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1. INTRODUCTION

We will consider the following generalized Boole transformation

i eR (1.2)

N
]Ray—>so(y%=ay+a—zy_b, :
J

j=1

wherea andbj € R, j = 1,N, are some real and,3j € R,, j = 1,N, are positive
parameters. It generalizes that classical Boole transformatidR Hly — ¢(y) =

y — 1/y € R, which appeared to be ergodic [2] with respect to the invariant standard
infinite Lebesgue measure B In the case where = 1, a = 0, the similar ergodicity
result was proved in [3-5] making use of the specially despised inner function notion.
The related spectral properties were in part studied in [5]. In spite of these results the
casex # 1 still persists to be challenging as the only related result [6] concerns the
following special case of (1.1)R > y — ¢(y) = ay —B/ly e Rfor0O < @ < 1

and arbitrarys € R,. The corresponding invariant measure appeared to be finite
absolutely continuous with respect to the Lebesgue measuReam equal to

VB(1 - a)dx (1.2)
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wherex € R. The ergodicity for the invariant measure (1.2) now can be easily proved.
Recall here, concerning a general nonsingular mappin@R — R, the problem of
constructing the measure preserving ergodic measures is analized [6, 7] by means
of studying the spectral properties of the adjoint Frobenius-Perron opé’?@jor
Lo(R;R) — Lo(R; R), where, by definition,

Teo® = > eI W) (1.3)
yele’ (9}

for anyo € Lo(R; R,) andJ;(y) := |d§—(y”)’ y € R. ThenifT,0 = 0, 0 € Lo(R; R,),
then the expressiodu(X) := o(X)dx X € R, will be an invariant, in general infinite,
measure with respect to the mappingR — R.

Another way to finding a general algorithm for finding such an invariant measure
was devised in [8, 9], making use of the generating measure function method.

Below we will study another special cases of the generalized Boole transformation
(1.1), for which we deliver the corresponding invariant measures and prove the related
ergodicity and spectral properties.

2. |NVARIANT MEASURES AND ERGODIC TRANSFORMATIONS

We will start by analyzing the following Boole type surjective transformation

]Ray—><p(y)::ay+a—ib€]R (2.1)

y —_—

for anya,b € R and B := y* € R,. The transformation (2.1) at = 1/2 and

b = 2a € R will be measure preserving with respect to a measure like (1.2). Namely,

the following lemma holds.

Lemma 2.1. The Boole type mappin@.1)is measure preserving with respect to

the measure
lyldx

al(x—2a)2 + 2]’

du(x) :=

wherex € R andy? := 28 € R,.

(2.2)

Proor. A proof follows easily from the fact that the function

o Y
o(x) = X237+ /7] (2.3)

satisfies for allk € R \ {2a} the determining condition (1.3):

Teo(x) = > 0(y=)y (%), (2.4)
|

where, by definition,¢(y.(X)) := X for any x € R. The relation (2.4) is, evidently,
equivalent to the next invariance condition

Z du(y+(X) = du(X) = u(dX) (2.5)
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for any infinitesimal subsetx c R. O

The question about the ergodicity of mapping (2.1) is solved here easily by the
following theorem.

Theorem 2.2. Measure(2.3) is ergodic with respect to transformatiq@.1) at
a =1/2andb = 2a € R as such one is equivalent to the canonical ergodic mapping
R/7nZ > s+ y(9) .= 2smod tZ) € R/nZ with respect to the standard Lebesgue
measure ofR /nZ.

Proor. Put by definitionR/zZ > s &(S) = y € R, where
&(s) ;= yctgs+ 2a, (2.6)
Then transformation (2.1) at = 1/2, b = 2a € R andy? := 28 € R, yields under
mapping (2.6)

B Y y, __ y(cogs-sirfs
o(y) = p(&(9) = 5 ctgs+ 2a 5 tgs= 5 SNSCoSS +2a
_ _cos&
~Vsin2s
for anys e R/zxZ. Relation (2.7) means that transformation (2.1) is conjugated [5, 7]
with the transformation

+2a=ytg2s+ 2a:= &(29) (2.7)

R/nZ > s+— y(s) = 2smod @Z) € R/nZ, (2.8)
that is the following diagram is commutative:

