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A. Using the variational principle, we present sufficient conditions for the
existence of a pair of pseudoconjugate points in an intervalI ⊆ � relative to the
half-linear second order differential equation

(∗) (r(t)Φ(x′))′ + c(t)Φ(x) = 0, Φ(x) = |x|p−2x, p > 1.

The endpoints of the intervalI are allowed to be singular (in particular, the case
I = � is possible) and an important role is played by the principal solution of (*)
and of its reciprocal equation.
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1. I

In this paper we deal with the half-linear second order differential equation

(r(t)Φ(x′))′ + c(t)Φ(x) = 0, Φ(x) := |x|p−2x, p > 1, (1)

wherer, c are continuous functions andr(t) > 0 in an interval under consideration.
Oscillation theory of (1) attracted considerable attention in recent years and many
of the results of the classical linear oscillation theory (the linear Sturm-Liouville
differential equation is a special casep = 2 in (1)) have been extended to (1), see,
e. g., [1, Chap. 3] and the references given therein.

Let x be a nontrivial solution of (1) such thatx(t1) = 0 for somet1 ∈ �. A point
t2 > t1 is said to be the(right) conjugate point oft1 (relative to (1)) if x(t2) = 0.
A value t2 > t1 is said to be the(right) pseudoconjugate pointof t1 (relative to
(1)) if x′(t2) = 0. Note that these definitions of (pseudo)conjugate points oft1 are
correct since by the homogeneity property of the solution space of (1), any nontrivial
solutionz of (1) for whichz(t1) = 0 is a constant multiple ofx. Equation (1) is said
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to be(pseudo)conjugateon an intervalI if this interval contains at least one pair of
(pseudo)conjugate points.

An integral comparison theorem for (pseudo)conjugate points relative to a pair of
linear second order differential equations of the form

(r(t)x′)′ + c(t)x = 0

was established by Leighton in [8]. A part of this statement concerning conjugate
points was extended to half-linear equation (1) by Jaroš and Kusano [7] and a “pseu-
doconjugate” part in the recent paper of Rostás [12]. These statements compare (1)
with the equation of the same form

(R(t)Φ(y′))′ + C(t)Φ(y) = 0, (2)

and read as follows.

Proposition 1. Consider a pair of half-linear differential equations(1) and (2).
(i) Let y be a nontrivial solution of(2) such thaty(a) = 0 = y(b), i. e., b is a

right conjugate point oft1. If
∫ b

a

{
[R(t) − r(t)]|y′(t)|p − [C(t) − c(t)]|y(t)|p} dt ≤ 0, (3)

then any nontrivial solution of(1) with x(a) = 0 has a zero point in(a, b) or
it is a constant multiple ofy.

(ii) Let y be a nontrivial solution of(2) such thaty(a) = 0 = y′(b) andy′(t) , 0
for t ∈ [a,b), i. e., b is the first right pseudoconjugate point ofa relative to
(2). If (3) holds, then any nontrivial solutionx of (1) with x(a) = 0 has the
property thatx′(ξ) = 0 for someξ ∈ (a,b] with ξ = b only if x is a multiple
of y.

Note that a closer examination of the proof of the previous statements reveals the
fact that part (ii) can be reformulated as follows (part (i) can be reformulated in a
similar way, but we will not need this modified statement in our paper).

Lemma 1. Suppose that there exists a piecewise differentiable functionzfor which
z(a) = 0 = z′(b) for t ∈ [a,b) and

Frc(z; a, b) :=
∫ b

a

[
r(t)|z′(t)|p − c(t)|z(t)|p] dt < 0. (4)

Then the nontrivial solutionx of (1) given byx(a) = 0 satisfiesx′(ξ) = 0 for some
ξ ∈ (a,b].

