \sigma(x_*, y_*) \right] \delta_k^{-1} \end{aligned}$$

Thus $\frac{\partial \sigma(x_*, y_*)}{\partial (f, p)} \leq \frac{\partial \sigma(x_*, y_*)}{\partial (f, d)}$ for any $d \in Da(x_*, y_*) \mid (f)$. It follows from here that

$$\inf_{d \in Da(x_*, y_*)|(f)} \frac{\partial \sigma(x_*, y_*)}{\partial (f, d)} \ge \frac{\partial \sigma(x_*, y_*)}{\partial (f, p)}$$

Since

$$D^*Y_*(x_*, y_*) \mid (f) \subset DY_*(x_*, y_*) \mid (f) \subset Da(x_*, y_*) \mid (f),$$

then for any $p \in D^*Y_*(x_*, y_*) \mid (f), p \in Da(x_*, y_*) \mid (f)$ and it follows that the relation

$$\inf_{d \in Da(x_*, y_*)|(f)} \frac{\partial \sigma(x_*, y_*)}{\partial (f, d)} \le \frac{\partial \sigma(x_*, y_*)}{\partial (f, p)}$$

is satisfied. In that case, it follows from the above two inequalities that the statement holds. $\hfill \Box$

Theorem 4. Let the set-valued map $Y_*(\cdot) : \mathbb{R}^n \to \text{comp}(\mathbb{R}^m)$ be in the form (3.2). Suppose that there exists a $y_* \in Y_*(x_*)$ such that $\sigma(\cdot, \cdot)$ is a derivable function at the point (x_*, y_*) in the direction (f, d) for all $d \in \mathbb{R}^m$. Then

$$DY_*(x_*, y_*) \mid (f) \subset \left\{ p \in \mathbb{R}^m : \inf_{d \in D^*a(x_*, y_*) \mid (f)} \frac{\partial \sigma(x_*, y_*)}{\partial (f, d)} \ge \frac{\partial \sigma(x_*, y_*)}{\partial (f, p)} \right\}.$$
 (3.5)

Proof. Let $y_* \in Y_*(x_*)$ such that $\sigma(\cdot, \cdot)$ is a derivable function at the point (x_*, y_*) in direction (f, d) for all $d \in \mathbb{R}^m$.

Let $DY_*(x_*, y_*) | (f) = \emptyset$. Then statement (3.5) holds. Let $D^*a(x_*, y_*) | (f) = \emptyset$. Then

$$+\infty = \inf_{d \in D^* a(x_*, y_*)|(f)} \frac{\partial \sigma(x_*, y_*)}{\partial (f, d)} > \frac{\partial \sigma(x_*, y_*)}{\partial (f, p)}$$

and it follows that the statement (3.5) holds.

Now let $DY_*(x_*, y_*) | (f) \neq \emptyset$ and $D^*a(x_*, y_*) | (f) \neq \emptyset$. Let us take $p \in DY_*(x_*, y_*) | (f)$. Then from the definition of $DY_*(x_*, y_*) | (f)$, there exists a sequence $y_k \in Y_*(x_* + \delta_k f)$, where $\delta_k > 0$ and $\delta_k \to +0$ as $k \to \infty$ such that

$$y_k = y_* + \delta_k \, p + o_1(\delta_k)$$

where $||o_1(\delta_k)|| / \delta_k \to 0$ as $k \to \infty$. Since

$$Y_*(x) = \{y_* \in a(x) : \sigma(x, y) \ge \sigma(x, y_*), \forall y \in a(x)\},\$$

then it follows that for any $y \in a(x_* + \delta_k f)$,

$$\sigma(x_* + \delta_k f, y) \ge \sigma(x_* + \delta_k f, y_* + \delta_k p + o_1(\delta_k)).$$
(3.6)

Choose any $d \in D^*a(x_*, y_*) | (f)$. Then from the definition of $D^*a(x_*, y_*) | (f)$, there exists a $\delta_* > 0$ such that for all $\delta \in [0, \delta_*]$,

$$y(\delta) = y_* + \delta d + o_2(\delta) \in a(x_* + \delta f)$$

where $||o_2(\delta)|| \delta^{-1} \to 0$ as $\delta \to +0$. In that case from (3.6) since $\delta_k \to +0$, then it follows that there exists a $k_0 \in \mathbb{N}$ such that $\delta_k \in [0, \delta_*]$ for all $k \ge k_0$ and

$$\sigma(x_* + \delta_k f, y_* + \delta_k d + o_2(\delta_k)) - \sigma(x_*, y_*)$$

$$\geq \sigma(x_* + \delta_k f, y_* + \delta_k p + o_1(\delta_k)) - \sigma(x_*, y_*).$$

