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1. INTRODUCTION

In this paper we give some new results on the representation of distributive modal
algebras by means of ordered sets with binary relations. Distributive modal algebras
are bounded distributive lattices endowed with two modal operators � and Þ, and
two weak forms of negation � and r. These classes of algebras are the algebraic
interpretation of certain free-negations modal logics, i. e., logics with modal operators
but without classical negation (see, for instance, [2, 4]).

In [1], a relational semantics for Positive Modal Logic is introduced. In this se-
mantics the relational structures, or frames, are triples hX;�;Ri where X is a set,
R is a binary relation and � is a quasiorder of X , that is, a reflexive and transitive
relation on X , such that � ıR � Rı � and ��1 ı R � R ı ��1. This semantics is
inherited from a suitable intuitionistic modal logic from which Positive Modal Logic
is the positive fragment. Reasons in favour of this semantics are given in [1, 2].

In this paper we study the representation for more extensive classes of distributive
modal algebras by means of relational structures of type hX;�;R�;RÞ;R�;Rri,
where � is an ordering of X , and R�, RÞ, R�, Rr are binary relations defined on
X .

In Section 2, we introduce the definitions and necessary notions to develop this
paper, and we develop the representation by means of relational structures for some
subvarieties of the variety of distributive modal algebras DMA. In Section 3we
prove that the varieties considered are closed under canonical extensions. Let us
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recall that the notion of canonical variety is the algebraic interpretation of the notion
of canonical modal logic (see [6]).

2. DISTRIBUTIVE MODAL ALGEBRAS

A distributive modal algebra is an algebra A D hA;_;^;�;Þ;�;r;0;1i such
that hA;_;^;0;1i is a bounded distributive lattice and �, Þ, �, and r are unary
operations defined on A and satisfying the identities

(M1) �.a^b/D�a^�b and�1D 1;
(M2) Þ.a_b/DÞa_Þb andÞ0D 0;
(M3) �.a_b/D�a^�b and �0D 1;
(M4) r.a^b/Dra_rb and r1D 0.

The variety of distributive modal algebras shall be denoted by DMA. A �-
algebra is an algebra A D hA;_;^;�;0;1i such that hA;_;^;0;1i is a bounded
distributive lattice with an operator � satisfying (M1). A Þ-algebra is an algebra
A D hA;_;^;Þ;0;1i such that hA;_;^;0;1i is a bounded distributive lattice with
an operatorÞ satisfying (M2). A�Þ-algebra is an algebra ADhA;_;^;�;Þ;0;1i
such that it is a �-algebra and a Þ-algebra. Similarly, a �-algebra (resp., r-
algebra) is an algebra A D hA;_;^;�;0;1i (resp., A D hA;_;^;r;0;1i) such that
hA;_;^;0;1i is a bounded distributive lattice with an operator� (resp., r) satisfying
(M3) (resp., (M4)). A �r-algebra is an algebra A D hA;_;^;�;r;0;1i such that
hA;_;^;0;1i is a bounded distributive lattice, and it is an�-algebra and ar-algebra.

A �Þ-algebra A is a Positive Modal algebra, or PM-algebra, if the following
conditions are satisfied:

(P1) �a^Þb �Þ.a^b/;
(P2) �.a_b/��a_Þb.

A �r-algebra A is a Negative Modal algebra, or NM-algebra, if the following
conditions are satisfied:

(N1) �.a^b/��a_rb;
(N2) �a^rb � r.a_b/.

Let us consider a poset hX;�i, i. e., X is a set and � is a reflexive, antisymmetric
and transitive binary relation on X . A subset U �X is said to be increasing if for all
x;y 2X such that x 2U and x � y, we have y 2U . The set of all increasing subsets
of X is denoted by Pi .X/. It is clear that hPi .X/;[;\;¿;Xi is a bounded distribu-
tive lattice. For each Y � X , the increasing set (resp., decreasing set) generated by
Y is ŒY /D fx 2X W 9y 2 Y W y � xg (resp., .Y �D fx 2X W 9y 2 Y W x � yg). Let Y
be a subset of a set X . The theoretical complement of Y is denoted by Y c DX �Y .

Let S and R be binary relations defined on a set X . The composition of R with S
is denoted by R ıS . The image of x 2X by means of the relation R is R.x/D fy 2
X W .x;y/ 2Rg.



