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1. I

We will consider the following generalized Boole transformation

� 3 y→ ϕ(y) := αy + a−
N∑

j=1

β j

y − b j
∈ �, (1.1)

wherea andb j ∈ �, j = 1,N, are some real andα, β j ∈ �+, j = 1,N, are positive
parameters. It generalizes that classical Boole transformation [1]� 3 y 7→ ϕ(y) :=
y − 1/y ∈ �, which appeared to be ergodic [2] with respect to the invariant standard
infinite Lebesgue measure on�. In the case whereα = 1, a = 0, the similar ergodicity
result was proved in [3–5] making use of the specially despised inner function notion.
The related spectral properties were in part studied in [5]. In spite of these results the
caseα , 1 still persists to be challenging as the only related result [6] concerns the
following special case of (1.1):� 3 y 7→ ϕ(y) := αy − β/y ∈ � for 0 < α < 1
and arbitraryβ ∈ �+. The corresponding invariant measure appeared to be finite
absolutely continuous with respect to the Lebesgue measure on� and equal to

dµ(x) :=

√
β(1− α)dx

π[x2(1− α) + β]
, (1.2)
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wherex ∈ �. The ergodicity for the invariant measure (1.2) now can be easily proved.
Recall here, concerning a general nonsingular mappingϕ : � → �, the problem of
constructing the measure preserving ergodic measures is analized [6, 7] by means
of studying the spectral properties of the adjoint Frobenius-Perron operatorT̂ϕ% :
L2(�;�)→ L2(�;�), where, by definition,

T̂ϕ%(x) :=
∑

y∈{ϕ′(x)}
ϕ(y)J−1

ϕ (y) (1.3)

for any% ∈ L2(�;�+) andJ−1
ϕ (y) :=

∣∣∣dϕ(y)
dy

∣∣∣, y ∈ �. Then if T̂ϕ% = %, % ∈ L2(�;�+),
then the expressiondµ(x) := %(x)dx, x ∈ �, will be an invariant, in general infinite,
measure with respect to the mappingϕ : �→ �.

Another way to finding a general algorithm for finding such an invariant measure
was devised in [8,9], making use of the generating measure function method.

Below we will study another special cases of the generalized Boole transformation
(1.1), for which we deliver the corresponding invariant measures and prove the related
ergodicity and spectral properties.

2. I    

We will start by analyzing the following Boole type surjective transformation

� 3 y→ ϕ(y) := αy + a− β

y − b
∈ � (2.1)

for any a, b ∈ � and 2β := γ2 ∈ �+. The transformation (2.1) atα = 1/2 and
b = 2a ∈ � will be measure preserving with respect to a measure like (1.2). Namely,
the following lemma holds.

Lemma 2.1. The Boole type mapping(2.1) is measure preserving with respect to
the measure

dµ(x) :=
|γ|dx

π[(x− 2a)2 + γ2]
, (2.2)

wherex ∈ � andγ2 := 2β ∈ �+.

P. A proof follows easily from the fact that the function

%(x) :=
γ

π[(x− 2a)2 + γ2]
(2.3)

satisfies for allx ∈ � \ {2a} the determining condition (1.3):

T̂ϕ%(x) :=
∑

I

%(y±)y′±(x), (2.4)

where, by definition,ϕ(y±(x)) := x for any x ∈ �. The relation (2.4) is, evidently,
equivalent to the next invariance condition∑

±
dµ(y±(x)) = dµ(x) := µ(dx) (2.5)
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for any infinitesimal subsetdx⊂ �. �

The question about the ergodicity of mapping (2.1) is solved here easily by the
following theorem.

Theorem 2.2. Measure(2.3) is ergodic with respect to transformation(2.1) at
α = 1/2 andb = 2a ∈ � as such one is equivalent to the canonical ergodic mapping
�/π� 3 s 7→ ψ(s) := 2s mod (πZ) ∈ �/π� with respect to the standard Lebesgue
measure on�/π�.

