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Abstract. In this paper, necessary statements are given for a minimum point and a maximum
point of the max-min function. Moreover estimations for the directional lower and upper de-
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1. INTRODUCTION

The directional derivatives of max-min functions were studied in [7]. It is well-
known that max-min functions are considered and occur in control theory problems,
parametric optimization problems and differential game theory problems [4]. More-
over marginal functions are max-min functions (see [3–6, 10–14]).

In this paper, necessary statements are given for a minimum point and a maximum
point of the max-min function. It is well-known that the directional lower and upper
derivative sets of max-min set valued maps are used to state a characterization of
the directional derivative of max-min function [7]. In this paper, estimations for
the directional lower and upper derivative sets of max-min set valued maps are given.
Furthermore, a sufficient condition ensuring the existence of the directional derivative
of max-min function is obtained by using the lower differentiability of max-min set-
valued maps.

In this study, cl.Rm/ (comp.Rm/) denotes the set of all nonempty closed (com-
pact) subsets in Rm. Let a.�/ W Rn! cl.Rm/ be an upper semi-continuous set-valued
map. For .x;y/ 2 Rn�Rm and vector f 2 Rn, let us consider the following sets:

Da.x;y/ j .f /D
˚
d 2 Rm W liminf

ı!C0
ı�1 dist.yC ıd;a.xC ıf //D 0

	
;

D�a.x;y/ j .f /D
˚
v 2 Rm W lim

ı!C0
ı�1 dist.yC ıd;a.xC ıf //D 0

	
;
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where x 2 Rn, D � Rn, dist.x;D/D infd2D kx�dk. Da.x;y/ j .f / (D�a.x;y/ j
.f /) is called the upper (lower) derivative set of the set-valued map a.�/ at .x;y/ in
direction f . Note that the directional upper (lower) derivative set of the set-valued
map a.�/ is closed and there is a connection between the upper (lower) derivative set
of a set-valued map and the upper (lower) contingent cone which is used to investigate
several problems in nonsmooth analysis [1,2,8]. It is obvious thatD�a.x;y/ j .f /�
Da.x;y/ j .f /. The symbol

AD gr a.�/D f.x;y/ 2 Rn�Rm W y 2 a.x/g

denotes the graph of the set-valued map a.�/. Since a.�/ is upper semicontinuous, A
is a closed set. It is possible to show that Da.x;y/ j .f / D D�a.x;y/ j .f / D ¿
if .x;y/ … A, Da.x;y/ j .f /DD�a.x;y/ j .f /D Rm if .x;y/ 2 intA, where intA
denotes the interior of A.

Let f .�/ W Rn ! R be a function. The lower and upper derivative of f .�/ at the
point x in direction v are denoted by the symbols @�f .x/

@v
and @Cf .x/

@v
respectively,

and defined by the formulas
@�f .x/

@v
D liminf
ı!C0

Œf .xC ıv/�f .x/�ı�1;

and

@Cf .x/

@v
D limsup

ı!C0

Œf .xC ıv/�f .x/�ı�1:

If
@f .x/

@v
D lim
ı!C0

Œf .xC ıv/�f .x/�ı�1

exists and is finite, then f .�/ is said to be differentiable at the point x in direction v
and @f .x/

@v
denotes the derivative of f .�/ at the point x in direction v.

