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1. I

In the class of functional differential equations, the question on the solvability of
the initial value problem, as is well-known, is non-trivial even in the linear case. For
example, the simplest scalar functional differential equation

u′(t) =
u(b)

b
+ q(t), t ∈ [0, b], (1.1)

has no solutions satisfying the initial condition

u(0) = c,

provided that the function q ∈ L1([0, b],�) and the real constant c are related by the
inequality ∫ b

0
q(s)ds , −c.

From the standpoint of the theory of ordinary differential equations, the fact indicated
may seem somewhat strange if we note that (1.1) is a scalar linear equation with the
constant coefficient b−1, and this coefficient, moreover, becomes arbitrarily small
when the length of the interval, b, increases to +∞. Such phenomena are, however,
not uncommon, if not typical, for functional differential equations.
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106 ANDREI RONTÓ

At present, there are not but a few sharp and efficient conditions guaranteeing the
unique solvability of the initial value problem for differential equations with arbitrary
argument deviations, and most of them are available for the one-dimensional case
only (see, e. g., [4] and references therein).

In this paper, we continue the study initiated in [2, 3, 6] and establish some new
conditions guaranteeing the unique solvability of the problem

u′k(t) =

n∑

j=1

rk j(t)u j(ωk j(t)) + qk(t), t ∈ [a, b], k = 1, 2, . . . , n, (1.2)

uk(τ) = ck, k = 1, 2, . . . , n. (1.3)

Here, n ∈ �, τ is a given point from [a, b], qk : [a, b] → � and rk j : [a, b] → �,
k, j = 1, 2, . . . , n, are Lebesgue integrable functions, {ck | k = 1, 2, . . . , n} ⊂ � are
given constants, and ωk j, k, j = 1, 2, . . . , n, are arbitrary measurable transformations
of the interval [a, b] to itself.

By a solution of problem (1.2), (1.3), as usual [1], we mean a vector-function
u = (uk)n

k=1 : [a, b]→ �n with absolutely continuous components uk, k = 1, 2, . . . , n,
satisfying relations (1.2) almost everywhere on [a, b] and possessing properties (1.3).

2. N

The following notation is used throughout the paper.
(1) � = {1, 2, . . . , }, � = (−∞,∞).
(2) L1([a, b],�n) is the Banach space of Bochner integrable functions u : [a, b]→

�n endowed by the norm

L1([a, b],�n) 3 u = (uk)n
k=1 7−→ max

k=1,2,...,n

∫ b

a
|uk(t)| dt.

(3) C([a, b],�n) is the Banach space of continuous functions u : [a, b] → �n

endowed by the norm

C([a, b],�n) 3 u = (uk)n
k=1 7−→ max

k=1,2,...,n
max
t∈[a,b]

|uk(t)|. (2.1)

(4) Cτ([a, b],�n), where τ ∈ [a, b], is the subspace of C([a, b],�n) constituted
by those functions u for which u(τ) = 0.

(5) r(A) is the spectral radius of a bounded linear operator A.
(6) GLn(�) is the algebra of the n-dimensional square matrices with real ele-

ments.

3. C       (1.2), (1.3)

In this section, we present our main results concerning the initial value problem
(1.2), (1.3). The proofs are given later, in Section 5.
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3.1. Existence of Green’s operator. The following statement provides condi-
tions sufficient for the unique solvability of the initial value problem (1.2), (1.3).

Theorem 3.1. Let there exist some α ∈ [1,+∞) and {γk | k = 1, 2, . . . , n} ⊂
(0,+∞) such that one of the following conditions is satisfied:

max
k=1,2,...,n

vrai max
t∈[a,b]\{τ}

1
γk |t − τ|α−1

n∑

j=1

γ j |rk j(t)| |ωk j(t) − τ|α < α, (3.1a)

max
k=1,2,...,n

sup
t∈[a,b]\{τ}

sign (t − τ)
γk |t − τ|α

n∑

j=1

γ j

∫ t

τ
|rk j(s)| |ωk j(s) − τ|αds < 1, (3.1b)

max
k=1,2,...,n

vrai max
t∈[a,b]\{τ}

n∑

l=1

|rkl(t)|
γk |t − τ|α−1

n∑

j=1

γ j

∣∣∣∣∣∣
∫ ωkl(t)

τ
|rl j(s)||ωl j(s) − τ|αds

∣∣∣∣∣∣ < α. (3.1c)

Then the initial value problem (1.2), (1.3) is uniquely solvable for arbitrary con-
stants {ck | k = 1, 2, . . . , n} ⊂ � and integrable functions qk : [a, b] → �, k =

1, 2, . . . , n.

None of the strict inequalities (3.1a), (3.1b), and (3.1c) assumed in Theorem 3.1
can be replaced by the corresponding non-strict inequality. For instance, the condi-
tion

max
k=1,2,...,n

vrai max
t∈[a,b]\{τ}

1
γk |t − τ|α−1

n∑

j=1

γ j |rk j(t)| |ωk j(t) − τ|α ≤ α (3.2)

does not guarantee the unique solvability of problem (1.2), (1.3) because, as follows
from the example given below, for any α ∈ [1,+∞) and τ ∈ [a, b], one can specify a
functional differential system (1.2) for which relation (3.2) is satisfied but the Cauchy
problem (1.3) is not uniquely solvable.

Example. Given τ ∈ [a, b] and α ∈ [1,+∞), consider the scalar functional differ-
ential equation

u′(t) =
α |t − τ|α−1

|θ − τ|α sign (t − τ) u(θ), t ∈ [a, b], (3.3)

where θ ∈ [a, b] is an arbitrary point different from τ. This equation, clearly, has form
form (1.2) with n = 1, q1(t) = 0, ω11(t) = θ, and

r11(t) =
α |t − τ|α−1

|θ − τ|α sign (t − τ)

for almost every t ∈ [a, b]. It is easy to verify that, for an arbitrary λ, the function

u(t) = λ |t − τ|α , t ∈ [a, b],

is a solution of the homogeneous Cauchy problem

u(τ) = 0
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for equation (3.3). However, condition (3.2) is satisfied for this equation because

vrai max
t∈[a,b]\{τ}

1
γ1 |t − τ|α−1γ1 |r11(t)| |ω11(t) − τ|α = α.

One can verify that the non-strict versions of inequalities (3.1b) and (3.1c) are also
satisfied in this case.