P. Put by definition�/π� 3 s 7→ ξ(s) = y ∈ �, where

ξ(s) := γ ctgs+ 2a, (2.6)

Then transformation (2.1) atα = 1/2, b = 2a ∈ � andγ2 := 2β ∈ �+ yields under
mapping (2.6)

ϕ(y) = ϕ(ξ(s)) =
γ

2
ctgs+ 2a− γ

2
tg s =

γ(cos2 s− sin2 s)
2 sinscoss

+ 2a

= γ
cos 2s
sin 2s

+ 2a = γ tg 2s+ 2a := ξ(2s) (2.7)

for anys ∈ �/π�. Relation (2.7) means that transformation (2.1) is conjugated [5,7]
with the transformation

�/π� 3 s 7−→ ψ(s) = 2smod (π�) ∈ �/π�, (2.8)

that is the following diagram is commutative:

�/π�
ξ //

ψ $$IIIIIIIII �

ϕ

²²
�/π�

(2.9)

It is easy now to check that the measure (2.2) under the conjugation (2.9) trans-
forms into the standard normalized Lebesgue measure on�/π� :

dµ(x)|x=γ ctgs+2a =
dsγ2

∣∣∣d(ctgs)/ds
∣∣∣

π(γ2 ctg2 s+ γ2)
=

1
π

sin2 s · sin−2 s ds

cos2 s+ sin2 s
= π−1ds, (2.10)

where s ∈ �/π�. The infinitesimal measureπ−1ds on �/π� 3 s as well as the
infinitesimal measure (2.2) on� are normalized, being thus probabilistic. Now it is
enough to make use of the fact that the measureπ−1dson�/π� 3 s on the interval
[0, π] ' �/π� is ergodic [6,7]. �
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3. E :   

Assume that there exists a holomorphic, in parameterω ∈ �+, function %ω ∈
H2(�+;�), satisfying the following identity

T̂ϕ%ω = %ϕ̃(ω) (3.1)

valid for anyω ∈ �+ for some induced transformation�+ 3 ω 7→ ϕ̃(ω) ∈ �+. If
we now takeω := ω̄ ∈ �+ being a fixed point of the mapping ˜ϕ : �+ → �+, then
an easy conclusion from 3.1 gives rise to the conditionT̂ϕ%ω̄ = %ω̄, meaning that the
expression

dµ(x) := Im %ω̄(x)dx, (3.2)

is a searched invariant measure for the transformationϕ : � → �. There exists still
no general rule of constructing such functions%ω ∈ H2(�+;�) analytic inω ∈ �+

and related induced mappings ˜ϕ : �+ → �+. Nevertheless, for solving this problem
one can adapt some natural motivations related to the exact functional form of the
determining Frobenius-Perron operatorT̂ϕ : L2(�;�) → L2(�;�). To explain this,
let us consider the following Boole type transformation:

� 3 ϕ(y) := αy + a− β

y − b
∈ �, (3.3)

where a,b ∈� andβ ∈ �+. It is easy to observe that the Frobenius-Perron operator
action on any%ω ∈ H2(�+;�) can be represented as follows:

T̂ϕ%ω := %ω(y+)y′+ + %ω(y−)y′−

=
(ω − y+)%ω(y+)(ω − y−)y′−

(ω − y+)(ω − y−) +
%ω(y−)(ω − y+)(ω − y−)y′−

(ω − y+)(ω − y−)
=

k(ω − y−)y′+ + k(ω − y+)y′−
(ω − y+)(ω − y−) =

−k[(ω − y+)(ω − y−)]′
(ω − y+)(ω − y−)

= −k
d
dx

ln[(ω − y+)(ω − y−)], (3.4)

where we put, by definition,

%ω(x) =
k

ω − x
(3.5)

for all ω ∈ �+ \ {x}, x ∈ �, and some parameterk ∈ �. As a result of (3.5) one can
take

%ω(y+)(ω − y+) = k = %ω(y−)(ω − y−), (3.6)

for all x ∈ � andω ∈ �+. Since the root functionsy+, y− : � → � satisfy, by
definition, the same equation

ω(y±(x)) = x, (3.7)
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for all x ∈ �, the following identity for allω ∈ �+ is easily inferred from (3.7) owing
to the general form of (3.3):

α(ω − y+)(ω − y−) ≡ [ϕ(ω) − x](ω − b), (3.8)

where

y+(x) + y−(x) = b +
x− a

2
, y+(x)y−(x) =

bx− ab− β
2

. (3.9)

Whence, taking into account the expression (3.4), one gets that

T̂ϕ%ω = − k
d
dx

ln([ϕ(ω) − x](ω − b))

=
k(ω − b)

[ϕ(ω) − x](ω − b)
=

k
ϕ(ω) − x

= %ϕ(ω),
(3.10)

for all x ∈ � andω ∈ �+. Therefore, the induced mapping ˜ϕ : �+ → �+ is exactly
the transformationϕ : �+ → �+, extended naturally from the axis� on the complex
plane�+.