The aim of this paper is to investigate the situation when the endpointsa, b are
allowed to besingular points of the investigated equations. A typical example is
a = −∞, b = ∞ (but, of course,a, b may also be finite singularities, i. e., points
where the existence and uniqueness of solvability of the initial value problem for the
investigated equations is violated).
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A singular version of Leighton’s comparison theorem forconjugate pointswas
established in several papers. It was discovered that the crucial role is played by the
so-calledprincipal solutionof (half-)linear equations in these extensions.

As a classical paper concerning thelinear Sturm-Liouville equation (1) is usually
regarded the paper of M̈uller-Pfeiffer [10]. In that paper (and then in its improved
version [11]) it is shown that under the assumptions

∫ ∞ dt
r(t)

= ∞ =

∫

−∞

dt
r(t)

, (5)

equation (1) is conjugate on� provided

lim inf
t1↓−∞, t2↑∞

∫ t2

t1
c(t) dt ≥ 0 and c(t) . 0 on�. (6)

Observe that under (5) the function ˜x(t) ≡ 1 is the principal solution of the one-term
equation (r(t)x′)′ = 0 both at−∞ and∞ (for explanation see the next section) and
that the integrandc(t) in (6) can be written in the formc(t)x̃2(t) in this special case.
This observation is also a link between (6) and the linear version of the part (i) of
Proposition 1, sincey is the principal solution at (regular points)a andb of (2).

The half-linear extension of (6) is given in [4], where equation (1) is considered
as a perturbation of the equation

(r(t)Φ(x′))′ + c̃(t)Φ(x) = 0. (7)

It is supposed that (7) is disconjugate and its principal solutions ata andb coincide,
i. e., xa = xb = x̃. Then (1) is conjugate on (a, b) provided

lim inf
t1↓a, t2↑b

∫ t2

t1
[c(t) − c̃(t)] x̃p(t) dt ≥ 0, c(t) . c̃(t) on (a,b).

When p = 2, (a,b) = � andc̃(t) ≡ 0, this conjugacy criterion reduces to (6). Con-
cerning a singular version of part (ii) of Proposition 1, the main idea of our proof is
based on the fact that the so-calledcoprincipal solutionof (1) atb plays the role of
the solution satisfyingy′(b) = 0 if b is a singular point (and equals this solution ifb
is a regular point).

The paper is organized as follows. In the next section we recall basic methods
of the half-linear oscillation theory, including the concept of the principal solution
of (1) which plays the fundamental role in our investigation. Section 3 contains the
main results of the paper—two “singular” pseudoconjugacy criteria for (1), and the
last section is devoted to examples which illustrate these criteria.

2. P

In this section we recall some basic facts concerning equation (1). First of all let
us mention that the linear oscillation theory extends verbatim to (1). In particular,
the zero points of two linearly independent solutions of this equation separate each
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other and hence (1) can be classified asoscillatory or nonoscillatoryat a singular
point b according to whether or not any solution has/does not have infinitely many
zeros in any neighborhood ofb. Similarly to the linear case, equation (1) cannot be
oscillatory at a regular point since singular points are the only possible cluster points
of a sequence of zero points of a solution of (1).

If c(t) , 0 in some intervalI andx is a solution of (1), thenu = rΦ(x′) is a solution
of thereciprocal equation

(
1

Φ−1(c(t))
Φ−1(u′)

)′
+

1
rq−1(t)

Φ−1(u) = 0, (8)

whereΦ−1(s) = |s|q−2s, is the inverse function ofΦ, q being the conjugate number of
p, i. e.,q = p/(p− 1). The Rolle Mean Value theorem immediately implies that (1)
is oscillatory if and only if the reciprocal equation (8) is oscillatory. If a solutionx
satisfiesx(t) , 0 in some intervalI , thenw := rΦ(x′/x) solves inI the Riccati-type
differential equation

w′ + c(t) + (p− 1)r1−q(t)|w|q = 0. (9)

Moreover, ifw(t) , 0 for t ∈ I , thenv = − 1
Φ−1(w) is a solution of the equation

v′ + r1−q(t) + (q− 1)c(t)|v|p = 0, (10)

which is the Riccati-type equation associated with reciprocal equation (8). We will
also need the half-linear version of Picone’s identity, which was established in [7].
We present here this identity in a modified form which is more suitable for our pur-
pose.