3.2. Positivity of Green’s operator. The conditions given below guarantee not
only existence but also the positivity of Green’s operator associated with the homo-
geneous Cauchy problem (1.2), (1.3).

Theorem 3.2. Let there exist some {σ1, σ2, . . . , σn} ⊂ {−1, 1} such that

σkσj rk j(t) sign (t − τ) ≥ 0 (3.4)

for almost every t ∈ [a, b] and all k, j = 1, 2, . . . , n. Moreover, assume the existence
of some constants α ∈ [1,+∞) and {γk | k = 1, 2, . . . , n} ⊂ (0,+∞) such that one of
the following conditions is satisfied for all k = 1, 2, . . . , n:∗

vrai max
t∈[a,b]\{τ}

σk sign (t − τ)

γk |t − τ|α−1

n∑

j=1

σjγ jrk j(t) |ωk j(t) − τ|α < α, (3.5a)

sup
t∈[a,b]\{τ}

σk

γk |t − τ|α
n∑

j=1

σjγ j

∫ t

τ
rk j(s) |ωk j(s) − τ|αds < 1, (3.5b)

vrai max
t∈[a,b]\{τ}

σk sign (t − τ)

γk |t − τ|α−1

n∑

j=1

rk j(t)
n∑

l=1

σl γl

∫ ωk j(t)

τ
r jl(s) |ω jl(s) − τ|αds < α. (3.5c)

Then the initial value problem (1.2), (1.3) is uniquely solvable for arbitrary con-
stants {ck | k = 1, 2, . . . , n} ⊂ � and integrable functions qk : [a, b] → �, k =

1, 2, . . . , n. If, in addition, qk and ck, k = 1, 2, . . . , n, possess the property

σk

(∫ t

τ
qk(s)ds + ck

)
≥ 0, t ∈ [a, b], k = 1, 2, . . . , n,

then the unique solution u = (uk)n
k=1 of problem (1.2), (1.3) satisfies the condition

σkuk(t) ≥ 0, t ∈ [a, b], k = 1, 2, . . . , n.

The example presented in Section 3.1 shows that conditions (3.5a), (3.5b), and
(3.5c) are optimal in the sense that none of them can be weakened to the correspond-
ing non-strict inequality.

4. G 

The theorems presented above rely upon some general results on linear integral
functional operators. The results mentioned are presented in this section.

∗We emphasise that one and the same condition should be satisfied for all k from 1 to n.
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4.1. Spectra of linear integral operators with inner superpositions. Let Ri :
[a, b] → GLn(�), i = 1, 2, . . . ,N, where N ∈ �, be matrix-valued functions with
Lebesgue integrable components, and ωi : [a, b]→ [a, b], i = 1, 2, . . . ,N, be measur-
able functions.

For every u from Cτ([a, b],�n),† we put

(Bu)(t) :=
N∑

i=1

∫ t

τ
Ri(s)u(ωi(s))ds, t ∈ [a, b]. (4.1)

Obviously, B is a bounded linear mapping of the space Cτ([a, b],�n) to itself. One
can show that operator (4.1) is completely continuous in the space mentioned.

Until the end of this section, we fix a diagonal matrix

Σ = diag {σ1, σ2, . . . , σn} (4.2)

with components {σ1, σ2, . . . , σn} ⊂ {−1, 1}. For the sake of brevity we introduce a
definition.

Definition 4.1. For {x, y} ⊂ �n we write x ≥Σ y (resp., x >Σ y) if, and only if
σk xk ≥ σkyk (resp., σkxk > σkyk) for all k = 1, 2, . . . , n.

The following statement provides a convenient way to estimate the spectral radius
of operator (4.1).

Proposition 4.1. Let each of the functions Rν : [a, b] → GLn(�), ν = 0, 1, . . . ,N,
satisfy the condition

ΣRν(t)Σ sign (t − τ) ≥ 0 for a. e. t ∈ [a, b] (4.3)

with respect to the given matrix (4.2). Furthermore, assume that there exists an
absolutely continuous function y : [a, b]→ �n possessing the properties

y(τ) = 0; y(t) >Σ 0 for all t ∈ [a, b] \ {τ} (4.4)

and

y′(t) sign (t − τ) ≥Σ 0 for a. e. t ∈ [a, b], (4.5)

and such that, with a certain constant % ∈ (1,+∞), the integral relation

y(t) ≥Σ %

N∑

i=1

∫ t

τ
Ri(s)y(ωi(s))ds (4.6)

is true for every t ∈ [a, b].
Then the spectral radius r(B) of the operator B : Cτ([a, b],�n) → Cτ([a, b],�n)

given by formula (4.1) is less than 1.

Remark 4.1. The inequality in (4.3) and similar relations below is understood com-
ponentwise.

†See notation (4), Section 2.
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Proposition 4.1 is obtained from [3, Corollary 6] and the argument given in the
proof of [6, Theorem 1]. The details are omitted here.

Proposition 4.2. Let the functions Rν : [a, b] → GLn(�), ν = 0, 1, . . . ,N, satisfy
condition (4.3). Moreover, there exist some constants γ ∈ [0, 1) and α ∈ [1,+∞) and
an n-dimensional vector g with the property

g >Σ 0 (4.7)

such that
N∑

ν=1

∫ t

τ
Rν(s) g |ων(s) − τ|α ds ≤Σ γ |t − τ|α g, t ∈ [a, b]. (4.8)

Then the spectral radius r(B) of operator (4.1) in the space Cτ([a, b],�n) is less
than 1.

P. Let y : [a, b]→ �n be the function given by the formula

y(t) := |t − τ|αg, t ∈ [a, b], (4.9)

where α and g are the values appearing in the formulation of Theorem 4.2. Function
(4.9) obviously possesses properties (4.4). One can verify that, for almost every
t ∈ [a, b],

y′(t) = α |t − τ|α−1 sign (t − τ) g,

and, hence, function (4.9) also satisfies condition (4.5). Furthermore, it follows from
assumption (4.8) that function (4.9) satisfies condition (4.6) with % := γ−1.‡ There-
fore, it remains to apply Proposition 4.1. �

Proposition 4.3. Let the functions Rν : [a, b] → GLn(�), ν = 0, 1, . . . ,N, satisfy
condition (4.3). Let, moreover, there exist some constants γ ∈ [0, 1) and α ∈ [1,+∞)
and n-dimensional vector g with property (4.7) such that the following relation is
satisfied for almost every t from [a, b]:

N∑

ν=1

Rν(t)
N∑

i=1

∫ ων(t)

τ
Ri(s) g |ωi(s) − τ|α ds · sign (t − τ) ≤Σ γα |t − τ|α−1 g. (4.10)

Then the spectral radius r(B) of operator (4.1) in the space Cτ([a, b],�n) is less
than 1.