Let now ω̃ ∈ �+ be a fixed point of the induced mappingϕ : �+ → �+, that is
ϕ(ω̄) = ω̄ ∈ �+. Then from (3.10) one finds that̂Tϕ%ω̄ = %ω̄, or the corresponding
invariant quasi-measure on� has the form

dµ(x) := Im
kdx
ω̄ − x

(3.11)

for all x ∈ � and some suitable parameterk ∈ �. As Im%ω̄ ∈ L2(�;�+) at any
ω̄ ∈ �+ \ � and somek ∈ �, then the invariant quasi-measure (3.11) becomes a true
invariant measure. The obtained result can be formulated as the following theorem.

Theorem 3.1. The quasi-measure(3.11) is invariant with respect to transforma-
tion (3.3) for anyα ∈ �+ \ {1}; for α = 1 at the conditiona , 0, Im k , 0, it is
reduced upon the set�/π�, being equivalent to the standard Gauss measure.

P. Indeed, the searched infinitesimal quasi-measuredµ(x) exist if there exists
at least one fixed point of the equationϕ(ω) = ω for ω ∈ �+. If α , 1, this equation
is equivalent to

(α − 1)ω2 − ω[(α − 1)b− a] − (ab+ β) = 0, (3.12)

always possessing a solution ¯ω ∈ �+, for which ϕ(ω̄) = ω̄. At α = 1 the unique
solution ω̄ = (ab + β)/a ∈ � exists only ata , 0, Im k , 0, at which the quasi-
measure (3.11) becomes degenerate, thus reducing to the standard Gauss measure
[3,7] on�/π�. �

The Theorem 3.1 states only that quasi-measure (3.11) is invariant with respect
to the transformation (3.3), thereby the ergodicity if any still needs to be proved
separately, on which we plan to do in detail in another place. Below we will proceed
to study the general case of transformation (1.1), searching for a suitable invariant
quasi-measure becoming a measure at some ¯ω ∈ �+/�, k ∈ �.
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4. I :   

Consider the following equation

ϕ(y) = x, (4.1)

wherex, y ∈ � and the mappingϕ : �+ → �+ is given by expression (1.1) at some
still fixed integerN ∈ �+ \ {1}. The equation (4.1) can be rewritten as

α

N+1∏

j=1

(y − y j) = [ϕ(y) − x]
N∏

j=1

(y − b j) (4.2)

for all x, y ∈ � and some functionsy j : � → �, j = 1,N + 1. Relation (4.2) is
naturally extended to the complex plane�+ as

α

N+1∏

j=1

(ω − y j) = [ϕ(ω) − x]
N∏

j=1

(ω − b j) (4.3)

for anyω ∈ �+.
Consider now relation (3.1), similarly to Section 3:

T̂ϕ%ω =

N∑

j=1

ϕ(ω)(y j)y
′
j =

N+1∑

j=1

ϕ(ω)(y j)(ω − y j
∏N+1

k, j (ω − yk)y′j∏N+1
k=1 (ω − yk)

=

N+1∑

j=1

ϕ(ω)(y j)(ω − y j
∏N+1

k, j (ω − yk)y′j∏N+1
k=1 (ω − yk)

=

N+1∑

j=1

k
∏N+1

k, j (ω − yk)y′j∏N+1
k=1 (ω − yk)

= −k
d
dx

∏N+1
k, j (ω − yk)

∏N
k=1(ω − yk)

= −k
d
dx

ln
N+1∏

k=1

(ω − yk), (4.4)

where we have put, as before,

%ω(y j)(ω − y j) = k, (4.5)

for all j = 1,N + 1, ω ∈ �+, and some parametersk ∈ �. This evidently means that

%ω(y) =
k

ω − y (4.6)

for anyy ∈ � andω ∈ �+.
Having substituted now expression (4.3) into (4.4), one gets easily that