Let a.�/ WRn! comp.Rm/, b.�/ WRn! comp.Rk/ be set-valued maps and �.�; �; �/ W
Rn�Rm�Rk!R be a continuous function on Rn�Rm�Rk . The max-min function
is denoted by m.�/ and is defined by

m.x/D max
y2a.x/

min
´2b.x/

�.x;y;´/: (1.1)

In this paper, we will assume that a.�/ W Rn ! comp.Rm/, b.�/ W Rn ! comp.Rk/
are continuous set-valued maps and �.�; �; �/ W Rn �Rm �Rk ! R is a continuous
function on Rn�Rm�Rk and locally Lipschitz on Rm�Rk , i. e., for every bounded
D � Rn�Rm�Rk , there exists L.D/ > 0 such that

j�.x;y1;´1/��.x;y2;´2/j � L.D/k.y1�y2;´1�´2/k

for any .x;y1;´1/, .x;y2;´2/ 2 D. Under these conditions m.�/ is a continuous
function (see [1]). Let
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Y�.x/D
˚
.y�;´�/ 2 a.x/�b.x/ W

m.x/D max
y2a.x/

min
´2b.x/

�.x;y;´/D �.x;y�;´�/
	
: (1.2)

The map x 7! Y�.x/ is an upper semicontinuous set-valued map and it is called a
max-min set-valued map.

2. MINIMIZATION AND MAXIMIZATION PROBLEMS OF MAX-MIN FUNCTION

Now we give necessary statements for a minimum point and a maximum point of
max-min function.

Theorem 1. Let the function m.�/ W Rn ! R be in the form (1.1). Suppose that
x� 2 Rn is a minimum point of max-min function m.�/. Then

inf
f 2Rn

inf
.y;´/2Y�.x�/

inf
.d;n/2DY�.x�;y;´/j.f /

@C�.x�;y;´/

@.f;d;n/
� 0:

Proof. Let f 2 Rn. Since x� 2 Rn is a minimum point of max-min function m.�/,
then it follows that m.x�C ıf / � m.x�/ for all ı > 0. In that case, it follows from
here that

@�m.x�/

@f
D liminf
ı!C0

1

ı
Œm.x�C ıf /�m.x�/�� 0:

Hence, from here and of [7, Proposition 7], we have

0�
@�m.x�/

@f
� inf
.y;´/2Y�.x�/

inf
.d;n/2DY�.x�;y;´/j.f /

@C�.x�;y;´/

@.f;d;n/

and hence we obtain the inequality. �

Theorem 2. Let the function m.�/ W Rn ! R be in the form (1.1). Suppose that
x� 2 Rn is a maximum point of max-min function m.�/ and there exists a .y;´/ 2
Y�.x�/ such that DY�.x�;y;´/ j .f /¤¿ for all f 2 Rn. Then

sup
f 2Rn

inf
.y;´/2Y�.x�/

inf
.d;n/2DY�.x�;y;´/j.f /

@��.x�;y;´/

@.f;d;n/
� 0:

Proof. Let f 2 Rn. Since x� 2 Rn is a maximum point of max-min functionm.�/,
then it follows that m.x�C ıf / � m.x�/ for all ı > 0. In that case, it follows from
here that

@Cm.x�/

@f
D limsup

ı!C0

1

ı
Œm.x�C ıf /�m.x�/�� 0:

Hence, from here and [7, Proposition 8], we have

0�
@Cm.x�/

@f
� inf
.y;´/2Y�.x�/

inf
.d;n/2DY�.x�;y;´/j.f /

@��.x�;y;´/

@.f;d;n/

and hence we obtain the inequality. �
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3. DIRECTIONAL DERIVATIVE SETS OF MAX-MIN SET-VALUED MAPS

Now we give the estimations for the directional lower and upper derivative sets of
max-min set-valued map which are used to state a characterization of the directional
derivative of the max-min functions in [7].