3

R/nZ R (2.9)
\ l“)
Y
R/nZ

It is easy now to check that the measure (2.2) under the conjugation (2.9) trans-
forms into the standard normalized Lebesgue measulR/a#. :

dsy?|d(ctgs)/dS _ 1lsi’s-sin?sds

1
== d 2.10
n(y2ctfs+vy?) 7 co@s+ SIS a8 (2.10)

du(X)x=y ctgs+2a =

wheres € R/#Z. The infinitesimal measure ldson R/7Z > s as well as the
infinitesimal measure (2.2) dR are normalized, being thus probabilistic. Now it is
enough to make use of the fact that the measatdson R/zZ > son the interval
[0, 7] ~ R/nZ is ergodic [6, 7]. O



94 ANATOLIY K. PRYKARPATSKY AND JACEK FELDMAN

3. ERGODIC MEASURES. A NEW APPROACH

Assume that there exists a holomorphic, in parameter C., functiono, €
H»(C,; C), satisfying the following identity

A

Te0w = 03(w) (3.1)

valid for anyw € C, for some induced transformatidiy, > w — @(w) € C,. If
we now takew = w € C, being a fixed point of the mapping "C, — C., then
an easy conclusion from 3.1 gives rise to the condiﬂfgg,; = 05, Meaning that the
expression

du(x) = Imog(x)dx, (3.2)

is a searched invariant measure for the transformatiolR — R. There exists still
no general rule of constructing such functigns € Hy(C,; C) analytic inw € C,
and related induced mappings T, — C,. Nevertheless, for solving this problem
one can adapt some natural motivations related to the exact functional form of the
determining Frobenius-Perron operalgr: Lo(R;R) — Lo(R;R). To explain this,
let us consider the following Boole type transformation:

R 3 ¢(y) := a/y+a—ib€]R, (3.3)

y—

where a,b €R andp € R,. It is easy to observe that the Frobenius-Perron operator
action on any,, € Hy(C,; C) can be represented as follows:

A~

Te0u = u(y+)Y + uly-)y-
_ @-yewly)w -y )yt euly-)w —y)(w -y )y”

(= y)w=y-) (@ =y:)w=y-)
_ Ko-y )yt + Ko -y )yl _ —K(w-y)(w -y )l
(@=y:)w=y-) (@=y:)w=y-)

_ _kdix In[(w - y.)(@-y.)], (3.4)

where we put, by definition,
k
Cw(¥) = ——
forall w € C; \ {x}, X € R, and some paramet&re R. As a result of (3.5) one can
take

(3.5)

Qu(y+)(@ —ys) = k= 0u(y-)(w - y-), (3.6)

forall x € R andw € C,. Since the root functiong,,y_ : R — R satisfy, by
definition, the same equation

w(y+(X) = X, 3.7)
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for all x € R, the following identity for allw € C. is easily inferred from (3.7) owing
to the general form of (3.3):

a(w - y)(w - y-) = [pw) - X|(w - b), (3.8)
where
s =bs 08 = 2R )
Whence, taking into account the expression (3.4), one gets that
o0 =~ ko I({e(w) ~ (0 - b)
(3.10)

B k(w — b) 3 k B
@) - Aw-b)  glw)-x
for all x € R andw € C.. Therefore, the induced mappigg: T, — C. is exactly
the transformatiop : C, — C., extended naturally from the axi& on the complex
planeC..
Let noww € C, be a fixed point of the induced mappipg: C,. — C,, that is
¢(w) = w € C4. Then from (3.10) one finds thﬁipga—, = 04, Or the corresponding
invariant quasi-measure dhas the form

du(x) 1= Im 9 (3.11)
w

for all x € R and some suitable parametere C. As Imog; € L>(R;R,) at any
w € C, \ R and some € C, then the invariant quasi-measure (3.11) becomes a true
invariant measure. The obtained result can be formulated as the following theorem.

Theorem 3.1. The quasi-measun8.11)is invariant with respect to transforma-
tion (3.3) for anya € R, \ {1}; for « = 1 at the conditiona # 0, Imk # O, it is
reduced upon the s@®/nZ, being equivalent to the standard Gauss measure.