Lemma 2. Let w be a solution of Riccati-type equation(9), which exists fort ∈
[a,b]. Then for any piecewiseC1 functiony we have

∫ b

a
[r(t)|y′|p − c(t)|y|p] dt = w(t)|y|p

∣∣∣b
a

+ p
∫ b

a
r1−q(t)P(rq−1(t)y′, w(t)Φ(y)) dt, (11)

where

P(u, v) :=
|u|p
p
− uv +

|v|q
q
≥ 0 (12)

with equality only ifv = Φ(u).

The crucial role in our investigation is played by the concept of the principal so-
lution of nonoscillatory half-linear equation (1). This concept was introduced by
Mirzov [9] as follows. We describe this construction near the singular pointb = ∞
as it is done in Mirzov’s original paper, but this construction extends also whenb is
a finite singularity (or even a regular point). Suppose that (1) is nonoscillatory at∞,
i. e., there exists a solution ˆw of associated Riccati-type equation (9) which is defined
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on an interval [T,∞). Let d > T and xd be the solution of (1) given by the initial
condition xd(d) = 0, x′d(d) = −1 and letwd = rΦ(x′d/xd). Then forT < d1 < d2

we have ˆw(t) > wd1(t) > wd2(t) for t ∈ [T,d1). This means that on every compact
subinterval of [T,∞) there exists the uniform limit

w̃(t) := lim
d→∞

wd(t),

and hence this function is a solution of (9). This solution is called theeventually
minimalsolution of (9). The corresponding solution ˜x of (1) given by the formula

x̃(t) = K exp

{∫ t

T
Φ(w̃(s)/r(s))

}
ds,

whereK is a nonzero real constant, is called theprincipal solution(at∞) of (1). Note
that the largest zero pointt̃ of the principal solution ˜x (if exists) plays essentially the
role of the first left conjugate point oft = ∞ since any solutionx of (1) linearly
independent of ˜x has exactly one zero in (t̃,∞), see [7]. Note also that ift = b is a
regular pointof (1), then the principal solution atb is simply defined as a nontrivial
solution satisfyingx(b) = 0. Finally, a solution ˜x of nonoscillatory equation (1) is
said to becoprincipalat b, if its quasiderivative ˜u = rΦ(x̃′) is the principal solution
atb of the reciprocal equation (8). In the last two statements of this section we recall
some properties of the principal and coprincipal solutions of (1). The first one is
formulated in [5] in caseb = ∞, but a closer examination of its proof reveals that the
statement remains to hold also whenb is a finite singularity.

Lemma 3. Suppose that
∫ b

r1−q(t) dt = ∞, c(t) > 0 nearb and (1) is nonoscilla-
tory atb.

(i) If x̃ is the principal solution of equation(1) at b, then it is also a coprincipal
solution atb.

(ii) A solutionx̃ of (1) is principal atb if and only if
∫ b dt

r(t)x̃2(t)|x̃′(t)|p−2
= ∞. (13)

The following alternative integral characterization of the principal solution of (1) is
proved in the recent paper [3]. Note that this paper actually formulates the statement
with the powerx2 instead ofxp in the formula (14) given below. However, a closer
examination of the proof given in [3] reveals that the statement remains to hold in
this modified setting which better fits our treatment.

Lemma 4. Suppose thatc(t) > 0 for large t, equation(1) is nonoscillatory and
both integrals

∫ ∞
r1−q(t) dt and

∫ ∞
c(t) dt are convergent. Thenx is the principal

solution of (1) if and only if ∫ ∞ dt

rq−1(t)xp(t)
= ∞. (14)
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3. E   

Our main result reads as follows.