Let us take the max-min function m.�/ such as:

m.x/D min
y2a.x/

�.x;y/ (3.1)

where a.�/ WRn! comp.Rm/ is a continuous set-valued map and �.�; �/ WRn�Rm!
R is a continuous function on Rn�Rm and locally Lipschitz on Rm, i. e., for every
bounded D � Rn�Rm, there exists L.D/ > 0 such that

j�.x;y1/��.x;y2/j � L.D/ky1�y2k

for any .x;y1/, .x;y2/ 2 D. Under these conditions m.�/ is a continuous function
(see [1]). Then we take

Y�.x/D
n
y� 2 a.x/ Wm.x/D min

y2a.x/
�.x;y/D �.x;y�/

o
: (3.2)

Theorem 3. Let the set-valued map Y�.�/ W Rn! comp.Rm/ be in the form (3.2).
Suppose that there exists a y� 2 Y�.x�/ such that �.�; �/ is a derivable function at the
point .x�;y�/ in direction .f;d/ for all d 2 Rm. Then

D�Y�.x�;y�/ j .f /�
n
p 2 Rm W inf

d2Da.x�;y�/j.f /

@�.x�;y�/
@.f;d/

D
@�.x�;y�/
@.f;p/

o
: (3.3)

Proof. Let y� 2 Y�.x�/ such that �.�; �/ is a derivable function at the point .x�;y�/
in direction .f;d/ for all d 2 Rm.

Let D�Y�.x�;y�/ j .f /D¿. Then the statement (3.3) holds.
Let Da.x�;y�/ j .f /D¿. Then

inf
d2Da.x�;y�/j.f /

@�.x�;y�/

@.f;d/
DC1:

Since D�Y�.x�;y�/ j .f /�D�a.x�;y�/ j .f /�Da.x�;y�/ j .f /, then it follows
that statement (3.3) holds.

Now D�Y�.x�;y�/ j .f / ¤ ¿. Take p 2 D�Y�.x�;y�/ j .f /. Then from the
definition of D�Y�.x�;y�/ j .f /, there exists a ı� > 0 such that for all ı 2 Œ0;ı��,

y�.ı/D y�C ıpCo1.ı/ 2 Y�.x�C ıf /

where ko1.ı/kı�1! 0 as ı!C0. Since

Y�.x/D fy� 2 a.x/ W �.x;y/� �.x;y�/;8y 2 a.x/g;

then it follows that for any y 2 a.x�C ıf /,

�.x�C ıf;y/� �.x�C ıf;y�C ıpCo1.ı//: (3.4)
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Choose any d 2 Da.x�;y�/ j .f /. Then from the definition of Da.x�;y�/ j .f /,
there exists a sequence yk 2 a.x�C ıkf / where ık > 0 and ık !C0 as k!1,
such that

yk D y�C ıkd Co2.ık/

where ko2.ık/kı�1k ! 0 as k!1. In that case from (3.4) since ık !C0, then it
follows that there exists a k0 2N such that ık 2 Œ0;ı�� for all k � k0 and

�.x�C ıkf;y�C ıkd Co2.ık//��.x�;y�/

� �.x�C ıkf;y�C ıkpCo1.ık//��.x�;y�/:

Since the function �.�; �/ is locally Lipschitzian on Rm, then it follows that for k D 1;
2; : : : , there exists L1 > 0 and L2 > 0 such that

j �.x�C ıkf;y�C ıkpCo1.ık//��.x�C ıkf;y�C ıkp/ j� L1 ko1.ık/k ;

j �.x�C ıkf;y�C ıkd Co2.ık//��.x�C ıkf;y�C ıkd/ j� L2 ko2.ık/k :