To establish the theorem formulated above, one should combine Theorem 4.1, [3,
Corollary 7], and [3, Remark 6].

‡It is sufficient to consider the case where γ > 0 because if γ = 0, then the corresponding relation
(4.6) is satisfied with an arbitrary % ∈ (1,+∞).
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Proposition 4.4. Assume that there exists a certain diagonal matrix (4.2) with
{σ1, σ2, . . . , σn} ⊂ {−1, 1} for which the functions Rν : [a, b] → GLn(�), ν =

0, 1, . . . ,N, satisfy condition (4.3) and, moreover, let there exist some constants γ ∈
[0, 1) and α ∈ [1,+∞) and n-dimensional vector g with property (4.7) such that

N∑

ν=1

Rν(t) g |ων(t) − τ|α sign (t − τ) ≤Σ γα |t − τ|α−1 g for a. e. t ∈ [a, b]. (4.11)

Then the spectral radius r(B) of operator (4.1) in the space Cτ([a, b],�n) is less
than 1.

Similarly to Proposition 4.3, the assertion of Proposition 4.4 is deduced from [3,
Corollary 8] and [3, Remark 6].

4.2. Solvability of linear initial value problems. The combination of the state-
ments presented in Section 4.1 with Lemma 4.1 given below leads one to efficient
conditions of solvability of the Cauchy problem (1.3),

u(τ) = c, (4.12)

for the functional differential equation of the form

u′(t) =

N∑

i=1

Ri(t)u(ωi(t)) + q(t), t ∈ [a, b], (4.13)

where N ∈ �, the functions Ri : [a, b] → GLn(�), i = 1, 2, . . . ,N, and q : [a, b] →
�n are integrable, and ωi : [a, b]→ [a, b], i = 1, 2, . . . ,N, are measurable.

Lemma 4.1. If an absolutely continuous function u : [a, b] → �n is a solution of
the Cauchy problem (4.13), (4.12), then it satisfies the equation

u(t) = (Bu)(t) + c +

∫ t

τ
q(s)ds, t ∈ [a, b]. (4.14)

Conversely, every continuous solution u(·) of equation (4.14) is also a solution of
problem (4.12), (4.13)

The assertion of Lemma 4.1, which is easily verified by direct computation, allows
one to interpret the space of solutions of the homogeneous problem

u′(t) =

N∑

i=1

Ri(t)u(ωi(t)), t ∈ [a, b],

u(τ) = 0,

as the set of fixed points of operator (4.1) considered in the space Cτ([a, b],�n).



112 ANDREI RONTÓ

Lemma 4.2. Let the functions Ri : [a, b] → GLn(�), i = 1, 2, . . . ,N, satisfy
condition (4.3) for some matrix (4.2) with elements {σ1, σ2, . . . , σn} ⊂ {−1, 1}. Then

N∑

i=1

Ri(t)u(ωi(t)) sign (t − τ) ≥Σ 0 for a. e. t ∈ [a, b], (4.15)

provided that the continuous function u : [a, b]→ �n satisfies the condition

u(t) ≥Σ 0, t ∈ [a, b]. (4.16)

P. Indeed, let u : [a, b] → �n be an arbitrary continuous function possessing
property (4.16), or, which is the same (see Definition 4.1), such that the component-
wise inequality

Σu(t) ≥ 0, t ∈ [a, b], (4.17)

is true. Since {σk | k = 1, 2, . . . , n} ⊂ {−1, 1}, it is obvious that Σ2 is the identity
matrix and, hence, according to Definition 4.1, relation (4.15) can be rewritten in the
form

Σ

N∑

i=1

Ri(t)ΣΣu(ωi(t)) sign (t − τ) ≥ 0 for a. e. t ∈ [a, b]. (4.18)

In view of (4.17), we see that Σu(ωi(t)) ≥ 0 for every i = 1, 2, . . . ,N and almost every
t ∈ [a, b]. Therefore, (4.18) is true provided that each of the functions Ri : [a, b] →
GLn(�), i = 1, 2, . . . ,N, satisfies condition (4.3). �

Lemma 4.3. Condition (4.3) is satisfied if, and only if

σkσj r(ν)
k j (t) sign (t − τ) ≥ 0 (4.19)

for almost every t ∈ [a, b] and all k, j = 1, 2, . . . , n and ν = 1, 2, . . . ,N, where r(ν)
k j

stand for the corresponding elements of the matrix Rν = (r(ν)
k j )n

k, j=1.

P. It is not difficult to verify that, for all ν = 1, 2, . . . ,N and almost every
t ∈ [a, b], the matrix ΣRν(t)Σ in the left-hand side of (4.3) has the form

ΣRν(t)Σ =



r(ν)
11 (t) σ1σ2r(ν)

11 (t) . . . σ1σnr(ν)
1n (t)

σ2σ1r(ν)
21 (t) r(ν)

11 (t) . . . σ2σnr(ν)
2n1(t)

. . . . . . . . . . . .

σnσ1r(ν)
n1 (t) σnσ2r(ν)

n2 (t) . . . r(ν)
nn (t)


,

and, therefore, (4.3) means nothing but the fulfilment of (4.19) for almost every t ∈
[a, b] and all k and j from 1 to n. �

The following statement summarises the conditions established by the proposi-
tions above.
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Proposition 4.5. Assume that the matrix-valued functions Rν : [a, b] → GLn(�),
ν = 0, 1, . . . ,N, satisfy condition (4.3) with respect to some matrix (4.2) with compo-
nents {σ1, σ2, . . . , σn} ⊂ {−1, 1}. Moreover, let there exist some constants γ ∈ [0, 1)
and α ∈ [1,+∞) and vector g ∈ �n with property (4.7) such that one of conditions
(4.8), (4.10), and (4.11) is true.

Then the spectral radius of operator (4.1) in Cτ([a, b],�n) admits the estimate

r(B) < 1.