Since the function $\sigma(\cdot, \cdot)$ is locally Lipschitz on \mathbb{R}^m , then it follows that for k = 1, 2,..., there exist $L_1 > 0$ and $L_2 > 0$ such that

$$| \sigma(x_* + \delta_k f, y_* + \delta_k p + o_1(\delta_k) - \sigma(x_* + \delta_k f, y_* + \delta_k p) | \le L_1 ||o_1(\delta_k)||,$$

$$| \sigma(x_* + \delta_k f, y_* + \delta_k d + o_2(\delta_k)) - \sigma(x_* + \delta_k f, y_* + \delta_k d) | \le L_2 ||o_2(\delta_k)||.$$

Consequently, we have

$$\begin{split} \frac{\partial \sigma(x_{*}, y_{*})}{\partial(f, p)} &= \lim_{k \to \infty} \left[\sigma(x_{*} + \delta f, y_{*} + \delta p) - \sigma(x_{*}, y_{*}) \right] \delta^{-1} \\ &= \lim_{k \to \infty} \left[\sigma(x_{*} + \delta_{k} f, y_{*} + \delta_{k} p) - \sigma(x_{*}, y_{*}) \right] \delta^{-1}_{k} \\ &= \lim_{k \to \infty} \left[\sigma(x_{*} + \delta_{k} f, y_{*} + \delta_{k} p) - \sigma(x_{*} + \delta_{k} f, y_{*} + \delta_{k} p + o_{1}(\delta_{k})) \right. \\ &+ \sigma(x_{*} + \delta_{k} f, y_{*} + \delta_{k} p + o_{1}(\delta_{k})) - \sigma(x_{*}, y_{*}) \right] \delta^{-1}_{k} \\ &\leq \lim_{k \to \infty} \left[L_{1} \| o_{1}(\delta_{k}) \| + \sigma(x_{*} + \delta_{k} f, y_{*} + \delta_{k} p + o_{1}(\delta_{k})) - \sigma(x_{*}, y_{*}) \right] \delta^{-1}_{k} \\ &= \lim_{k \to \infty} \left[\sigma(x_{*} + \delta_{k} f, y_{*} + \delta_{k} p + o_{1}(\delta_{k})) - \sigma(x_{*}, y_{*}) \right] \delta^{-1}_{k} \\ &\leq \lim_{k \to \infty} \left[\sigma(x_{*} + \delta_{k} f, y_{*} + \delta_{k} d + o_{2}(\delta_{k})) - \sigma(x_{*}, y_{*}) \right] \delta^{-1}_{k} \\ &= \lim_{k \to \infty} \left[\sigma(x_{*} + \delta_{k} f, y_{*} + \delta_{k} d + o_{2}(\delta_{k})) - \sigma(x_{*} + \delta_{k} f, y_{*} + \delta_{k} d) \right. \\ &+ \sigma(x_{*} + \delta_{k} f, y_{*} + \delta_{k} d - \sigma(x_{*}, y_{*}) \right] \delta^{-1}_{k} \\ &= \lim_{k \to \infty} \left[\sigma(x_{*} + \delta_{k} f, y_{*} + \delta_{k} d - \sigma(x_{*}, y_{*}) \right] \delta^{-1}_{k} \\ &= \lim_{k \to \infty} \left[\sigma(x_{*} + \delta_{k} f, y_{*} + \delta_{k} d) - \sigma(x_{*}, y_{*}) \right] \delta^{-1}_{k} \\ &= \lim_{k \to \infty} \left[\sigma(x_{*} + \delta_{k} f, y_{*} + \delta_{k} d) - \sigma(x_{*}, y_{*}) \right] \delta^{-1}_{k} \\ &= \lim_{k \to \infty} \left[\sigma(x_{*} + \delta_{k} f, y_{*} + \delta_{k} d) - \sigma(x_{*}, y_{*}) \right] \delta^{-1}_{k} \\ &= \lim_{k \to \infty} \left[\sigma(x_{*} + \delta_{k} f, y_{*} + \delta_{k} d) - \sigma(x_{*}, y_{*}) \right] \delta^{-1}_{k} \\ &= \lim_{k \to \infty} \left[\sigma(x_{*} + \delta_{k} f, y_{*} + \delta_{k} d) - \sigma(x_{*}, y_{*}) \right] \delta^{-1}_{k} \\ &= \lim_{k \to \infty} \left[\sigma(x_{*} + \delta_{k} f, y_{*} + \delta_{k} d) - \sigma(x_{*}, y_{*}) \right] \delta^{-1}_{k} \\ &= \lim_{k \to \infty} \left[\sigma(x_{*} + \delta_{k} f, y_{*} + \delta_{k} d) - \sigma(x_{*}, y_{*}) \right] \delta^{-1}_{k} \\ &= \frac{\partial \sigma(x_{*}, y_{*})}{\partial(f, d)}. \end{aligned}$$