Consequently, we obtain

@�.x�;y�/

@.f;p/
D lim
ı!C0

Œ�.x�C ıf;y�C ıp/��.x�;y�/�ı
�1

D lim
k!1

Œ�.x�C ıkf;y�C ıkp/��.x�;y�/�ı
�1
k

D lim
k!1

Œ�.x�C ıkf;y�C ıkp/��.x�C ıkf;y�C ıkpCo1.ık//

C�.x�C ıkf;y�C ıkpCo1.ık//��.x�;y�/�ı
�1
k

� lim
k!1

ŒL1ko1.ık/kC�.x�C ıkf;y�C ıkpCo1.ık//��.x�;y�/�ı
�1
k

D lim
k!1

Œ�.x�C ıkf;y�C ıkpCo1.ık//��.x�;y�/�ı
�1
k

� lim
k!1

Œ�.x�C ıkf;y�C ıkd Co2.ık//��.x�;y�/�ı
�1
k

D lim
k!1

Œ�.x�C ıkf;y�C ıkd Co2.ık//��.x�C ıkf;y�C ıkd/

C�.x�C ıkf;y�C ıkd/��.x�;y�/�ı
�1
k

� lim
k!1

L2 ko2.ık/kı
�1
k C lim

k!1
Œ�.x�C ıkf;y�C ıkd/��.x�;y�/�ı

�1
k

D lim
k!1

Œ�.x�C ıkf;y�C ıkd/��.x�;y�/�ı
�1
k

D lim
ı!C0

Œ�.x�C ıf;y�C ıd/��.x�;y�/�ı
�1

D
@�.x�;y�/

@.f;d/
:
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Thus @�.x�;y�/
@.f;p/

�
@�.x�;y�/
@.f;d/

for any d 2Da.x�;y�/ j .f /. It follows from here that

inf
d2Da.x�;y�/j.f /

@�.x�;y�/

@.f;d/
�
@�.x�;y�/

@.f;p/
:

Since
D�Y�.x�;y�/ j .f /�DY�.x�;y�/ j .f /�Da.x�;y�/ j .f /;

then for any p 2D�Y�.x�;y�/ j .f /, p 2Da.x�;y�/ j .f / and it follows that the
relation

inf
d2Da.x�;y�/j.f /

@�.x�;y�/

@.f;d/
�
@�.x�;y�/

@.f;p/

is satisfied. In that case, it follows from the above two inequalities that the statement
holds. �

Theorem 4. Let the set-valued map Y�.�/ W Rn! comp.Rm/ be in the form (3.2).
Suppose that there exists a y� 2 Y�.x�/ such that �.�; �/ is a derivable function at the
point .x�;y�/ in the direction .f;d/ for all d 2 Rm. Then

DY�.x�;y�/ j .f /�
n
p 2 Rm W inf

d2D�a.x�;y�/j.f /

@�.x�;y�/
@.f;d/

�
@�.x�;y�/
@.f;p/

o
: (3.5)

Proof. Let y� 2 Y�.x�/ such that �.�; �/ is a derivable function at the point .x�;y�/
in direction .f;d/ for all d 2 Rm.

Let DY�.x�;y�/ j .f /D¿. Then statement (3.5) holds.
Let D�a.x�;y�/ j .f /D¿. Then

C1D inf
d2D�a.x�;y�/j.f /

@�.x�;y�/

@.f;d/
>
@�.x�;y�/

@.f;p/

and it follows that the statement (3.5) holds.
Now let DY�.x�;y�/ j .f / ¤ ¿ and D�a.x�;y�/ j .f / ¤ ¿. Let us take p 2

DY�.x�;y�/ j .f /. Then from the definition of DY�.x�;y�/ j .f /, there exists a se-
quence yk 2 Y�.x�C ıkf /, where ık > 0 and ık!C0 as k!1 such that

yk D y�C ıkpCo1.ık/

where ko1.ık/k=ık! 0 as k!1. Since

Y�.x/D fy� 2 a.x/ W �.x;y/� �.x;y�/;8y 2 a.x/g;

then it follows that for any y 2 a.x�C ıkf /,

�.x�C ıkf;y/� �.x�C ıkf;y�C ıkpCo1.ık//: (3.6)

Choose any d 2D�a.x�;y�/ j .f /. Then from the definition of D�a.x�;y�/ j .f /,
there exists a ı� > 0 such that for all ı 2 Œ0;ı��,

y.ı/D y�C ıd Co2.ı/ 2 a.x�C ıf /
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where ko2.ı/kı�1! 0 as ı!C0. In that case from (3.6) since ık !C0, then it
follows that there exists a k0 2N such that ık 2 Œ0;ı�� for all k � k0 and