P. One should apply Proposition 4.2, 4.3, or 4.4, depending on the conditions
assumed. �

Combining Proposition 4.5 with with Lemma 4.1, we arrive at

Theorem 4.1. Under conditions of Proposition 4.5, the initial value problem (4.12),
(4.13) has a unique solution u(·) for any q ∈ L1([a, b],�n) and c ∈ �n. Moreover, if
q and c possess the property

∫ t

τ
q(s)ds ≥Σ −c, t ∈ [a, b], (4.20)

then the solution u(·) of problem (4.12), (4.13) satisfies condition (4.16).

P. The validity of the first assertion of the theorem is a consequence of Propo-
sition 4.5 and Lemma 4.1. The second assertion follows from Lemma 4.2. �

For systems (4.13) with coefficients not satisfying conditions of type (4.3), the
following somewhat weaker statement is true.

Theorem 4.2. Assume that, for some constants γ ∈ [0, 1) and α ∈ [1,+∞) and
vector g = (gk)n

k=1 ∈ �n with strictly positive components, one of the following
conditions is satisfied:§

N∑

ν=1

∫ t

τ
|Rν(s)| g |ων(s) − τ|α ds · sign (t − τ) ≤ γ |t − τ|α g, t ∈ [a, b], (4.21)

N∑

ν=1

sign (ων(t) − τ) |Rν(t)|
N∑

i=1

∫ ων(t)

τ
|Ri(s)| g |ωi(s) − τ|α ds

≤ γα |t − τ|α−1 g for a. e. t ∈ [a, b], (4.22)

and
N∑

ν=1

|Rν(t)| g |ων(t) − τ|α ≤ γα |t − τ|α−1 g for a. e. t ∈ [a, b]. (4.23)

§In (4.21) and similar relations below, we use the notation |M| = (|mk j|)k, j=1 for a matrix M =

(mk j)k, j=1.
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Then the initial value problem (4.12), (4.13) has a unique solution u(·) for any
q ∈ L1([a, b],�n) and c ∈ �n.

It should be noted that, in contrast to Theorem 4.1, the solution u of problem
(4.12), (4.13) may not possess property (4.16) under assumptions of Theorem 4.2
even if q and c satisfy condition (4.20).

4.3. Auxiliary statements and the proof of Theorem 4.2. We need the follow-
ing lemma.

Lemma 4.4. Let A : Cτ([a, b],�n) → Cτ([a, b],�n) be the operator defined by
the formula

(Au)(t) :=
N∑

i=1

∫ t

τ
|Ri(s)| sign (s − τ) u(ωi(s)) ds, t ∈ [a, b]. (4.24)

Then the componentwise estimate

− (Au) (t) ≤ (Bu) (t) ≤ (Au) (t), t ∈ [a, b], (4.25)

is true for an arbitrary continuous function u : [a, b]→ �n possessing the properties

u(τ) = 0; u(t) ≥ 0, t ∈ [a, b]. (4.26)

Recall that the operator B : Cτ([a, b],�n) → Cτ([a, b],�n) is determined by the
matrix-valued functions Ri : [a, b] → GLn(�), i = 1, 2, . . . ,N, according to formula
(4.1).

P  L 4.4. Indeed, let u satisfy (4.26). Then, according to (4.1), we
have

−
N∑

i=1

∫ t

τ
|Ri(s)| u(ωi(s))ds ≤ (Bu) (t) ≤

N∑

i=1

∫ t

τ
|Ri(s)| u(ωi(s))ds

if t ≥ τ, and, similarly,
N∑

i=1

∫ t

τ
|Ri(s)| u(ωi(s))ds ≤ (Bu) (t) ≤ −

N∑

i=1

∫ t

τ
|Ri(s)| u(ωi(s))ds

if t ≤ τ. This, in view of (4.24), leads us to (4.25). �

The following statement is, in fact, Theorem 5.3 from [5].

Theorem 4.3. Let K be a normal and reproducing cone in a real Banach space X
and A and B be linear operators in X such that

{Au + Bu, Au − Bu} ⊆ K for an arbitrary u ∈ K. (4.27)

Then the relation
r(B) ≤ r(A) (4.28)

is true for the spectral radii of A and B.
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Remark 4.2. Theorem 5.3 from [5] contains the assumption that the mapping A
should leave the cone K invariant, i. e.,

A (K) ⊆ K. (4.29)

It easy to see that inclusion (4.29) follows immediately from condition (4.27) and,
thus, can be omitted in the formulation.

Now we are in position to prove Theorem 4.2.

P  T 4.2. Let us set

X := Cτ([a, b],�n) (4.30)

and

K :=
{
u = (uk)n

k=1 ∈ Cτ([a, b],�n) | uk(t) ≥ 0 for all k = 1, 2, . . . , n

and t ∈ [a, b]
}
. (4.31)

Obviously, set (4.30) (see notation (4), Section 2) is a Banach space with respect to
the uniform norm (2.1). It is also easy to verify that set (4.31) is a cone in X and,
moreover, this cone is normal and reproducing (see, e. g., [5], §§ 3.2 and 3.3, for the
terminology).

It follows from Lemma 4.4 that relation (4.25) holds for the operators A and B
given by formulae (4.1) and (4.24), respectively. Taking (4.31) into account, we con-
clude that the operators mentioned have property (4.27), and therefore Theorem 4.3
ensures the validity of estimate (4.28).

Relations (4.21) and (4.22), as is easy to see, can be rewritten as
N∑

ν=1

∫ t

τ
|Rν(s)| sign (s − τ) g |ων(s) − τ|α ds ≤ γ |t − τ|α g, t ∈ [a, b], (4.32)

and
N∑

ν=1

|Rν(t)|
N∑

i=1

∫ ων(t)

τ
|Ri(s)| sign (s − τ) g |ωi(s) − τ|α ds ≤

≤ γα |t − τ|α−1 g, t ∈ [a, b], (4.33)

respectively. Therefore, assumptions (4.21), (4.22), and (4.23) guarantee the ful-
filment of the corresponding relations (4.8), (4.10), and (4.11) with Σ equal to the
identity matrix and Ri, i = 1, 2, . . . ,N, replaced by the functions

[a, b] 3 t 7−→ |Ri(t)| sign (t − τ) , i = 1, 2, . . . ,N.

