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Asstract. Using the variational principle, we presentistient conditions for the
existence of a pair of pseudoconjugate points in an intdn@IR relative to the
half-linear second order fiierential equation

(%) (r®®X)) +ct)d(x) =0, D(X) =[x 2x, p> 1

The endpoints of the intervdlare allowed to be singular (in particular, the case
| = R is possible) and an important role is played by the principal solution of (*)
and of its reciprocal equation.
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1. INTRODUCTION
In this paper we deal with the half-linear second ordéiedential equation
(rOO(X)) +ct)d(x) =0, O(X) :=|xP?x, p> 1, 1)

wherer, c are continuous functions am¢t) > O in an interval under consideration.
Oscillation theory of (1) attracted considerable attention in recent years and many
of the results of the classical linear oscillation theory (the linear Sturm-Liouville
differential equation is a special cage= 2 in (1)) have been extended to (1), see,
e. g., [1, Chap. 3] and the references given therein.

Let x be a nontrivial solution of (1) such thaft;) = 0 for somet; € R. A point
to > t1 is said to be thdright) conjugate point of; (relative to (1)) ifx(t2) = 0.
A valuet, > t1 is said to be thdright) pseudoconjugate poirdf t; (relative to
(1)) if X'(t2) = 0. Note that these definitions of (pseudo)conjugate pointg afe
correct since by the homogeneity property of the solution space of (1), any nontrivial
solutionz of (1) for whichz(t;) = 0 is a constant multiple af. Equation (1) is said
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to be(pseudo)conjugaten an interval if this interval contains at least one pair of
(pseudo)conjugate points.

An integral comparison theorem for (pseudo)conjugate points relative to a pair of
linear second order dlierential equations of the form

(r@X) +ct)x=0
was established by Leighton in [8]. A part of this statement concerning conjugate
points was extended to half-linear equation (1) by Samd Kusano [7] and a “pseu-

doconjugate” part in the recent paper of Rasfl2]. These statements compare (1)
with the equation of the same form

(ROD(y)) + C(H)2(y) = O, (2)
and read as follows.

Proposition 1. Consider a pair of half-linear gferential equationgl) and (2).

(i) Lety be a nontrivial solution of(2) such thaty(a) = 0 = y(b), i. e.,bis a
right conjugate point of;. If

b
fa {[R®) - r@®lly’®)I° - [C(1) - cO)]ly(®)P} dt < O, 3

then any nontrivial solution of1) with x(a) = 0 has a zero point irfa, b) or
it is a constant multiple of.

(i) Lety be a nontrivial solution of2) such thaty(a) = 0 = y’(b) andy’(t) # 0
fort € [a,b), i. e.,bis the first right pseudoconjugate point afelative to
(2). If (3) holds, then any nontrivial solutior of (1) with x(a) = 0 has the
property thatx'(¢£) = 0 for somef € (a, b] with & = b only if x is a multiple
of y.

Note that a closer examination of the proof of the previous statements reveals the
fact that part (ii) can be reformulated as follows (part (i) can be reformulated in a
similar way, but we will not need this modified statement in our paper).

Lemma 1. Suppose that there exists a piecewiggedintiable functiorz for which
Z(a)=0=Z(b)fort € [a,b) and

b
Fro(z ab) = f [rOIZ P - cOlHP] dt <o. @

Then the nontrivial solutiox of (1) given byx(a) = 0 satisfiesx'(¢) = 0 for some
&€ (ah].

The aim of this paper is to investigate the situation when the endpajiftsre
allowed to besingular points of the investigated equations. A typical example is
a = —o0, b = oo (but, of coursea, b may also be finite singularities, i. e., points
where the existence and uniqueness of solvability of the initial value problem for the
investigated equations is violated).



PSEUDOCONJUGACY CRITERIA FOR HALF-LINEAR DIFFERENTIAL EQUATIONS 163

A singular version of Leighton’s comparison theorem éonjugate pointsvas
established in several papers. It was discovered that the crucial role is played by the
so-calledprincipal solutionof (half-)linear equations in these extensions.

As a classical paper concerning tireear Sturm-Liouville equation (1) is usually
regarded the paper of dller-Pfeifer [10]. In that paper (and then in its improved
version [11]) it is shown that under the assumptions

< dt dt
| @=L ©
equation (1) is conjugate dR provided

t2
liminf c(t)dt>0 and c(t) 0onR. (6)
t1l—oo, t2Te0 Jgy

Observe that under (5) the functiaft)’= 1 is the principal solution of the one-term
equation f(t)x’)’ = 0 both at—co and o (for explanation see the next section) and
that the integrand(t) in (6) can be written in the form(t)%(t) in this special case.
This observation is also a link between (6) and the linear version of the part (i) of
Proposition 1, sinceg is the principal solution at (regular poinsandb of (2).