�.x�C ıkf;y�C ıkd Co2.ık//��.x�;y�/

� �.x�C ıkf;y�C ıkpCo1.ık//��.x�;y�/:

Since the function �.�; �/ is locally Lipschitz on Rm, then it follows that for k D 1;
2; : : : , there exist L1 > 0 and L2 > 0 such that

j �.x�C ıkf;y�C ıkpCo1.ık/��.x�C ıkf;y�C ıkp/ j � L1 ko1.ık/k ;

j �.x�C ıkf;y�C ıkd Co2.ık//��.x�C ıkf;y�C ıkd/ j � L2 ko2.ık/k :

Consequently, we have

@�.x�;y�/

@.f;p/
D lim
ı!C0

Œ�.x�C ıf;y�C ıp/��.x�;y�/�ı
�1

D lim
k!1

Œ�.x�C ıkf;y�C ıkp/��.x�;y�/�ı
�1
k

D lim
k!1

Œ�.x�C ıkf;y�C ıkp/��.x�C ıkf;y�C ıkpCo1.ık//

C�.x�C ıkf;y�C ıkpCo1.ık//��.x�;y�/�ı
�1
k

� lim
k!1

ŒL1 ko1.ık/kC�.x�C ıkf;y�C ıkpCo1.ık//��.x�;y�/�ı
�1
k

D lim
k!1

Œ�.x�C ıkf;y�C ıkpCo1.ık//��.x�;y�/�ı
�1
k

� lim
k!1

Œ�.x�C ıkf;y�C ıkd Co2.ık//��.x�;y�/�ı
�1
k

D lim
k!1

Œ�.x�C ıkf;y�C ıkd Co2.ık//��.x�C ıkf;y�C ıkd/

C�.x�C ıkf;y�C ıkd/��.x�;y�/�ı
�1
k

� lim
k!1

L2 ko2.ık/kı
�1
k C lim

k!1
Œ�.x�C ıkf;y�C ıkd/��.x�;y�/�ı

�1
k

D lim
k!1

Œ�.x�C ıkf;y�C ıkd/��.x�;y�/�ı
�1
k

D lim
ı!C0

Œ�.x�C ıf;y�C ıd/��.x�;y�/�ı
�1

D
@�.x�;y�/

@.f;d/
:

Thus, @�.x�;y�/
@.f;p/

�
@�.x�;y�/
@.f;d/

for any d 2D�a.x�;y�/ j .f /. It follows from here that

inf
d2D�a.x�;y�/j.f /

@�.x�;y�/

@.f;d/
�
@�.x�;y�/

@.f;p/

and hence the statement holds. �
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Corollary 1. Let the set-valued map Y�.�/ W Rn! comp.Rm/ be in the form (3.2).
Suppose that there exists a y� 2 Y�.x�/ such that �.�; �/ is a differentiable function at
the point .x�;y�/. Then

D�Y�.x�;y�/ j .f /�
n
p 2 Rm W inf

d2Da.x�;y�/j.f /

D
@�.x�;y�/

@y
;d
E
D

D
@�.x�;y�/

@y
;p
Eo
;

where the symbol h�; �i denotes the inner product.

Proof. Since �.�; �/ is a differentiable function at the point .x�;y�/, then it is a
derivable function at the point .x�;y�/ in any direction .f;d/ 2 Rn�Rm and

@�.x�;y�/

@.f;d/
D

�
@�.x�;y�/

@x
;f

�
D

�
@�.x�;y�/

@y
;d

�
:

Then from Theorem 3, we obtain the corollary. �

Corollary 2. Let the set-valued map Y�.�/ W Rn! comp.Rm/ be in the form (3.2).
Suppose that there exists a y� 2 Y�.x�/ such that �.�; �/ is a differentiable function at
the point .x�;y�/. Then

DY�.x�;y�/ j .f /�
n
p 2 Rm W inf

d2D�a.x�;y�/j.f /

D
@�.x�;y�/

@y
;d
E
�

D
@�.x�;y�/

@y
;p
Eo
;

where the symbol h�; �i denotes the inner product.