Theorem 1. Suppose that(2) is disconjugate on the intervalI = (a, b), −∞ ≤ a <
b ≤ ∞, C(t) ≥ c(t) > 0 and0 < R(t) ≤ r(t) neara andb. Further, lety be the positive
principal solution of (2) at a and suppose that this solution is coprincipal atb and
y′(t) > 0 for t ∈ (a,b). If

lim sup
t1↓a, t2↑b

J(y; t1, t2) < 0, (15)

where

J(y; t1, t2) :=
∫ t2

t1

[
(R(t) − r(t))y′p(t) − (C(t) − c(t))

]
yp(t) dt

then(1) is pseudoconjugate onI , i. e., there existsa < d1 < d2 < b and a nontrivial
solutionx of (1) such thatx(d1) = 0 = x′(d2).

P. Let a < t0 < t1 < t2 < t3 < b (these values will be specified later), and
define a piecewise differentiable functionz for whichz(t0) = 0 = z′(t3) as follows:

z(t) =



0 for t ∈ (a, t0],

f (t) for t ∈ [t0, t1],

y(t) for t ∈ [t1, t2],

g(t) for t ∈ [t2, t3],

g(t3) for t ∈ [t3, b).

Here, f is a solution of (2) satisfying the boundary conditions

f (t0) = 0, f (t1) = y(t1), (16)

this solution exists in view of disconjugacy of (1). The functiong is also the solution
of (2), given by the boundary condition

g(t2) = y(t2), g′(t3) = 0, (17)

i. e., the quasiderivativeug = RΦ(g′) is a solution of the reciprocal equation to (2)
(
C1−q(t)Φ−1(u′)

)′
+ R1−q(t)Φ−1(u) = 0 (18)

satisfying the boundary conditions

u′g(t2) = −C(t2)Φ(y(t2)), ug(t3) = 0. (19)

The existence of this solution we prove as follows. The solutionw = RΦ(y′/y) of
the Riccati-type differential equation associated with (2) is positive on (a,b) (since
y′(t) > 0 on (a, b)) and hence the solutionv = −(1/Φ−1(w)) of the Riccati-type
equation corresponding to the reciprocal equation (18) is negative on (a, b). Now,
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let u be a solution of reciprocal equation (18) for whichu(t3) = 0 and suppose that
u′(s) = 0 for somea < s< t3 < b. Then integration by parts yields

∫ t3

s
[C1−q(t)|u′|p − R1−q(t)|u|p] dt = C1−quΦ−1(u′)

∣∣∣t3
s

−
∫ t3

s
u[(C1−q(t)Φ−1(u′))′ + R1−q(t)Φ−1(u)] dt = 0,

and, at the same time, applying the Picone identity to the above integral we get
∫ t3

s
[C1−q(t)|u′|p − R1−q(t)|u|p] dt = −v(s)|u(s)|p

+ q
∫ t3

s
C(t)P(vΦ−1(u),C(t)u′) dt > 0,

a contradiction. Hence the solutionu satisfiesu′(t) , 0 for t < t3. Consequently,
multiplying this solution by a suitable constant, we get the solution satisfying (19).

In the remaining part of the proof we will show thatF (z; t0, t3) < 0 if t0, t3 are
sufficiently close toa, b, respectively, which then means that (1) is pseudoconjugate
on [t0, t3] ⊂ (a, b) by Lemma 1. Using integration by parts, we get

FRC( f ; t0, t1) :=
∫ t1

t0

[
R(t)| f ′(t)|p −C(t)| f (t)|p] dt

= R(t) f (t)Φ( f ′(t))
∣∣∣t1
t0
−

∫ t1

t0
f (t)

[
(R(t)Φ( f ′(t))′ + C(t)Φ( f (t))

]
dt

= f p(t1)w f (t1),

wherew f = RΦ( f ′/ f ). Similarly,

FRC(y, t1, t2) = yp(t2)wy(t2) − yp(t1)wy(t1), wy =
RΦ(y′)
y

,

FRC(g; t2, t3) = −gp(t2)wg(t2), wg =
RΦ(g′)
Φ(g)

.