Thus, $\frac{\partial \sigma(x_*, y_*)}{\partial (f, p)} \leq \frac{\partial \sigma(x_*, y_*)}{\partial (f, d)}$ for any $d \in D^* a(x_*, y_*) \mid (f)$. It follows from here that $\partial \sigma(x_*, y_*) = \partial \sigma(x_*, y_*)$

$$\inf_{d \in D^* a(x_*, y_*)|(f)} \frac{\partial \delta(x_*, y_*)}{\partial (f, d)} \ge \frac{\partial \delta(x_*, y_*)}{\partial (f, p)}$$

and hence the statement holds.

Corollary 1. Let the set-valued map $Y_*(\cdot) : \mathbb{R}^n \to \operatorname{comp}(\mathbb{R}^m)$ be in the form (3.2). Suppose that there exists a $y_* \in Y_*(x_*)$ such that $\sigma(\cdot, \cdot)$ is a differentiable function at the point (x_*, y_*) . Then

$$D^*Y_*(x_*, y_*) \mid (f) \subset \left\{ p \in \mathbb{R}^m : \inf_{d \in Da(x_*, y_*) \mid (f)} \left\langle \frac{\partial \sigma(x_*, y_*)}{\partial y}, d \right\rangle = \left\langle \frac{\partial \sigma(x_*, y_*)}{\partial y}, p \right\rangle \right\},$$

where the symbol $\langle \cdot, \cdot \rangle$ denotes the inner product.

Proof. Since $\sigma(\cdot, \cdot)$ is a differentiable function at the point (x_*, y_*) , then it is a derivable function at the point (x_*, y_*) in any direction $(f, d) \in \mathbb{R}^n \times \mathbb{R}^m$ and

$$\frac{\partial \sigma(x_*, y_*)}{\partial (f, d)} = \left\langle \frac{\partial \sigma(x_*, y_*)}{\partial x}, f \right\rangle = \left\langle \frac{\partial \sigma(x_*, y_*)}{\partial y}, d \right\rangle.$$

Then from Theorem 3, we obtain the corollary.

Corollary 2. Let the set-valued map $Y_*(\cdot) : \mathbb{R}^n \to \operatorname{comp}(\mathbb{R}^m)$ be in the form (3.2). Suppose that there exists a $y_* \in Y_*(x_*)$ such that $\sigma(\cdot, \cdot)$ is a differentiable function at the point (x_*, y_*) . Then

$$DY_*(x_*, y_*) \mid (f) \subset \left\{ p \in \mathbb{R}^m : \inf_{d \in D^*a(x_*, y_*) \mid (f)} \left(\frac{\partial \sigma(x_*, y_*)}{\partial y}, d \right) \ge \left(\frac{\partial \sigma(x_*, y_*)}{\partial y}, p \right) \right\},$$

where the symbol $\langle \cdot, \cdot \rangle$ denotes the inner product.

Proof. It is similar to that of Theorem 4.

Now, we give an example for the above theorems.

Example 1. Take a constant vector $l \in \mathbb{R}^m$. $\sigma(\cdot, \cdot) : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ is defined by

$$(x, y) \to \sigma(x, y) = \langle l, y \rangle$$

and $a(\cdot)$ is defined by

$$x \to a(x) = \{ y \in \mathbb{R}^m : b(x, y) \ge 0 \}$$

where $b(\cdot, \cdot) : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ is continuous differentiable such that a(x) is bounded for all $x \in \mathbb{R}^m$ and $\frac{\partial b(x, y)}{\partial y} \neq 0$ for any $y \in L(x)$ where

$$L(x) = \{ y \in \mathbb{R}^m : b(x, y) = 0 \}.$$

Then $a(x) : \mathbb{R}^m \to \operatorname{comp}(\mathbb{R}^m)$ and

$$Y_*(x) \subset \partial a(x) \subset L(x)$$

where $\partial a(x)$ is a boundary of a(x). It is shown that

$$Y_*(x) \subset K(x) \tag{3.7}$$

where

$$K(x) = \{ y_0 \in a(x) : \langle l, d \rangle \ge 0 \text{ for all } d \in T_{a(x)}(y_0) \},$$
(3.8)