Proof. It is similar to that of Theorem 4. �

Now, we give an example for the above theorems.
Example 1. Take a constant vector l 2 Rm. �.�; �/ W Rm�Rm! R is defined by

.x;y/! �.x;y/D hl;yi

and a.�/ is defined by

x! a.x/D fy 2 Rm W b.x;y/� 0g

where b.�; �/ W Rm�Rm! R is continuous differentiable such that a.x/ is bounded
for all x 2 Rm and @b.x;y/

@y
¤ 0 for any y 2 L.x/ where

L.x/D fy 2 Rm W b.x;y/D 0g:

Then a.x/ W Rm! comp.Rm/ and

Y�.x/� @a.x/� L.x/

where @a.x/ is a boundary of a.x/. It is shown that

Y�.x/�K.x/ (3.7)

where
K.x/D fy0 2 a.x/ W hl;d i � 0 for all d 2 Ta.x/.y0/g; (3.8)

and
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Ta.x/.y0/D

�
d 2 Rm W 9ık > 0 (ık!C0 as k!1),

9yk 2 a.x/ 3 d D lim
k!1

yk �y0

ık

�
;

where Ta.x/.y0/ is an upper contingent cone of a.x/ at y0.
Let y� 2 Y�.x/. Then y� 2 @a.x/ and b.x;y�/D 0. Since @b.x;y�/

@y
¤ 0, we get

Ta.x/.y0/D

�
d 2 Rm W

�
@b.x;y�/

@y
;d

�
� 0

�
(3.9)

and from [7, Corollary 2],

Da.x;y�/ j .f /DD
�a.x;y�/ j .f /

D

�
d 2 Rm W

�
@b.x;y�/

@x
;f

�
C

�
@b.x;y�/

@y
;d

�
� 0

�
:

(3.10)

Since y� 2 Y�.x/, then it follows from (3.7) that y� 2 K.x/ and since y� 2 K.x/,
then from (3.8), hl;d i � 0 for all d 2 Ta.x/.y�/. Then from (3.9) we get

hl;d i � 0 for all d 2 Rm such that
�
@b.x;y�/

@y
;d

�
� 0:

This yields l D ˛.x/@b.x;y�/
@y

with ˛.x/ > 0, and follows that

Y�.x/�

�
y� 2 @a.x/ W l D ˛.x/

@b.x;y�/

@y
; ˛.x/ > 0

�
: (3.11)

Therefore, Theorems 3 and 4 and statements (3.10), (3.11) yield

D�Y�.x;y�/ j .f /�

�
p 2 Rm W min

d2Da.x;y�/j.f /
hl;d i D hl;pi

�
D

�
p 2 Rm W hl;pi D �˛.x/

�
@b.x;y�/

@x
;f

��
;

DY�.x;y�/ j .f /�

�
p 2 Rm W min

d2D�a.x;y�/j.f /
hl;d i � hl;pi

�
D

�
p 2 Rm W hl;pi � �˛.x/

�
@b.x;y�/

@x
;f

��
:

4. DIRECTIONAL DIFFERENTIABILITY OF MAX-MIN FUNCTION

In [7], the directional lower and upper derivatives of max-min function are investi-
gated by using the directional lower and upper derivative sets of max-min set-valued
map.
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Now, in this paper, a sufficient condition ensuring the existence of the directional
derivative of the max-min function is obtained by using the lower differentiabil-
ity of max-min set-valued maps. Hence by using the lower different, a character-
ization of the upper and lower directional derivatives of max-min functions is ob-
tained. For A � Rn and C � Rn, we put ˇ.A;C / D supa2Ad.a;C /, dH .A;C / D
maxfˇ.A;C /;ˇ.C;A/g. It is known that (comp.Rn/;dH .�; �/) is a metric space.