The half-linear extension of (6) is given in [4], where equation (1) is considered
as a perturbation of the equation

(r()@(x))" + Et)P(x) = 0. ()

It is supposed that (7) is disconjugate and its principal solutioasaatlb coincide,
i. e.,X3 = Xy = X. Then (1) is conjugate ora(b) provided

t2

liminf [c(t) = EIXP(t)dt > 0, c(t)  E(t) on (& b).

tila, t2Th Jg;
Whenp = 2, (& b) = R andc{t) = 0, this conjugacy criterion reduces to (6). Con-
cerning a singular version of part (ii) of Proposition 1, the main idea of our proof is
based on the fact that the so-callemprincipal solutionof (1) atb plays the role of
the solution satisfying’(b) = 0 if b is a singular point (and equals this solutiofbif
is a regular point).

The paper is organized as follows. In the next section we recall basic methods
of the half-linear oscillation theory, including the concept of the principal solution
of (1) which plays the fundamental role in our investigation. Section 3 contains the
main results of the paper—two “singular” pseudoconjugacy criteria for (1), and the
last section is devoted to examples which illustrate these criteria.

2. PRELIMINARIES

In this section we recall some basic facts concerning equation (1). First of all let
us mention that the linear oscillation theory extends verbatim to (1). In particular,
the zero points of two linearly independent solutions of this equation separate each
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other and hence (1) can be classifiedoasillatory or nonoscillatoryat a singular
point b according to whether or not any solution ftases not have infinitely many
zeros in any neighborhood bf Similarly to the linear case, equation (1) cannot be
oscillatory at a regular point since singular points are the only possible cluster points
of a sequence of zero points of a solution of (1).
If c(t) # 0in some interval andx s a solution of (1), them = r®(x’) is a solution
of thereciprocal equation
1 RPN
(0@ * g
whered~1(s) = |§9-2s, is the inverse function ab, q being the conjugate number of
p,i.e.,q= p/(p-1). The Rolle Mean Value theorem immediately implies that (1)
is oscillatory if and only if the reciprocal equation (8) is oscillatory. If a soluton
satisfiesx(t) # 0 in some interval, thenw := r®(x’/x) solves inl the Riccati-type
differential equation

®Y(u) =0, 8

w’ + c(t) + (p - Dri-9()w® = 0. 9)
Moreover, ifw(t) # 0 fort € I, theno = —(D+(w) is a solution of the equation
v+ ri9) + (g - )et)plP = 0, (10)

which is the Riccati-type equation associated with reciprocal equation (8). We will
also need the half-linear version of Picone’s identity, which was established in [7].
We present here this identity in a modified form which is more suitable for our pur-
pose.

Lemma 2. Letw be a solution of Riccati-type equatidf), which exists fot €
[a, b]. Then for any piecewis@! functiony we have

b
|t - comiPrdt = wowrel;

b
+p f rOPEE Oy, wOOW) dt, (11)

where
ulP o]
— +

P(u,v) := —w+—=>0 12
(u,v) o Wt (12)

with equality only ifv = ®(u).

The crucial role in our investigation is played by the concept of the principal so-
lution of nonoscillatory half-linear equation (1). This concept was introduced by
Mirzov [9] as follows. We describe this construction near the singular fgoiateo
as it is done in Mirzov’s original paper, but this construction extends also wlign
a finite singularity (or even a regular point). Suppose that (1) is nonoscillatesy at
i. e., there exists a solutiondf associated Riccati-type equation (9) which is defined
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on an interval T,). Letd > T andXxy be the solution of (1) given by the initial
conditionxy(d) = O, x;(d) = -1 and letwg = rd®(x,/xg). Then forT < dy < dz
we haveu(t) > wq,(t) > wq,(t) for t € [T,d1). This means that on every compact
subinterval of T, o) there exists the uniform limit

() := lim wq(t),

and hence this function is a solution of (9). This solution is calledetientually
minimalsolution of (9). The corresponding solutierof (1) given by the formula

t
(t) = K exp{ fT cb(ab(s)/r(s))} ds

whereK is a nonzero real constant, is called fmecipal solution(at ) of (1). Note

that the largest zero poifibf the principal solutiorx Tif exists) plays essentially the
role of the first left conjugate point df = oo since any solutiorx of (1) linearly
independent ok has exactly one zero irf, (o), see [7]. Note also that if= bis a
regular pointof (1), then the principal solution &tis simply defined as a nontrivial
solution satisfyingx(b) = 0. Finally, a solutionxof nonoscillatory equation (1) is
said to becoprincipalatb, if its quasiderivativas™ r®(X’) is the principal solution

atb of the reciprocal equation (8). In the last two statements of this section we recall
some properties of the principal and coprincipal solutions of (1). The first one is
formulated in [5] in cas® = oo, but a closer examination of its proof reveals that the
statement remains to hold also wheis a finite singularity.