T̂ϕ%ω(x) =
k

ϕ(ω) − x
= %ϕ(ω)(x), (4.7)

for all x ∈ � and anyω ∈ �+. Thus, the invariant quasi-measure for the discrete
dynamical system (1.1) will be given by the same expression (3.11), where ¯ω ∈ �+
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is some fixed point of the mappingϕ : �+ → �+. This means that

αω̄ + a−
N∑

j=1

β j

ω̄ − b j
= ω̄, (4.8)

or, equivalently,

αω̄

N∏

j=1

(ω̄ − b j) + a
N∏

j=1

(ω̄ − b j) −
N∑

j=1

β j

N∏

k, j

(ω̄ − bk) = ω̄

N∏

j=1

(ω̄ − b j), (4.9)

for someω̄ ∈ �+. Assume now thatα , 1; then it is easy to find that the algebraic
equation (4.9) possesses exactlyN+1 ∈ �+ roots, which can be used for constructing
the invariant quasi-measure (3.11). The caseα = 1 gives rise to the condition

a
N∏

j=1

(ω̄ − b j) =

N∑

j=1

β j

N∏

k, j

(ω̄ − bk), (4.10)

which always possesses roots ifN ≥ 2 anda ∈ � is arbitrary. Thereby, one can
formulate the following theorem for the caseN ≥ 2.

Theorem 4.1. Expression(3.11)at somek ∈ � determines, in general, the infini-
tesimal invariant quasi-measure for the generalized Boole transformation (1.1) at all
N ≥ 2 with arbitrary parametersa, b j ∈ � andα, β j ∈ �+, j = 1,N + 1.

It is an important task now to separate from the obtained set of invariant quasi-
measures (3.11) those which are positively defined and ergodic with respect to trans-
formation (1.1) atN ≥ 2. The positivity condition simply means that the determining
equation (4.9) must possess at least one pair of complex conjugated roots with a non-
trivial imaginary part. Having analyzed, concerning this criteria, roots of equation
(4.9) one can find that the following statement analogous to that proved in [6] holds.

Theorem 4.2. The generalized Boole transformation(1.1) for any N ≥ 1 is nec-
essarily ergodic with respect to the measure(3.11)at someω̄ ∈ �+ \� andk ∈ � iff
α = 1 anda = 0. If α = 1 anda , 0, the transformation(1.1) is not ergodic being
totally dissipative, that is the wandering setD(ϕ) :=

⋃
W (ϕ) = �, whereW (ϕ) ⊂ �

are subsets such that all setsϕ−n(W ), n ∈ �, are disjoint.

S  . It is easy to see that forN ≥ 2 atα = 1 anda = 0 the determining
algebraic equation (4.9) always possesses exactlyN − 1 ∈ �+ real roots ¯ω j ∈ �,
j = 1,N − 1. Therefore, the invariant quasi-measure expression (3.11) is degenerate
for ω̄ j ∈ �, j = 1,N − 1, giving rise to the conclusion that the corresponding invariant
measuredµ(x) = dx, x ∈ �, is the standard Lebesgue measure on�. Its ergodicity
with respect to transformation (1.1) then follows from the fact that the corresponding
dissipative setD(ϕ) = ∅ and the unique invariant set subalgebraI (ϕ) = �. �
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The statements similar to above can be formulated for the most generalized Boole
type transformation

� 3 y→ ϕ(y) := αy + a +

∫

�

dν(s)
s− y ∈ �, (4.11)

wherea ∈ �, α ∈ �+ and a measureν on� has the compact support suppν ⊂ �,
being such that the following natural conditions [3]∫

�

dν(s)
1 + s2

= a,
∫

�

dν(s) < ∞, (4.12)

hold. Concerning the extension of the transformation (4.11) on the upper part�+ of
the complex plane� in such a way that Imϕ(ω) ≥ 0 for all ω ∈ �+, the following
representation

ϕ(ω) = αω + a +

∫

�

1 + sω
s− ω dσ(s), (4.13)

holds [3,11], where a measuredσ on� is closely related to the measuredν.
The general properties of mapping (4.13) were in part studied in [6] in the frame-

work of the theory of inner functions. The invariant measures corresponding to (4.11)
and their ergodic properties can be also treated effectively making use of the analyti-
cal and spectral properties of the associated Frobenius–Perron transfer operator (1.3).
These aspects of the problem being are as important as interesting, and are planned
to be studied elsewhere.
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