Definition 1. The set-valued map a.�/ WRn! comp.Rm/ is said to be lower differ-
entiable at the point x 2Rn in direction f 2Rn, if there existG�.x;f /2 comp.Rm/,
GC.x;f / 2 comp.Rm/ such that

lim
ı!C0

1

ı
ˇ.a.x/C ıGC.x;f /;a.xC ıf /C ıG�.x;f //D 0:

In that case the pair (G�.x;f /;GC.x;f /) is said to be lower differential of the set-
valued map a.�/ W Rn! comp.Rm/ at the point x 2 Rn in the direction f 2 Rn [9].

In [9], the following two propositions are given.

Proposition 1. Let the set-valued map a.�/ W Rn! comp.Rm/ be lower differen-
tiable at the point x 2 Rn in direction f 2 Rn. Then Da.x;y/ j .f /¤ ¿ for every
y 2 a.x/.

Proposition 2. Let the set-valued map a.�/ W Rn! comp.Rm/ be lower differen-
tiable at the point x 2Rn in direction f 2Rn and the pair .0;GC.x;f // be its lower
differential. Then D�a.x;y/ j .f /¤¿ for every y 2 a.x/.

In [7], the following two propositions characterizing upper and lower directional
derivatives of max-min function m.�/ are proved.

Proposition 3. For all x 2 Rn and f 2 Rn

@�m.x/

@f
� inf
.y;´/2Y�.x/

inf
.d;n/2DY�.x;y;´/j.f /

@C�.x;y;´/

@.f;d;n/
;

@Cm.x/

@f
� inf
.y;´/2Y�.x/

inf
.d;n/2D�Y�.x;y;´/j.f /

@C�.x;y;´/

@.f;d;n/
:

Proposition 4. Let x 2 Rn, f 2 Rn and there exists .y�;´�/ 2 Y�.x/ such that
DY�.x;y�;´�/ j .f /¤¿. Then

@Cm.x/

@f
� inf
.y;´/2Y�.x/

inf
.d;n/2DY�.x;y;´/j.f /

@��.x;y;´/

@.f;d;n/
:

Moreover if there exists .y�;´�/ 2 Y�.x/ such that D�Y�.x;y�;´�/ j .f /¤¿ then

@�m.x/

@f
� inf
.y;´/2Y�.x/

inf
.d;n/2D�Y�.x;y;´/j.f /

@��.x;y;´/

@.f;d;n/
:
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Now, by using the lower differentiability of max-min set-valued maps, we give a
characterization of the upper and lower directional derivatives of m.�/ which follows
from Propositions 1 – 4.

Theorem 5. Suppose that the set-valued map Y�.�/ W Rn ! comp.Rm �Rk/ is
lower differentiable at the point x 2 Rn in the direction f 2 Rn. Then

@Cm.x/

@f
� inf
.y;´/2Y�.x/

inf
.d;n/2D�Y�.x;y;´/j.f /

@C�.x;y;´/

@.f;d;n/
;

@Cm.x/

@f
� inf
.y;´/2Y�.x/

inf
.d;n/2DY�.x;y;´/j.f /

@��.x;y;´/

@.f;d;n/
:

Theorem 6. Suppose that the set-valued map Y�.�/ W Rn ! comp.Rm �Rk/ is
lower differentiable at the point x 2 Rn in direction f 2 Rn and .0;GC.x;f // is
its lower differential. Let the function �.�; �; �/ W Rn �Rm �Rk ! R be directional
differentiable at the point .x;y;´/ in direction .f;d;n/ 2 Rn � Rm � Rk for any
.y;´/ 2 Y�.x/ and .d;n/ 2 Rm�Rk . Then