Lemma 3. Suppose thaflO ri-9(t) dt = o, c(t) > 0 nearb and (1) is nonoscilla-
tory ath.

(i) If Xis the principal solution of equatiofl) at b, then it is also a coprincipal
solution atb.
(il) A solutionX of (1) is principal atb if and only if

b dt
f rOROIXOP2 (13)

The following alternative integral characterization of the principal solution of (1) is
proved in the recent paper [3]. Note that this paper actually formulates the statement
with the powerx? instead ofx? in the formula (14) given below. However, a closer
examination of the proof given in [3] reveals that the statement remains to hold in
this modified setting which better fits our treatment.

Lemma 4. Suppose that(t) > O for large t, equation(1) is nonoscillatory and
both integralsfoo ri-9(t) dt and f°° c(t) dt are convergent. Thenr is the principal

solution of (1) if and only if
o dt
——————— = 0o0. 14
| =mem e -
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3. EXISTENCE OF PSEUDOCONJUGATE POINTS

Our main result reads as follows.

Theorem 1. Suppose thaR) is disconjugate on the interval= (a,b), -0 < a <
b < o0, C(t) > c(t) > 0andO < R(t) < r(t) nearaandb. Further, lety be the positive
principal solution of (2) at a and suppose that this solution is coprincipaltaand
y'(t) > 0forte (ab). If

limsupJ(y; t1,t2) <0, (15)
trla 1

where
Tt tp) = ft [(R(t) = r(©)yP(t) - (C() - c(t))] ¥"(t) dt

then(1) is pseudoconjugate dn i. e., there exista < d; < d, < b and a nontrivial
solutionx of (1) such thatx(d;) = 0 = X'(dy).

to
1

Proor. Leta < tg < t1 < t2 < t3 < b (these values will be specified later), and
define a piecewise flerentiable functioz for which z(tp) = 0 = Z (t3) as follows:

0 fort € (a, to],
f(t) fortelto,ta],
Z(t) =3y(t) forte[ty,ty],
g(t) forte(tatg],
g(tz) fort e [ts, b).

Here, f is a solution of (2) satisfying the boundary conditions
f(to) = 0, f(t1) = y(ta), (16)

this solution exists in view of disconjugacy of (1). The functipis also the solution
of (2), given by the boundary condition

g(t2) = y(t2), ¢'(ts) =0, 17)
i. e., the quasiderivativa, = R®(g’) is a solution of the reciprocal equation to (2)

(Cmow)) +R-IWO () =0 (18)
satisfying the boundary conditions
Uy (t2) = —C(t2)D(y(t2)), Uy(ts) = 0. (19)

The existence of this solution we prove as follows. The soluiioa R®(y’/y) of
the Riccati-type dferential equation associated with (2) is positive ayb) (since
y'(t) > 0 on (a,b)) and hence the solution = —(1/® %(w)) of the Riccati-type
equation corresponding to the reciprocal equation (18) is negative, b (Now,
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let u be a solution of reciprocal equation (18) for whiatts) = 0 and suppose that
u'(s) = 0 for somea < s < t3 < b. Then integration by parts yields

{3
[CHYOIP - R-I(D)IuP] dt = C-uo (W)

S

{3
- [ wet ety + R-me il di=o
S
and, at the same time, applying the Picone identity to the above integral we get
t3
| e P - R-aiP dt = ~o9u9rP
S

{3
+q f C(t)P(u® *(u), C(t)u) dt > O,

a contradiction. Hence the solutiensatisfiesu’(t) # 0 fort < tz. Consequently,
multiplying this solution by a suitable constant, we get the solution satisfying (19).
In the remaining part of the proof we will show that(z to, t3) < O if tg, t3 are
suficiently close tag, b, respectively, which then means that (1) is pseudoconjugate
on [to, t3] € (a, b) by Lemma 1. Using integration by parts, we get
t1