Applying Proposition 4.4 to the operator A : Cτ([a, b],�n)→ Cτ([a, b],�n) given by
the formula (4.24), we conclude that its spectral radius admits the estimate

r(A) < 1. (4.34)
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In view of (4.28), inequality (4.34) implies that r(B) < 1. Now, similarly to Theo-
rem 4.1, it remains to apply Lemma 4.1. �

5. P     S 3

Let us put N := n2 and, for any ν = 1, 2, . . . ,N,

kν :=
⌊
ν − 1

n

⌋
+ 1 (5.1)

and

jν := ν − n
⌊
ν − 1

n

⌋
, (5.2)

where the symbol b·c stands for the integer part of a number. Furthermore, define the
functions ων : [a, b]→ [a, b] and Rν : [a, b]→ GLn(�), ν = 1, 2, . . . , n2, by setting

ων(t) := ωkν jν(t) (5.3)

and
Rν(t) := rkν jν(t)Πν, (5.4)

where ν = 1, 2, . . . , n2, t ∈ [a, b], and Πν is the n-dimensional matrix the only
non-zero element of which is equal to 1 and located at row kν and column jν, ν =

1, 2, . . . , n2; in other words,

Πν =



δ1,kνδ1, jν δ1,kνδ2, jν . . . δ1,kνδn, jν
δ2,kνδ1, jν δ2,kνδ2, jν . . . δ2,kνδn, jν
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
δn,kνδ1, jν δn,kνδ2, jν . . . δn,kνδn, jν


, (5.5)

where δk, j, k, j = 1, 2, . . . , n, is the Kronecker symbol.

5.1. Lemmata. Let us establish several auxiliary statements.

Lemma 5.1. For any ν from 1 to n2, the equality

(kν − 1) n + jν = ν (5.6)

is true. Furthermore,

{kν | ν = 1, 2, . . . , n2} = {1, 2, . . . , n} (5.7)

and

{ jν | ν = 1, 2, . . . , n2} = {1, 2, . . . , n}. (5.8)
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P. Equality (5.6) is obvious from formulae (5.1) and (5.2). To establish (5.7)
and (5.8), one should note that (5.1) can be rewritten as the system of equalities

k1 = k2 = · · · = kn = 1,
kn+1 = kn+2 = · · · = k2n = 2,

k2n+1 = k2n+2 = · · · = k3n = 3,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k(n−1)n+1 = k(n−1)n+2 = · · · = kn2 = n,

(5.9)

and, similarly, relations (5.2) mean that
j1 = jn+1 = j2n+1 = · · · = j(n−1)n+1 = 1,
j2 = jn+2 = j2n+2 = · · · = j(n−1)n+2 = 2,
j3 = jn+3 = j2n+3 = · · · = j(n−1)n+3 = 3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

jn = j2n = j3n = · · · = jn2 = n.

(5.10)

Relations (5.9) and (5.10) lead us to the required equalities (5.7) and (5.8). �

Lemma 5.2. A number ν ∈ {1, 2, . . . , n2} satisfies the condition kν = k, where
k ∈ {1, 2, . . . , n}, if, and only if it satisfies the inequality

1 ≤ ν − (k − 1) n ≤ n, (5.11)

in which case
jν = ν − (k − 1) n + 1. (5.12)

P. Taking (5.9) and (5.10) into account, we conclude that condition (5.14) is
necessary and sufficient for the fulfilment of the equality k = kν. Equality (5.12) is
an immediate consequence of relation (5.6). �

For all k from 1 to n, put

ek := col (0, 0, . . . , 0︸      ︷︷      ︸
k−1

, 1, 0, . . . , 0).

Lemma 5.3. Let {mk j | k, j = 1, 2, . . . , n} ⊂ � be arbitrary constants and v =

(v j)n
j=1 be an arbitrary vector. Then the equality

n2∑

ν=1

mkν jνe
∗
kΠνv =

n∑

j=1

mk jv j (5.13)

is true for any k from 1 to n.

Recall that the n × n matrices Πν, ν = 1, 2, . . . , n2, appearing in equality (5.13) are
defined by formula (5.5). The asterisk in (5.13) and similar formulae below marks
the transposed vector.
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P  L 5.3. In view of (5.5), for any ν from 1 to n2, we have

e∗kΠνv =

n∑

j=1

δk,kνδ j, jν = δk,kνv jν =


v jν if k = kν,
0 in the contrary case.

By virtue of Lemma 5.2, an integer ν satisfies the equality kν = k if, and only if it is
represented in the form

ν = (k − 1) n + p, (5.14)
where 1 ≤ p ≤ n. Therefore, for any ν and k, we have

mkν jνe
∗
kΠνv =


mk,p+1vp+1 if ν satisfies (5.14) and 1 ≤ p ≤ n,
0 in the contrary case.

(5.15)

The last relation yields the equality
n2∑

ν=1

mkν jνe
∗
kΠνv =

n∑

p=1

mk,pvp,

which coincides with (5.13). �

The following lemma establishes some relations for the functions Rν : [a, b] →
GLn(�), ν = 1, 2, . . . , n2, defined by formula (5.4).

Lemma 5.4. Let v = (v j)n
j=1 ∈ �n be an arbitrary vector and φν, ν = 1, 2, . . . , n2,

be arbitrary constants. Then the equalities

e∗k
n2∑

ν=1

φνRν(t)v =

n∑

j=1

φ(k−1)n+ jrk j(t)v j (5.16)

and

e∗k
n2∑

ν=1

φν|Rν(t)| v =

n∑

j=1

φ(k−1)n+ j |rk j(t)| v j (5.17)

are true for any k from 1 to n and almost every t ∈ [a, b].

P. Application of Lemma 5.3 with

mk j := rk j(t) φ(k−1)n+ j,

where t ∈ [a, b] and k, j = 1, 2, . . . , n, yields
n2∑

ν=1

φ(kν−1)n+ jνrkν jν(t) e∗kΠνv =

n∑

j=1

φ(k−1)n+ jrk j(t) v j. (5.18)

Taking equality (5.6) into account, one can rewrite (5.18) in the form
n2∑

ν=1

φνrkν jν(t) e∗kΠνv =

n∑

j=1

φ(k−1)n+ jrk j(t) v j. (5.19)
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It follows from (5.4) that rkν jν(t)Πν = Rν(t) for any ν and t, and, hence (5.19) means
that (5.16) is satisfied. Relation (5.17) is proved similarly. �

Lemma 5.5. Let v(ν) = (v(ν)
j )n

j=1, ν = 1, 2, . . . , n2, be arbitrary n-dimensional
vectors. Then the equalities

e∗k
n2∑

ν=1

Rν(t)v(ν) =

n∑

j=1

v
((k−1)n+ j)
j rk j(t) (5.20)

and

e∗k
n2∑

ν=1

|Rν(t)| v(ν) =

n∑

j=1

v
((k−1)n+ j)
j |rk j(t)| (5.21)

are true for any k from 1 to n and almost every t ∈ [a, b].