and

$$T_{a(x)}(y_0) = \left\{ d \in \mathbb{R}^m : \exists \delta_k > 0 \ (\delta_k \to +0 \text{ as } k \to \infty), \\ \exists y_k \in a(x) \ni d = \lim_{k \to \infty} \frac{y_k - y_0}{\delta_k} \right\},$$

where $T_{a(x)}(y_0)$ is an upper contingent cone of a(x) at y_0 .

Let $y_* \in Y_*(x)$. Then $y_* \in \partial a(x)$ and $b(x, y_*) = 0$. Since $\frac{\partial b(x, y_*)}{\partial y} \neq 0$, we get

$$T_{a(x)}(y_0) = \left\{ d \in \mathbb{R}^m : \left\langle \frac{\partial b(x, y_*)}{\partial y}, d \right\rangle \ge 0 \right\}$$
(3.9)

and from [7, Corollary 2],

$$Da(x, y_*) \mid (f) = D^*a(x, y_*) \mid (f)$$

= $\left\{ d \in \mathbb{R}^m : \left\langle \frac{\partial b(x, y_*)}{\partial x}, f \right\rangle + \left\langle \frac{\partial b(x, y_*)}{\partial y}, d \right\rangle \ge 0 \right\}.$ (3.10)

Since $y_* \in Y_*(x)$, then it follows from (3.7) that $y_* \in K(x)$ and since $y_* \in K(x)$, then from (3.8), $\langle l, d \rangle \ge 0$ for all $d \in T_{a(x)}(y_*)$. Then from (3.9) we get

$$\langle l, d \rangle \ge 0$$
 for all $d \in \mathbb{R}^m$ such that $\left\langle \frac{\partial b(x, y_*)}{\partial y}, d \right\rangle \ge 0$.

This yields $l = \alpha(x) \frac{\partial b(x, y_*)}{\partial y}$ with $\alpha(x) > 0$, and follows that

$$Y_*(x) \subset \left\{ y_* \in \partial a(x) : l = \alpha(x) \frac{\partial b(x, y_*)}{\partial y}, \, \alpha(x) > 0 \right\}.$$
 (3.11)

`

Therefore, Theorems 3 and 4 and statements (3.10), (3.11) yield

$$D^*Y_*(x, y_*) \mid (f) \subset \left\{ p \in \mathbb{R}^m : \min_{d \in Da(x, y_*) \mid (f)} \langle l, d \rangle = \langle l, p \rangle \right\}$$
$$= \left\{ p \in \mathbb{R}^m : \langle l, p \rangle = -\alpha(x) \left\{ \frac{\partial b(x, y_*)}{\partial x}, f \right\} \right\},$$
$$DY_*(x, y_*) \mid (f) \subset \left\{ p \in \mathbb{R}^m : \min_{d \in D^*a(x, y_*) \mid (f)} \langle l, d \rangle \ge \langle l, p \rangle \right\}$$
$$= \left\{ p \in \mathbb{R}^m : \langle l, p \rangle \le -\alpha(x) \left\{ \frac{\partial b(x, y_*)}{\partial x}, f \right\} \right\}.$$

4. DIRECTIONAL DIFFERENTIABILITY OF MAX-MIN FUNCTION

In [7], the directional lower and upper derivatives of max-min function are investigated by using the directional lower and upper derivative sets of max-min set-valued map.

Now, in this paper, a sufficient condition ensuring the existence of the directional derivative of the max-min function is obtained by using the lower differentiability of max-min set-valued maps. Hence by using the lower different, a characterization of the upper and lower directional derivatives of max-min functions is obtained. For $A \subset \mathbb{R}^n$ and $C \subset \mathbb{R}^n$, we put $\beta(A, C) = \sup_{a \in A} d(a, C)$, $d_H(A, C) = \max{\{\beta(A, C), \beta(C, A)\}}$. It is known that $(\operatorname{comp}(\mathbb{R}^n), d_H(\cdot, \cdot))$ is a metric space.