Frcl i to,ta) 1= f IR ®)° — COIF O] dt

to

1
R(t)f(t)cD(f’(t))’I; —ft f(1) [(ROD(F'(1))" + C(HD(F())] dt
fP(t)wy (t2),

wherew; = RO(f’/f). Similarly,

Frel, tr. t2) = yP(t2)wy(t2) - yP(t)w, (), w, = R(Dy(y,),
Trelg to:t3) = ~g"(Ruy(t2).  wy = Rs((gg)l)'

Summarizing these computations and taking into account (16), (17), we obtain
Fre(z a,b) = (wr — w,)(t)yP(t) + (w, — wy)(t2)y"(t2).
From the definition of the principal solution atwe have
wi(ty) = w,(t1) as to—a+. (20)

Note thatws depends omy. Concerning the dierencew,(t2) — wy(t2), the functions
v, = —(1/®Y(w,)) andv, = —(1/®*(w,)) are solutions of the Riccati equation (10)
associated with reciprocal equation (8), and agg{t) — v,(t2) # 0 astz3 — b-,
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since we suppose thatis the coprincipal solution &b, i. e., v, is the eventually
minimal solution of (10) ab. Hence also

wy(t2) = wy(ty) as to—>b-. (22)

Summarizing the previous computations and using inequalities betRi@esnd
C, c neara andb, we have

Fre(Z 1o, 13) < Fre(z to, t3) + T (y: t1, 12)
= (wi — wy)(t)yP(tr) + (wy — wy)()yP(t2) + T (y; ta, t2).
Now, lete > 0 be such that limsup in (15) is less thade, i. e., T (y; t1,t3) < -3¢

if t1, ty are stficiently close toa andb, respectively. According to (20) and (21), if
to < t1, t3 > t5 are stfficiently close taa andb, respectively, we have

l(ws —wy,) )y ()l <&, |(w, — wy)(t)yP(t2)] < &.
Consequently, fofp < t; < ty < tz chosen in the above specified way, we obtain
Fre(d <-3ec+e+e<0.

Now the statement of the theorem follows from Lemma 1. ]

In the next statement we show that if the inequaR(y) < r(t) holds onwhole
interval (a, b) (and not only neaa andb as supposed in Theorem 1), the statement of
this theorem can be modified as follows.

Theorem 2. Suppose that the assumptions of Theorem 1 are satisfied, except for
the assumptio(t) > c(t) > O neara, and letR(t) < r(t) fort € (a, b). If

liminf fSQ (c(t) -C(t))yP(t)dt>0 and C(t) = c(t) fort € (a,b), (22)
sila, b Jg

then(1) is pseudoconjugate o i. e., there exisd < d; < dx < b and a nontrivial
solutionx of (1) such thatx(d;) = 0 = X'(d).

Proor. We use essentially the same functioas defined in the proof of Theorem
1, with the following modification. Continuity of the functio@c and (22) imply the
existence of € (t1,t2) andd, o > 0 such that(t) — C(t))yP(t) > d for (t — o,t + o) C
(t1,t2). Let a be any positive dferentiable function with the compact support in
(t — o, t + 0). Now, we modify the functioz for t € [ty, t5] as follows:

2t) = y(t) fort e [ty, t]\[t — o, t + 0],
~y@®@ +sa(t)) forte[t—o,t+0],
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whereéd > 0 will be specified later. With this modification, using Picone’s identity
from Lemma 2,

t2
Fre(Z t, 1) = f [ROIZIP - C)2°] dt = w,2P|
t1

o
+ [ [ROZIP = puy070) + (b~ DR, 012
= wyf ftt RO + ey - pROGZyP 1 6
-0

D(y)
ROQW)|" o p}
o0 | Y (1+6a)P}dt

t t+o
=P+ [ ROIP + pola) 00 + o0
-0
= Py’ +6(a) )0 )L+ (p— D+ 0(3) + (p— DL+ pda + o))
t+o
—uPle s [ RO+ polaO) + PP - o0l )
—0

- p(p—1)saly’IP + (p— DIy'IP + (p— 1)psely’|P + o(s) } dt
= wyyplii + 0(6).