Summarizing these computations and taking into account (16), (17), we obtain

FRC(z; a,b) = (w f − wy)(t1)yp(t1) + (wy − wg)(t2)yp(t2).

From the definition of the principal solution ata, we have

w f (t1)→ wy(t1) as t0→ a + . (20)

Note thatw f depends ont0. Concerning the differencewy(t2) − wg(t2), the functions
vy = −(1/Φ−1(wy)) andvg = −(1/Φ−1(wg)) are solutions of the Riccati equation (10)
associated with reciprocal equation (8), and againvg(t2) → vy(t2) , 0 ast3 → b−,
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since we suppose thaty is the coprincipal solution atb, i. e., vy is the eventually
minimal solution of (10) atb. Hence also

wg(t2)→ wy(t2) as t2→ b− . (21)

Summarizing the previous computations and using inequalities betweenR, r and
C, c neara andb, we have

Frc(z; t0, t3) ≤ FRC(z; t0, t3) +J(y; t1, t2)

= (w f − wy)(t1)yp(t1) + (wy − wg)(t2)yp(t2) +J(y; t1, t2).

Now, let ε > 0 be such that limsup in (15) is less than−4ε, i. e.,J(y; t1, t3) < −3ε
if t1, t2 are sufficiently close toa andb, respectively. According to (20) and (21), if
t0 < t1, t3 > t2 are sufficiently close toa andb, respectively, we have

|(w f − wy)(t1)yp(t1)| < ε, |(wy − wg)(t2)yp(t2)| < ε.
Consequently, fort0 < t1 < t2 < t3 chosen in the above specified way, we obtain

Frc(z) ≤ −3ε + ε + ε < 0.

Now the statement of the theorem follows from Lemma 1. �

In the next statement we show that if the inequalityR(t) ≤ r(t) holds onwhole
interval (a,b) (and not only neara andb as supposed in Theorem 1), the statement of
this theorem can be modified as follows.

Theorem 2. Suppose that the assumptions of Theorem 1 are satisfied, except for
the assumptionC(t) ≥ c(t) > 0 neara, and letR(t) ≤ r(t) for t ∈ (a,b). If

lim inf
s1↓a, s2↑b

∫ s2

s1

(c(t) −C(t)) yp(t) dt ≥ 0 and C(t) . c(t) for t ∈ (a, b), (22)

then(1) is pseudoconjugate onI , i. e., there exista < d1 < d2 < b and a nontrivial
solutionx of (1) such thatx(d1) = 0 = x′(d2).

P. We use essentially the same functionz as defined in the proof of Theorem
1, with the following modification. Continuity of the functionsC, cand (22) imply the
existence of̄t ∈ (t1, t2) andd, % > 0 such that (c(t) −C(t))yp(t) > d for (t̄ − %, t̄ + %) ⊂
(t1, t2). Let α be any positive differentiable function with the compact support in
(t̄ − %, t̄ + %). Now, we modify the functionz for t ∈ [t1, t2] as follows:

z(t) =


y(t) for t ∈ [t1, t2]\[ t̄ − %, t̄ + %],

y(t)(1 + δα(t)) for t ∈ [ t̄ − %, t̄ + %],
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whereδ > 0 will be specified later. With this modification, using Picone’s identity
from Lemma 2,

FRC(z; t1, t2) =

∫ t2

t1

[
R(t)|z′|p −C(t)zp] dt = wyz

p
∣∣∣t2
t1

+

∫ t2

t1

[
R(t)|z′|p − pwy(t)z

′Φ(z) + (p− 1)R1−q(t)|wy(t)|qzp
]

dt

= wyy
p
∣∣∣t2
t1

+

∫ t̄+%

t̄−%

{
R(t)|y′ + δ(αy)′|p − pR(t)