Definition 1. The set-valued map $a(\cdot) : \mathbb{R}^n \to \operatorname{comp}(\mathbb{R}^m)$ is said to be lower differentiable at the point $x \in \mathbb{R}^n$ in direction $f \in \mathbb{R}^n$, if there exist $G^-(x, f) \in \operatorname{comp}(\mathbb{R}^m)$, $G^+(x, f) \in \operatorname{comp}(\mathbb{R}^m)$ such that

$$\lim_{\delta \to +0} \frac{1}{\delta} \beta(a(x) + \delta G^+(x, f), a(x + \delta f) + \delta G^-(x, f)) = 0.$$

In that case the pair $(G^-(x, f), G^+(x, f))$ is said to be lower differential of the setvalued map $a(\cdot) : \mathbb{R}^n \to \operatorname{comp}(\mathbb{R}^m)$ at the point $x \in \mathbb{R}^n$ in the direction $f \in \mathbb{R}^n$ [9].

In [9], the following two propositions are given.

Proposition 1. Let the set-valued map $a(\cdot) : \mathbb{R}^n \to \operatorname{comp}(\mathbb{R}^m)$ be lower differentiable at the point $x \in \mathbb{R}^n$ in direction $f \in \mathbb{R}^n$. Then $Da(x, y) | (f) \neq \emptyset$ for every $y \in a(x)$.

Proposition 2. Let the set-valued map $a(\cdot) : \mathbb{R}^n \to \operatorname{comp}(\mathbb{R}^m)$ be lower differentiable at the point $x \in \mathbb{R}^n$ in direction $f \in \mathbb{R}^n$ and the pair $(0, G^+(x, f))$ be its lower differential. Then $D^*a(x, y) \mid (f) \neq \emptyset$ for every $y \in a(x)$.

In [7], the following two propositions characterizing upper and lower directional derivatives of max-min function $m(\cdot)$ are proved.

Proposition 3. For all $x \in \mathbb{R}^n$ and $f \in \mathbb{R}^n$

$$\frac{\partial^- m(x)}{\partial f} \leq \inf_{\substack{(y,z)\in Y_*(x) \ (d,n)\in DY_*(x,y,z)|(f) \\ \partial^+ m(x) \\ \partial f}} \inf_{\substack{(y,z)\in Y_*(x) \ (d,n)\in D^*Y_*(x,y,z)|(f) \\ \partial(f,d,n)}} \frac{\partial^+ \sigma(x,y,z)}{\partial(f,d,n)}.$$

Proposition 4. Let $x \in \mathbb{R}^n$, $f \in \mathbb{R}^n$ and there exists $(y_*, z_*) \in Y_*(x)$ such that $DY_*(x, y_*, z_*) \mid (f) \neq \emptyset$. Then

$$\frac{\partial^+ m(x)}{\partial f} \ge \inf_{\substack{(y,z)\in Y_*(x) \ (d,n)\in DY_*(x,y,z)|(f)}} \frac{\partial^- \sigma(x,y,z)}{\partial(f,d,n)}.$$

Moreover if there exists $(y^*, z^*) \in Y_*(x)$ such that $D^*Y_*(x, y^*, z^*) \mid (f) \neq \emptyset$ then

$$\frac{\partial^{-}m(x)}{\partial f} \geq \inf_{(y,z)\in Y_{*}(x)} \inf_{(d,n)\in D^{*}Y_{*}(x,y,z)|(f)} \frac{\partial^{-}\sigma(x,y,z)}{\partial(f,d,n)}.$$

Now, by using the lower differentiability of max-min set-valued maps, we give a characterization of the upper and lower directional derivatives of $m(\cdot)$ which follows from Propositions 1 - 4.

Theorem 5. Suppose that the set-valued map $Y_*(\cdot) : \mathbb{R}^n \to \operatorname{comp}(\mathbb{R}^m \times \mathbb{R}^k)$ is lower differentiable at the point $x \in \mathbb{R}^n$ in the direction $f \in \mathbb{R}^n$. Then

$$\frac{\partial^+ m(x)}{\partial f} \le \inf_{\substack{(y,z)\in Y_*(x) \ (d,n)\in D^*Y_*(x,y,z)|(f) \\ \partial(f,d,n)}} \inf_{\substack{\partial^+ m(x) \\ \partial f} \ge \inf_{\substack{(y,z)\in Y_*(x) \ (d,n)\in DY_*(x,y,z)|(f) \\ \partial(f,d,n)}} \frac{\partial^- \sigma(x,y,z)}{\partial(f,d,n)}.$$