+(p— DRI \

Consequently, using the rechniques from the proof of Theorem 1, we get

{3
Fre(z to. t3) = j; [R®IZIP - C(1)IZP] dt
= wilfP [ +wyyP 2 + wlglP[¢ +0(6)
= yP(tr)(wr (ty) — wy(t1))
+ yP(t2) (wy (t2) — wy(t2)) + 0(6)

aso — 0+. Concerning the intervaty, ty), we have

t2 t—o
f (c(t) - C(1) 2(t) dt = ft () - C1) sV

t1

+ f—% (c(t) = C(1) yP(O)(L + sa (1))’ dt + _tz (c(t) - C(1) yP(t) dt

t—o t+o

o T+
=, (c®) - C1) y°(V) dt + ps ft_ ) (c®) - C(1) y"(t)a(t) dt + 0(6)
1 -0

> ¥ (c(t) — C(t)) yP(t) dt + 5K + 0(6),
t1
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whereK = pdft—ig a(t) dt > 0. Therefore

f ’ (c(t) = C(V) M) t > f ’ (c(t) — C(1) yP() dt + K& + 0(6).

1 t1
Next we prove that the functiof/y is increasing ontg, t;). We have §/y)(tg) = 0,
(f/y)t1) = L and (/y)'(t) # 0 fort € (to,t1). Indeed, if /y)'(r) = O for some
7 € (to,t1), wi(r) = wn(r) and this contradicts the unique solvability of the Riccati
equation (9). Due to the monotonicity éfy, the Second Mean Value Theorem of
integral calculus implies that there exigts (to, t1) for which

1 1
t [C(t) — O] fP(t) dt = t [C(t) — cI(f/y)P(D)yP(1) dt

1
=, [C(1) - c(®)]yP(t) dt.

Using the above computations and, again, the inequalities between the fumgiRons
andc, C, we get

o
Fre(Z to, t3) < Fre(Z to; tz) — | (c(t) — C(1)ZP(t) dt

to

< |we (t1) — wy (t2)lyP(te) + lw, (t2) — wy(t2)lyP(t2)
- t2(C('[) — C(t))yP(t) dt — Ko + 0o(0).
13

Now, leté > 0, a stuficiently small number, be such thKis + o(6) =: ¢ > 0.
According to (22) the pointg, t, can be chosen in such a way that

1) &
| ew-carrma> -
¢ 4
whenever € (a,t1). Further, similarly as in the proof of Theorem 1

PP e () - ()] < 5. 5P(2) |y ) - wy(t2)] < 5

if tg < t1, to < t3 are sificiently close toa andb, respectively. Consequently, for
the above specified choice f < t; < t; < t3 we have the inequalitf;c(z to, t3) <
—(g/4) < 0 and Lemma 1 implies that (1) is pseudoconjugatet@my] c (a,b). O

4. ExXAMPLES

We finish the paper with two examples illustrating the results of the previous sec-
tion.
Examplel. Consider the half-linear Euler equation with the so-called critical co-
efficient
(@(X)) + () =0, (23)
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wherey, = (p—1)P p~P. One solution of this equation can be computed explicitly
if we look for this solution in the fornx(t) = t*. Then substituting into (23) we find
that this function is a solution of (23) if is a root of the equation

G(4) = (p-1)(IP - (1)) +yp =0,

and by direct computation we have thiat (p — 1)/p is a double root o5, hence

x(t) = t(P-D/P s a solution of (23). Using Lemma 3, it is notfitult to verify thatx

is the principal solution &t = 0, and principal as well as coprincipal solutioncat
Consequently, equation (23) may play the role of equation (2) in Theorems 1, 2, and
hence the equation

(@(X)) + (% + c(t))cp(x) -0

with c(t) > 0 fort € (0,6), § > 0, and for larget, is pseudoconjugate on,®)
provided
t2
lim inf c®)tPtdt>0 and c(t)£0, t € (0, ).
1110, taTeo Jt,
Example2. In this example we consider the half-lineaffdrential equation

p-1 _
17 tpCD(x) =0, te]0,). (24)

By direct computation one can verify that

(@ +P)P o)) +

t 1
X(t) = ——, u(t) = (1 +tP)Pro(X (1) = 25
0 = g U0 =1+ (W) = (25)
are solutions of (24) and of its reciprocal equation
-1
ova-Lg-1apyY o P= DT i
(1 + ) o (W) ey =0, (26)

respectively. Moreover, using Lemma 3 and Lemma 4 (applied to (26), i. e.,pwith
replaced byg and vice versa) one can verify by a direct computation that the solution
X is principal att = 0 and coprincipal ato.

Since the point = 0 is the regular point of (24), the equation

((L+17) p—1c1>(x'))’ + (f;;’ + c(t)) O(x) =0

with ¢(t) > O for larget is pseudoconjugate on,[&) provided

sP
1+sP

t
Iiwinf c(9) ds>0 and c(t) 0, t e (0, ).
—00 O
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