Φ(y′)
Φ(y)

z′yp−1(1 + δα)p−1

+(p− 1)R1−q(t)
∣∣∣∣∣
R(t)Φ(y′)

Φ(y)

∣∣∣∣∣
q

yp(1 + δα)p
}

dt

= wyy
p
∣∣∣t2
t1

+

∫ t̄+%

t̄−%
R(t)

{|y′|p + pδ(αy)′Φ(y′) + o(δ)

− p(y′ + δ(αy)′)Φ(y′)(1 + (p− 1)δα + o(δ)) + (p− 1)|y′|p(1 + pδα + o(δ))
}
dt

= wyy
p
∣∣∣t2
t1

+

∫ t̄+%

t̄−%
R(t)

{|y′|p + pδ(αy)′Φ(y′) + p|y′|p − pδΦ(y′)(αy)′

− p(p− 1)δα|y′|p + (p− 1)|y′|p + (p− 1)pδα|y′|p + o(δ) }dt

= wyy
p
∣∣∣t2
t1

+ o(δ).

Consequently, using the rechniques from the proof of Theorem 1, we get

FRC(z; t0, t3) =

∫ t3

t0

[
R(t)|z′|p −C(t)|z|p] dt

= w f | f |p
∣∣∣t1t0 + wyy

p
∣∣∣t2t1 + wg|g|p

∣∣∣t3t2 + o(δ)

= yp(t1)(w f (t1) − wy(t1))

+ yp(t2)(wy(t2) − wg(t2)) + o(δ)

asδ→ 0+. Concerning the interval (t1, t2), we have

∫ t2

t1
(c(t) −C(t)) zp(t) dt =

∫ t̄−%

t1
(c(t) −C(t)) yp(t)

+

∫ t̄+%

t̄−%
(c(t) −C(t)) yp(t)(1 + δα(t))p dt +

∫ t2

t̄+%
(c(t) −C(t)) yp(t) dt

=

∫ t2

t1
(c(t) −C(t)) yp(t) dt + pδ

∫ t̄+%

t̄−%
(c(t) −C(t)) yp(t)α(t) dt + o(δ)

≥
∫ t2

t1
(c(t) −C(t)) yp(t) dt + δK + o(δ),



170 ONDŘEJ DǑSLÝ

whereK = pd
∫ t̄+%

t̄−% α(t) dt > 0. Therefore
∫ t2

t1
(c(t) −C(t)) zp(t) t ≥

∫ t2

t1
(c(t) −C(t)) yp(t) dt + Kδ + o(δ).

Next we prove that the functionf /y is increasing on (t0, t1). We have (f /y)(t0) = 0,
( f /y)(t1) = 1 and (f /y)′(t) , 0 for t ∈ (t0, t1). Indeed, if (f /y)′(τ) = 0 for some
τ ∈ (t0, t1), w f (τ) = wh(τ) and this contradicts the unique solvability of the Riccati
equation (9). Due to the monotonicity off /y, the Second Mean Value Theorem of
integral calculus implies that there existsξ ∈ (t0, t1) for which

∫ t1

t0
[C(t) − c(t)] f p(t) dt =

∫ t1

t0
[C(t) − c(t)]( f /y)p(t)yp(t) dt

=

∫ t1

ξ
[C(t) − c(t)]yp(t) dt.

Using the above computations and, again, the inequalities between the functionsr,R
andc,C, we get

Frc(z; t0, t3) ≤ FRC(z; t0; t3) −
∫ t2

t0
(c(t) −C(t))zp(t) dt

≤ |w f (t1) − wy(t1)|yp(t1) + |wy(t2) − wg(t2)|yp(t2)

−
∫ t2

ξ
(c(t) −C(t))yp(t) dt− Kδ + o(δ).