P. In view of the equality

v(ν) =

n∑

i=1

v(ν)
i ei,

for almost every t ∈ [a, b] and all k = 1, 2, . . . , n, we have

e∗k
n2∑

ν=1

Rν(t)v(ν) = e∗k
n2∑

ν=1

Rν(t)
n∑

i=1

v(ν)
i ei

=

n∑

i=1

e
∗
k

n2∑

ν=1

v(ν)
i Rν(t)ei

 . (5.22)

In view of Lemma 5.4 applied with v := ei and φν := v(ν)
i , ν = 1, 2, . . . , n2, equality

(5.22) yields

e∗k
n2∑

ν=1

Rν(t)v(ν) =

n∑

i=1


n∑

j=1

v
((k−1)n+ j)
i rk j(t)δi, j



=

n∑

j=1


n∑

i=1

v
((k−1)n+ j)
i δi, j

 rk j(t)

=

n∑

j=1

v
((k−1)n+ j)
j rk j(t)

for all k from 1 to n and almost every t ∈ [a, b], which proves (5.20). Relation (5.21)
is established by analogy. �

Lemma 5.6. The equality

ω(k−1)n+ j(t) = ωk j(t) (5.23)
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is satisfied for almost every t ∈ [a, b] and all k and j from 1 to n.

P. Let {k, j} ⊂ {1, 2, . . . , n} be arbitrary. Then, obviously, k = kν and j = jν for
ν := (k − 1) n + j. Applying the equality (5.6) of Lemma 5.1 and using the definition
(5.3) of the functions ων, ν = 1, 2, . . . , n2, we obtain that

ω(kν−1)n+ jν(t) = ων(t) = ωkν jν(t)

for almost every t ∈ [a, b]. This yields the required property (5.23). �

Lemma 5.7. Problem (1.2), (1.3) is equivalent to problem (4.12), (4.13), where
N = n2 and ων : [a, b] → [a, b] and Rν : [a, b] → GLn(�), ν = 1, 2, . . . ,N, are
defined by formulae (5.3) and (5.4), respectively.

P. Let u = (uk)n
k=1 : [a, b] → �n be an arbitrary continuous vector-function.

Applying formula (5.20) of Lemma 5.5 with v(ν) := u(ων(t)), ν = 1, 2, . . . , n2, for any
k from 1 to n, we obtain

e∗k
n2∑

ν=1

Rν(t) u(ων(t)) =

n∑

j=1

u j(ω(k−1)n+ j(t))rk j(t)

and therefore, by Lemma 5.6,

e∗k
n2∑

ν=1

Rν(t) u(ων(t)) =

n∑

j=1

rk j(t)u j(ωk j(t)) (5.24)

for almost every t from [a, b]. Comparing the right-hand side member of (5.24) with
that of (1.2) and taking the arbitrariness of u and k into account, we arrive at the
desired conclusion. �

Lemma 5.8. Assume that the functions rk j : [a, b] → �, k, j = 1, 2, . . . , n, satisfy
relations (3.4) for almost every t ∈ [a, b] and all k, j = 1, 2, . . . , n. Then the corre-
sponding functions Rν : [a, b] → GLn(�), ν = 1, 2, . . . , n2, given by formula (5.4)
satisfy condition (4.3) with respect to matrix (4.2).

P. Indeed, according to Lemma 4.3, condition (4.3) is satisfied if, and only if
the components r(ν)

k j : [a, b] → �, k, j = 1, 2, . . . , n, of the matrices Rν : [a, b] →
GLn(�), ν = 1, 2, . . . , n2, satisfy inequalities (4.19) almost everywhere on [a, b]. By
virtue of (5.4), for any ν = 1, 2, . . . , n2 and almost every t ∈ [a, b], we have

r(ν)
k j (t) =


rkν jν(t) if k = kν and j = jν,
0 in the contrary case.

(5.25)

In view of (5.25), the fulfilment of all the inequalities (4.19) means that

σkνσjν rkν jν(t) sign (t − τ) ≥ 0 (5.26)

for all ν = 1, 2, . . . , n2 and almost every t ∈ [a, b]. However, it follows from
Lemma 5.1 that equalities (5.7) and (5.8) are true and, therefore, the fulfilment of
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conditions (3.4) for all k, j = 1, 2, . . . , n and almost every t ∈ [a, b] ensures that re-
lation (5.26) is satisfied for all ν = 1, 2, . . . , n2 and almost every t ∈ [a, b]. We have
thus shown that functions (5.4) satisfy condition (4.3). �

5.2. Proof of Theorem 3.1. Let us show that, under the conditions assumed, the
required assertion for the Cauchy problem (1.2), (1.3) follows from Theorem 4.2
applied to the corresponding problem (4.12), (4.13).

Case 1: Condition (3.1a) holds. Assumption (3.1a) ensures that the functions ων :
[a, b] → [a, b] and Rν : [a, b] → GLn(�), ν = 1, 2, . . . , n2, given by formulae (5.3)
and (5.4) satisfy condition (4.23) of Theorem 4.2 with

g := col (γ1, γ2, . . . , γn) (5.27)

and

γ :=
1
α

max
k=1,2,...,n

vrai max
t∈[a,b]\{τ}

1
γk |t − τ|α−1

n∑

j=1

γ j |rk j(t)| |ω j(t) − τ|α. (5.28)

Indeed, let us put v j = γ j, j = 1, 2, . . . , n. Applying equality (5.17) of Lemma 5.4
and taking formulae (5.3) and (5.12) into account, we obtain that

e∗k
n2∑

ν=1

ων(t) |Rν(t)| g =

n∑

j=1

ω(k−1)n+ j(t) |rk j(t)| γ j (5.29)

for almost every t ∈ [a, b] and all k from 1 to n. By virtue of Lemma 5.6, relation
(5.29) can be brought to the form

e∗k
n2∑

ν=1

ων(t) |Rν(t)| g =

n∑

j=1

ωk j(t) |rk j(t)| γ j.