Proor. Indeed, the searched infinitesimal quasi-meadu(g) exist if there exists
at least one fixed point of the equatip(w) = w for w € C.. If @ # 1, this equation
is equivalent to

(@ — 1)w? — w[(e—1)b—-a] — (@ab+pB) =0, (3.12)

always possessing a solutian € C,, for which ¢p(w) = w. At @ = 1 the unique
solutionw = (ab+ B)/a € R exists only ata # 0, Imk # 0O, at which the quasi-
measure (3.11) becomes degenerate, thus reducing to the standard Gauss measure
[3,7]onR/nZ. ]

The Theorem 3.1 states only that quasi-measure (3.11) is invariant with respect
to the transformation (3.3), thereby the ergodicity if any still needs to be proved
separately, on which we plan to do in detail in another place. Below we will proceed
to study the general case of transformation (1.1), searching for a suitable invariant
guasi-measure becoming a measure at soraeC, /R, k € C.
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4. | NVARIANT MEASURES. THE GENERAL CASE

Consider the following equation

e(y) = %, (4.1)
wherex,y € R and the mapping : C. — C. is given by expression (1.1) at some
still fixed integerN € Z.. \ {1}. The equation (4.1) can be rewritten as

N+1 N

o [w-v) =lew)-A ] |&-by) (4.2)
i=1 j=1

for all x,y € R and some functiong; : R — R, j = 1, N+ 1. Relation (4.2) is

naturally extended to the complex plafie as

N+1 N

a Jw=-y) =) - A [ [(w-b) (4.3)
=1 j=1

foranyw € C,.
Consider now relation (3.1), similarly to Section 3:

. N N1 o)y (@ — yj TTieHw =y
Tp00 = Zso(w)(yj)y'j = Z Al N e hiad

N+1
=1 =1 Hk:+1 (w = yk)

_ i (@)@ -y T (@ — vy} NZ” K TThs (@ = )y
=1 HE:]_l(w - Yk) =1 HE:]_l(w - Yk)
ax i@ = ) d N

=—k—In[ [(w-y0. (4.4)
k=1

HL\I:;L(U) - Yk) dx
where we have put, as before,

Cwy)w—yj) =k (4.5)
forall j=1,N + 1, w € C,, and some parameteks C. This evidently means that
k
Ouly) = —— (4.6)
w-y

foranyy € R andw € C,.
Having substituted now expression (4.3) into (4.4), one gets easily that

N k
Tp0u(X) = 90(60)——X = Oy(w)(X), 4.7)

for all X € R and anyw € C,. Thus, the invariant quasi-measure for the discrete
dynamical system (1.1) will be given by the same expression (3.11), wher€,
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is some fixed point of the mapping: C, — C,. This means that

aw+a-— = = w, (4.8)

or, equivalently,

N N N N N
wo| [@-b)+a] [@-b)- > B |@-b)=a] |@-b). (49
j=1 j=1 j=1

=1 k#j

for somew € C,. Assume now thatr # 1; then it is easy to find that the algebraic
equation (4.9) possesses exablly 1 € Z. roots, which can be used for constructing
the invariant quasi-measure (3.11). The aasel gives rise to the condition

N N N
af [@-b) = A [@-b. (4.10)
j=1

=1 k#j

which always possesses rootdNf> 2 anda € R is arbitrary. Thereby, one can
formulate the following theorem for the calsie> 2.

Theorem 4.1. Expression(3.11)at somek € C determines, in general, the infini-
tesimal invariant quasi-measure for the generalized Boole transformation (1.1) at all
N > 2 with arbitrary parameters, bj € R ande,Sj € Ry, j =1, N+ 1

It is an important task now to separate from the obtained set of invariant quasi-
measures (3.11) those which are positively defined and ergodic with respect to trans-
formation (1.1) alN > 2. The positivity condition simply means that the determining
equation (4.9) must possess at least one pair of complex conjugated roots with a non-
trivial imaginary part. Having analyzed, concerning this criteria, roots of equation
(4.9) one can find that the following statement analogous to that proved in [6] holds.

Theorem 4.2. The generalized Boole transformati¢h 1) for anyN > 1is nec-
essarily ergodic with respect to the meas(Bell)at somew € C, \ R andk e Ciff
a =1landa=0.If a = 1anda # 0, the transformatior(1.1) is not ergodic being
totally dissipative, that is the wandering se{y) := | # (¢) = R, where# (¢) c R
are subsets such that all sets"(%#), n € Z, are disjoint.