Now, let δ > 0, a sufficiently small number, be such thatKδ + o(δ) =: ε > 0.
According to (22) the pointst1, t2 can be chosen in such a way that

∫ t2

ξ

(c(t) −C(t)) yp(t) dt > −ε
4

wheneverξ ∈ (a, t1). Further, similarly as in the proof of Theorem 1

yp(t1)
∣∣∣w f (t1) − wy(t1)

∣∣∣ < ε

4
, yp(t2)

∣∣∣wy(t2) − wg(t2)
∣∣∣ < ε

4
if t0 < t1, t2 < t3 are sufficiently close toa andb, respectively. Consequently, for
the above specified choice oft0 < t1 < t2 < t3 we have the inequalityFrc(z; t0, t3) <
−(ε/4) < 0 and Lemma 1 implies that (1) is pseudoconjugate on [t0, t1] ⊂ (a, b). �

4. E

We finish the paper with two examples illustrating the results of the previous sec-
tion.

Example1. Consider the half-linear Euler equation with the so-called critical co-
efficient (

Φ(x′)
)′

+
γp

tp Φ(x) = 0, (23)
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whereγp = (p− 1)p p−p. One solution of this equation can be computed explicitly
if we look for this solution in the formx(t) = tλ. Then substituting into (23) we find
that this function is a solution of (23) ifλ is a root of the equation

G(λ) := (p− 1)(|λ|p − Φ(λ)) + γp = 0,

and by direct computation we have thatλ = (p − 1)/p is a double root ofG, hence
x(t) = t (p−1)/p is a solution of (23). Using Lemma 3, it is not difficult to verify thatx
is the principal solution att = 0, and principal as well as coprincipal solution at∞.
Consequently, equation (23) may play the role of equation (2) in Theorems 1, 2, and
hence the equation

(
Φ(x′)

)′
+

(γp

tp + c(t)
)
Φ(x) = 0

with c(t) ≥ 0 for t ∈ (0, δ), δ > 0, and for larget, is pseudoconjugate on (0,∞)
provided

lim inf
t1↓0, t2↑∞

∫ t2

t1
c(t)tp−1 dt ≥ 0 and c(t) . 0, t ∈ (0,∞).

Example2. In this example we consider the half-linear differential equation

(
(1 + tp)p−1Φ(x′)

)′
+

p− 1
1 + tpΦ(x) = 0, t ∈ [0,∞). (24)

By direct computation one can verify that

x(t) =
t

p√
1 + tp

, u(t) = (1 + tp)p−1Φ(x′(t)) =
1

q√
1 + tp

(25)

are solutions of (24) and of its reciprocal equation

(
(1 + tp)q−1Φ−1(u′)

)′
+

(p− 1)q−1

1 + tp Φ−1(u) = 0, (26)

respectively. Moreover, using Lemma 3 and Lemma 4 (applied to (26), i. e., withp
replaced byq and vice versa) one can verify by a direct computation that the solution
x is principal att = 0 and coprincipal at∞.

Since the pointt = 0 is the regular point of (24), the equation

(
(1 + tp)p−1Φ(x′)

)′
+

(
p− 1
1 + tp + c(t)

)
Φ(x) = 0

with c(t) ≥ 0 for larget is pseudoconjugate on [0,∞) provided

lim inf
t→∞

∫ t

0
c(s)

sp

1 + sp ds≥ 0 and c(t) . 0, t ∈ (0,∞).
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R

[1] A, R. P., G, S. R.,  O’R, D.: Oscillation Theory of Second Order Linear,
Half-Linear, Superlinear and Sublinear Dynamic Equations, Kluwer AP, Dordrecht, etc., 2002.

[2] A, C. D., Principal and antiprincipal solutions of self-adjoint differential systems and
their reciprocals, Rocky Mountain J. Math.,2 (1972), 169–189.
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[4] Ď́, O.: A remark on conjugacy of half-linear second order differential equations, Math. Slo-
vaca,50 (2000), 67–79.
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