Therefore, property (4.23) in our case is equivalent to the fulfilment of the inequality
n∑

j=1

|rk j(t)| γ j |ωk j(t) − τ|α ≤ γαγk |t − τ|α−1

for almost every t ∈ [a, b] and all k from 1 to n. However, this condition is satisfied
in view of (3.1a) and (5.28).

Case 2: Condition (3.1b) holds. In this case, condition (4.21) of Theorem 4.2 is
satisfied. Indeed, let us define the vector g by formula (5.27), where γ1, γ2, . . . , γn
are the positive constants appearing in (3.1b). Then condition (4.21) is equivalent to
the system of relations

N∑

ν=1

∫ t

τ
e∗k |Rν(s)| g |ων(s) − τ|α ds · sign (t − τ) ≤ γ |t − τ|α γk (5.30)

valid for all k = 1, 2, . . . , n and t ∈ [a, b].
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Applying equality (5.17) of Lemma 5.4 with v j := γ j, j = 1, 2, . . . , n, and φν :=
|ων(s) − τ|α , ν = 1, 2, . . . , n2, and using Lemma 5.6, we show that the equalities

N∑

ν=1

e∗k |ων(s) − τ|α |Rν(s)| g =

n∑

j=1

|ω(k−1)n+ j(s) − τ|α|rk j(s)| γ j

=

n∑

j=1

|ωk j(s) − τ|α|rk j(s)| γ j

are satisfied for any k = 1, 2, . . . , n and almost every s ∈ [a, b]. Therefore, relation
(5.30) in our case means that, for all k = 1, 2, . . . , n and t ∈ [a, b], the inequality

n∑

j=1

γ j

∫ t

τ
|rk j(s)| |ωk j(s) − τ|αds · sign (t − τ) ≤ γγk |t − τ|α . (5.31)

is true. Setting now

γ := max
k=1,2,...,n

sup
t∈[a,b]\{τ}

sign (t − τ)
γk |t − τ|α

n∑

j=1

γ j

∫ t

τ
|rk j(s)| |ωk j(s) − τ|αds

and taking assumption (3.1b) into account, we conclude that (5.31) is satisfied for all
t ∈ [a, b] and k from 1 to n. As we have already seen above, this means that relation
(4.21) is true.

Case 3: Condition (3.1c) holds. Let us show that, in this case, condition (4.22) is
satisfied with the vector g defined by formula (5.27) and

γ :=
1
α

max
k=1,2,...,n

vrai max
t∈[a,b]\{τ}

n∑

l=1

sign (ωkl(t) − τ)

γk |t − τ|α−1 |rkl(t)|

×
n∑

j=1

γ j

∫ ωkl(t)

τ
|rl j(s)||ωl j(s) − τ|αds. (5.32)

Indeed, in the case indicated, condition (4.22) for functions (5.3) and (5.4) means
that, for all k = 1, 2, . . . , n and almost every t ∈ [a, b],

N∑

ν=1

sign (ων(t) − τ) e∗k |Rν(t)|
N∑

i=1

∫ ων(t)

τ
|Ri(s)| g |ωi(s) − τ|α ds

≤ γα |t − τ|α−1 γk (5.33)

or, which is the same,

n2∑

ν=1

e∗k |Rν(t)| v(ν)(t) ≤ γα |t − τ|α−1 γk, (5.34)
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where

v(ν)(t) :=
n2∑

i=1

∫ ων(t)

τ
|Ri(s)| g |ωi(s) − τ|α ds sign (ων(t) − τ)

for any ν = 1, 2, . . . , n2. Applying formula (5.21) of Lemma 5.5, we obtain

e∗k
n2∑

ν=1

|Rν(t)| v(ν)(t) =

n∑

j=1

v
((k−1)n+ j)
j (t) |rk j(t)|

=

n∑

j=1

|rk j(t)| e∗j


n2∑

i=1

∫ ω(k−1)n+ j(t)

τ
|Ri(s)| g |ωi(s) − τ|α ds

 sign (ω(k−1)n+ j(t) − τ),

whence, by Lemma 5.6, it follows that

e∗k
n2∑

ν=1

|Rν(t)| v(ν)(t)

=

n∑

j=1

|rk j(t)|
∫ ωk j(t)

τ

e
∗
j

n2∑

i=1

|Ri(s)| g |ωi(s) − τ|α
 ds sign (ωk j(t) − τ) (5.35)

for almost every t from [a, b]. On the other hand, by virtue of formula (5.27) and
Lemmata 5.4 and 5.6, the equality

e∗j
n2∑

i=1

|Ri(s)| g |ωi(s) − τ|α =

n∑

l=1

γl |r jl(s)| |ω( j−1)n+l(s) − τ|α

=

n∑

l=1

γl |r jl(s)| |ω jl(s) − τ|α (5.36)

is true for almost every s ∈ [a, b] and all j = 1, 2, . . . , n. Using (5.36) and (5.35), we
obtain that

e∗k
n2∑

ν=1

|Rν(t)| v(ν)(t)

=

n∑

j=1

|rk j(t)|


n∑

l=1

γl

∫ ωk j(t)

τ
|r jl(s)||ω jl(s) − τ|αds

 sign (ωk j(t) − τ) (5.37)
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for all k = 1, 2, . . . , n and almost every t ∈ [a, b]. Substituting (5.37) into (5.34), we
bring the latter relation to the form

n∑

j=1

|rk j(t)|


n∑

l=1

γl

∫ ωk j(t)

τ
|r jl(s)| |ω jl(s) − τ|αds

 sign (ωk j(t) − τ)

≤ γα |t − τ|α−1 γk. (5.38)

Taking (5.32) into account, we conclude that (5.38) is satisfied for all k = 1, 2, . . . , n
and almost every t ∈ [a, b] in view of condition (3.1c).

We have thus shown that, under the conditions assumed, Theorem 4.2 can be
applied to problem (4.12), (4.13) with N = n2 and the functions ων and Rν, ν =

1, 2, . . . , n2, given by formulae (5.3) and (5.4). Using the theorem mentioned and
taking Lemma 5.7 into account, we arrive at the desired assertion on the unique solv-
ability of the original Cauchy problem (1.2), (1.3).

5.3. Proof of Theorem 3.2. We shall show that the assertion of Theorem 3.2 for
the Cauchy problem (1.2), (1.3) can be obtained from Theorem 4.1 applied to the
corresponding problem (4.12), (4.13).