@m.x/

@f
D inf
.y;´/2Y�.x/

inf
.d;n/2DY�.x;y;´/j.f /

@�.x;y;´/

@.f;d;n/
:

5. CONCLUSIONS

Necessary statements are given for a minimum point and a maximum point of the
max-min function. The estimations for the directional lower and upper derivative
sets of max-min set-valued map which are used to state a characterization of the di-
rectional derivative of max-min function are given. Moreover, by using the lower
differentiability of max-min set-valued maps, sufficient condition ensuring the exis-
tence of the directional derivative of the max-min function is obtained.
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Applications. Boston, MA: Birkhäuser Boston Inc., 1990, vol. 2.

[2] F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P. R. Wolenski, “Qualitative properties of trajectories
of control systems: a survey,” J. Dynam. Control Systems, vol. 1, no. 1, pp. 1–48, 1995.

[3] F. H. Clarke and R. B. Vinter, “The relationship between the maximum principle and dynamic
programming,” SIAM J. Control Optim., vol. 25, no. 5, pp. 1291–1311, 1987.

[4] J. M. Danskin, The theory of max-min and its application to weapons allocation problems, ser.
Econometrics and Operations Research, Vol. V. Springer-Verlag New York, Inc., New York,
1967.

[5] V. F. Demyanov and A. M. Rubinov, Constructive nonsmooth analysis, ser. Approximation &
Optimization. Frankfurt am Main: Peter Lang, 1995, vol. 7.

[6] V. F. Dem0yanov and L. V. Vasil0ev, Nondifferentiable optimization, ser. Translation Series in
Mathematics and Engineering. New York: Optimization Software Inc. Publications Division,
1985, translated from the Russian by Tetsushi Sasagawa.



146 ERDAL EKICI

[7] E. Ekici, “On the directional differentiability properties of the max-min function,” Bol. Asoc. Mat.
Venez., vol. 10, no. 1, pp. 35–42, 2003.

[8] H. G. Guseı̆nov, A. I. Subbotin, and V. N. Ushakov, “Derivatives for multivalued mappings with
applications to game-theoretical problems of control,” Problems Control Inform. Theory/Problemy
Upravlen. Teor. Inform., vol. 14, no. 3, pp. 155–167, R1–R14, 1985, with a Russian translation.

[9] K. G. Guseinov, Y. Kucuk, and E. Ekici, “Lower and upper directional differentiability of the
set valued maps and their applications,” Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.,
vol. 10, no. 1-3, pp. 25–32, 2003, second International Conference on Dynamics of Continuous,
Discrete and Impulsive Systems (London, ON, 2001).

[10] N. N. Krasovskiı̆ and A. I. Subbotin, Game-theoretical control problems, ser. Springer Series in
Soviet Mathematics. New York: Springer-Verlag, 1988, translated from the Russian by Samuel
Kotz.

[11] L. Minchenko and A. Volosevich, “Aspects of differentiability of multifunctions,” in Proceed-
ings of the 11th IFAC International Workshop Control Applications of Optimization, 3-6 July, St.
Petersburg, Russia, vol. 1, 2000, pp. 239–243.

[12] E. S. Polovinkin and G. V. Smirnov, “Differentiation of multivalued mappings and properties of
the solutions of differential inclusions,” Dokl. Akad. Nauk SSSR, vol. 288, no. 2, pp. 296–301,
1986.

[13] N. N. Subbotina, “The maximum principle and the superdifferential of the value function,” Prob-
lems Control Inform. Theory/Problemy Upravlen. Teor. Inform., vol. 18, no. 3, pp. 151–160, P1–
P10, 1989, with the Russian original.

[14] L. Thibault, “On subdifferentials of optimal value functions,” SIAM J. Control Optim., vol. 29,
no. 5, pp. 1019–1036, 1991.

Author’s address

Erdal Ekici
Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canak-

kale, Turkey
E-mail address: eekici@comu.edu.tr