SKETCH OF PROOF. Itis easy to see thatfdd > 2 ate = 1 anda = 0 the determining
algebraic equation (4.9) always possesses exattlyl € Z, real rootsw; € R,
j = 1L, N - 1. Therefore, the invariant quasi-measure expression (3.11) is degenerate
forwj € R, j = 1,N — 1, giving rise to the conclusion that the corresponding invariant
measuredu(x) = dx, x € R, is the standard Lebesgue measureRorits ergodicity
with respect to transformation (1.1) then follows from the fact that the corresponding
dissipative se®(¢) = @ and the unique invariant set subalgebia = R. O
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The statements similar to above can be formulated for the most generalized Boole
type transformation

dv(s
]Ray—>g0(y)::a/y+a+f£€1R, (4.11)
R S—Y
wherea € R, @ € R, and a measure on R has the compact support supg R,
being such that the following natural conditions [3]

dv(s)
f]R1+s2‘a’ fRdv(s)<oo, (4.12)

hold. Concerning the extension of the transformation (4.11) on the uppet pait
the complex plan€ in such a way that I»(w) > O for all w € C,, the following
representation

1+sw

o(w) = aw +a+ f do(9), (4.13)

R S—w
holds [3, 11], where a measude on R is closely related to the measute

The general properties of mapping (4.13) were in part studied in [6] in the frame-
work of the theory of inner functions. The invariant measures corresponding to (4.11)
and their ergodic properties can be also treattsttvely making use of the analyti-
cal and spectral properties of the associated Frobenius—Perron transfer operator (1.3).
These aspects of the problem being are as important as interesting, and are planned
to be studied elsewhere.

5. ACKNOWLEDGEMENTS

The authors are cordially grateful to professors D. Blackmore (NJ, USA), F. Pszy-
tycki (Warw) and T. Downarowicz (Wroclaw) for valuable discussions of the er-
godic measure properties related to the generalized Boole transformations.

REFERENCES

[1] BooLe, G. On the comparison of transcendents with certain applications to the theory of definite
integrals Philos Trans. Royal Soc. Londoi¥7(1957), 745-803.

[2] AbLer, R. anp WErss, B.: The ergodic, infinite measure preserving transformation of Bigohel
Journal of Math.16 (1973), 263-278.

[3] Aaronson, J: Ergodic theory for inner functions of the upper half pladen. Inst. H. Poinca,
BXIV (1978), 233-253.

[4] Aaronson J: A remark on this existence of inner functipds London Math. Soc23 (1981),
469-474.

[5] Aaronson, J: The eigenvalues of nonsingular transformatiolssael J. Math.45 (1983), 297—
312.

[6] Aaronson, J: An Introduction to Infinite Ergodic TheonAmer. Math. Soc, 1997.

[7] Karok, A. anp HassewsLart, B.: Introduction to the Modern Theory of Dynamical Syste@asm-
bridge University Press, Cambridge, 1997.

[8] Prykarpatsky A. K.: On invariant measure structure of a class of ergodic discrete dynamical
systemsNonlinear Oscillations3 (2000), No. 1, 78-83.



ERGODIC AND SPECTRAL PROPERTIES OF GENERALIZED BOOLE TRANSFORMATIONS 99

[9] Prykareatsky, A. K. anp Brzycuezy, S: On invariant measure structure of a class of ergodic dis-
crete dynamical systemBroceedings of the International Conference SCAN 206&val 2000,
September 19-22, Karlsruhe, Germany.

[10] Porrycort, M. anp Yari, M.: Dynamical Systems and Ergodic Theokyndon Math. Society,
Cambridge University Press, 1998.

[11] AsLowirz, M. J.anp Fokas, A. S: Complex Variables: Introduction and Applicatigri@ambridge
University Press, 1997.

Authors’ addresses

Anatoliy K. Prykarpatsky:
Tue AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, DEPARTMENT OF APPLIED M ATHEMATICS, KRAKOW

30059, BLaND

Jacek Feldman:
Tue AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, DEPARTMENT OF APPLIED M ATHEMATICS, KRAKOW

30059, BLaND