Indeed, by virtue of assumption (3.4) and Lemma 5.8, the functions ων : [a, b] →
[a, b] and Rν : [a, b]→ GLn(�), ν = 1, 2, . . . , n2, defined by formulae (5.3) and (5.4),
satisfy condition (4.3) with Σ given by (4.2). Therefore, it is sufficient to show that,
under our assumptions on rk j and ωk j, k, j = 1, 2, . . . , n, some of conditions (4.8),
(4.10), and (4.11) are satisfied.

Let us put

g := col (σ1γ1, σ2γ2, . . . , σnγn), (5.39)

where γ1, γ2, . . . , γn are the positive constants appearing in conditions (3.5a), (3.5b),
and (3.5c). Obviously, vector (5.39) possesses property (4.7).

Consider the following three cases.

Case 1: Condition (3.5a) holds. Let us prove that, under assumption (3.5a), the
functions ων and Rν, ν = 1, 2, . . . , n2, in the corresponding system (4.13) satisfy
condition (4.11) of Theorem 4.1.

Indeed, applying formula (5.16) of Lemma 5.4, we show that condition (4.11) is
equivalent to the fulfilment of the relation

σk

n∑

j=1

σjγ jrk j(t) |ω(k−1)n+ j(t) − τ|α sign (t − τ) ≤ σkγσkγkα |t − τ|α

= γγkα |t − τ|α (5.40)
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for all k = 1, 2, . . . , n and almost every t ∈ [a, b]. By Lemma 5.6, relation (5.40)
means that

σk

n∑

j=1

σjγ jrk j(t) |ωk j(t) − τ|α sign (t − τ) ≤ γkγα |t − τ|α (5.41)

for all k = 1, 2, . . . , n and almost every t ∈ [a, b]. However, the existence of a constant
γ ∈ [0, 1) such that (5.41) holds for all k = 1, 2, . . . , n and almost every t ∈ [a, b] is a
consequence of assumption (3.5a) because one can put

γ := max
k=1,2,...,n

vrai max
t∈[a,b]\{τ}

σk sign (t − τ)

αγk |t − τ|α−1

n∑

j=1

σjγ jrk j(t) |ωk j(t) − τ|α.

Case 2: Condition (3.5b) holds. Let us show that functions (5.3) and (5.4) in this
case satisfy condition (4.8).

It follows from Lemma 5.4 that condition (4.8) with g given by formula (5.39)
means that

σk

n∑

j=1

∫ t

τ
σjγ j|ω(k−1)n+ j(s) − τ|αrk j(s) ds ≤ γ |t − τ|α γk,

or, equivalently (see Lemma 5.6)

σk

n∑

j=1

σjγ j

∫ t

τ
|ωk j(s) − τ|αrk j(s) ds ≤ γkγ |t − τ|α (5.42)

for all t ∈ [a, b] and k from 1 to n. A constant γ ∈ [0, 1) such that (5.42) holds for all
k and t exists due to assumption (3.5b).

Case 3: Condition (3.5c) holds. Assumption (3.5c) ensures that the functions ων
and Rν, ν = 1, 2, . . . , n2, in the corresponding system (4.13) satisfy condition (4.10)
of Theorem 4.1.

Indeed, let us define the vector g by formula (5.39). Condition (4.10) for func-
tions (5.3) and (5.4) in our case means that, for all k = 1, 2, . . . , n and almost every
t ∈ [a, b],

σk sign (t − τ)
N∑

ν=1

e∗kRν(t)
N∑

i=1

∫ ων(t)

τ
Ri(s) g |ωi(s) − τ|α ds

≤ γγkα |t − τ|α−1 (5.43)

or, which is the same,

σk sign (t − τ)
n2∑

ν=1

e∗kRν(t)w(ν)(t) ≤ γγkα |t − τ|α−1 , (5.44)
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where

w(ν)(t) :=
n2∑

i=1

∫ ων(t)

τ
Ri(s) g |ωi(s) − τ|α ds

for any ν = 1, 2, . . . , n2. Formula (5.20) of Lemma 5.5 implies that, for almost every
t ∈ [a, b] and all k = 1, 2, . . . , n,

e∗k
n2∑

ν=1

Rν(t)w(ν)(t) =

n∑

j=1

w
((k−1)n+ j)
j (t)rk j(t)

=

n∑

j=1

rk j(t) e∗j


n2∑

i=1

∫ ω(k−1)n+ j(t)

τ
Ri(s) g |ωi(s) − τ|α ds

 ,

whence, by Lemma 5.6,

e∗k
n2∑

ν=1

Rν(t)w(ν)(t) =

n∑

j=1

rk j(t)
∫ ωk j(t)

τ

e
∗
j

n2∑

i=1

Ri(s) g |ωi(s) − τ|α
 ds. (5.45)

However, it follows from Lemmata 5.4 and 5.6 and formula (5.39) that the equality

e∗j
n2∑

i=1

Ri(s) g |ωi(s) − τ|α =

n∑

l=1

σl γl r jl(s) |ω( j−1)n+l(s) − τ|α

=

n∑

l=1

σl γl r jl(s) |ω jl(s) − τ|α

is true for almost every s ∈ [a, b] and all j = 1, 2, . . . , n, and, therefore, equality (5.45)
yields

e∗k
n2∑

ν=1

Rν(t)w(ν)(t) =

n∑

j=1

rk j(t)
∫ ωk j(t)

τ


n∑

l=1

σl γl r jl(s) |ω jl(s) − τ|α
 ds. (5.46)

In view of (5.46), relation (5.44) can be rewritten as

σk sign (t − τ)
n∑

j=1

rk j(t)
∫ ωk j(t)

τ


n∑

l=1

σl γl r jl(s) |ω jl(s) − τ|α
 ds

≤ γγkα |t − τ|α−1 . (5.47)

It remains to note that the existence of a constant γ ∈ [0, 1) such that (5.47) is true
for almost every t ∈ [a, b] and all k = 1, 2, . . . , n is guaranteed by condition (3.5c).

Thus, in each of the three cases considered above, the conditions of imposed on
problem (1.2), (1.3) in Theorem 3.2 guarantee that the corresponding problem (4.12),
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(4.13) satisfies all the assumptions of Theorem 4.1. It therefore remains to use Theo-
rem 4.1 and Lemma 5.7.
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