Theorem 6. Suppose that the set-valued map $Y_*(\cdot) : \mathbb{R}^n \to \operatorname{comp}(\mathbb{R}^m \times \mathbb{R}^k)$ is lower differentiable at the point $x \in \mathbb{R}^n$ in direction $f \in \mathbb{R}^n$ and $(0, G^+(x, f))$ is its lower differential. Let the function $\sigma(\cdot, \cdot, \cdot) : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^k \to \mathbb{R}$ be directional differentiable at the point (x, y, z) in direction $(f, d, n) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^k$ for any $(y, z) \in Y_*(x)$ and $(d, n) \in \mathbb{R}^m \times \mathbb{R}^k$. Then

$$\frac{\partial m(x)}{\partial f} = \inf_{(y,z)\in Y_*(x)} \inf_{(d,n)\in DY_*(x,y,z)|(f)} \frac{\partial \sigma(x,y,z)}{\partial (f,d,n)}.$$

5. CONCLUSIONS

Necessary statements are given for a minimum point and a maximum point of the max-min function. The estimations for the directional lower and upper derivative sets of max-min set-valued map which are used to state a characterization of the directional derivative of max-min function are given. Moreover, by using the lower differentiability of max-min set-valued maps, sufficient condition ensuring the existence of the directional derivative of the max-min function is obtained.

References

- J.-P. Aubin and H. Frankowska, *Set-valued analysis*, ser. Systems & Control: Foundations & Applications. Boston, MA: Birkhäuser Boston Inc., 1990, vol. 2.
- [2] F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P. R. Wolenski, "Qualitative properties of trajectories of control systems: a survey," J. Dynam. Control Systems, vol. 1, no. 1, pp. 1–48, 1995.
- [3] F. H. Clarke and R. B. Vinter, "The relationship between the maximum principle and dynamic programming," *SIAM J. Control Optim.*, vol. 25, no. 5, pp. 1291–1311, 1987.
- [4] J. M. Danskin, *The theory of max-min and its application to weapons allocation problems*, ser. Econometrics and Operations Research, Vol. V. Springer-Verlag New York, Inc., New York, 1967.
- [5] V. F. Demyanov and A. M. Rubinov, *Constructive nonsmooth analysis*, ser. Approximation & Optimization. Frankfurt am Main: Peter Lang, 1995, vol. 7.
- [6] V. F. Dem'yanov and L. V. Vasil'ev, *Nondifferentiable optimization*, ser. Translation Series in Mathematics and Engineering. New York: Optimization Software Inc. Publications Division, 1985, translated from the Russian by Tetsushi Sasagawa.

- [7] E. Ekici, "On the directional differentiability properties of the max-min function," *Bol. Asoc. Mat. Venez.*, vol. 10, no. 1, pp. 35–42, 2003.
- [8] H. G. Guseĭnov, A. I. Subbotin, and V. N. Ushakov, "Derivatives for multivalued mappings with applications to game-theoretical problems of control," *Problems Control Inform. Theory/Problemy Upravlen. Teor. Inform.*, vol. 14, no. 3, pp. 155–167, R1–R14, 1985, with a Russian translation.
- [9] K. G. Guseinov, Y. Kucuk, and E. Ekici, "Lower and upper directional differentiability of the set valued maps and their applications," *Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.*, vol. 10, no. 1-3, pp. 25–32, 2003, second International Conference on Dynamics of Continuous, Discrete and Impulsive Systems (London, ON, 2001).
- [10] N. N. Krasovskiĭ and A. I. Subbotin, *Game-theoretical control problems*, ser. Springer Series in Soviet Mathematics. New York: Springer-Verlag, 1988, translated from the Russian by Samuel Kotz.
- [11] L. Minchenko and A. Volosevich, "Aspects of differentiability of multifunctions," in Proceedings of the 11th IFAC International Workshop Control Applications of Optimization, 3-6 July, St. Petersburg, Russia, vol. 1, 2000, pp. 239–243.
- [12] E. S. Polovinkin and G. V. Smirnov, "Differentiation of multivalued mappings and properties of the solutions of differential inclusions," *Dokl. Akad. Nauk SSSR*, vol. 288, no. 2, pp. 296–301, 1986.
- [13] N. N. Subbotina, "The maximum principle and the superdifferential of the value function," *Problems Control Inform. Theory/Problemy Upravlen. Teor. Inform.*, vol. 18, no. 3, pp. 151–160, P1–P10, 1989, with the Russian original.
- [14] L. Thibault, "On subdifferentials of optimal value functions," SIAM J. Control Optim., vol. 29, no. 5, pp. 1019–1036, 1991.

Author's address

Erdal Ekici

Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale, Turkey

E-mail address: eekici@comu.edu.tr