NOTES ON THE REPRESENTATION OF DISTRIBUTIVE MODAL ALGEBRAS 83

Let X be a set and let R be a binary relation on X . We define four operators on
P .X/ as follows:

�R.U /D fx 2X WR.x/� U g; ÞR.U /D fx 2X WR.x/\U ¤¿g;
�R.U /D fx 2X WR.x/\U D¿g; rR.U /D fx 2X WR.x/ª U g:

We note that, in P .X/, all operators can be defined from �R, i. e., ÞR.U / D
�R.U c/c ,�R.U /D�R.U c/, and rR.U /D�R.U /c , but in Pi .X/ this fact is not
valid.

Proposition 1. Let hX;�i be a poset and let R be a binary relation on X . Then
�R.U /D�Rı�.U /,ÞR.U /DÞRı��1.U /,�R.U /D�Rı��1.U /, andrR.U /D
rRı�.U / for all U 2Pi .X/.

Proof. Let U 2 Pi .X/. We prove that �R.U / D �Rı�.U /. Let x;y 2 X such
that x 2�R.U /, and .x;y/2Rı�. Then there exists ´2X such that .x;´/2R and
´� y. Since R.x/�U , ´ 2U , and as U is increasing, y 2U . Thus, x 2�Rı�.U /.

Since � is reflexive, R �Rı �. So,�Rı�.U /��R.U /.
Let U 2Pi .X/. We prove that �R.U /D�Rı��1.U /. Let x 2�R.U /. Suppose

that .Rı ��1/.x/\U ¤ ¿. Then there exist y;´ 2 X such that .x;y/ 2 R, ´ � y,
and ´ 2 U . So, y 2 U \R.x/, which is a contradiction. Thus, x 2�Rı��1.U /. The
other inclusion it follows by the fact that R �Rı ��1.

The proofs of the identities ÞR.U /DÞRı��1.U / and rR.U /D rRı�.U / are
similar. �

In general, the bounded distributive lattice Pi .X/ is not closed under the modal
operators or the weak negations. In the next result we shall give conditions on the
relation R for that Pi .X/ be closed under these operations.

Proposition 2. Let hX;�i be a poset and let R be a binary relation on X . Then
(1) � ıR �Rı � if and only if�R.U / 2Pi .X/, for all U 2Pi .X/.
(2) ��1 ıR �Rı ��1 if and only ifÞR.U / 2Pi .X/, for all U 2Pi .X/.
(3) � ıR �Rı ��1 if and only if �R.U / 2Pi .X/, for all U 2Pi .X/.
(4) ��1 ıR �Rı � if and only if rR.U / 2Pi .X/, for all U 2Pi .X/.

Proof. We prove only (1), (3), and (4).
(1) Let us show that if U 2Pi .X/, then�R.U / 2Pi .X/. Let x � y and R.x/�

U . Let ´ 2X such that .y;´/ 2R. Then there exists k 2X such that .x;k/ 2R and
k � ´. As R.x/� U , k 2 U , and since U is increasing, ´ 2 U .

Assume that�R.U / 2Pi .X/, for all U 2Pi .X/. Let x;y;´ 2X such that x � y
and .y;´/ 2 R. Let us consider the increasing set ŒR.x// D Ux . As R.x/ � Ux ,
x 2 �R.Ux/. Then y 2 �R.Ux/. Thus, ´ 2 Ux , i. e. there exists k 2 X such that
.x;k/ 2R and k � ´, i. e., .x;´/ 2Rı �.

(3) Assume that �R.U / 2 Pi .X/, for all U 2 Pi .X/. Let x;y;´ 2 X such that
x � y and .y;´/ 2R. Suppose that for every k 2R.x/, k … Œ´/, i. e., R.x/\ Œ´/D¿.
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Then x 2�R.Œ´//: So y 2�R.Œ´//. Thus, R.y/\ Œ´/D¿, which is a contradiction.
Therefore, there exists k 2X such that .x;k/ 2R and ´� k, i. e., .x;´/ 2Rı ��1.

(4) Assume that rR.U / 2 Pi .X/, for all U 2 Pi .X/. Let x;y;´ 2 X such that
´� x and .´;y/ 2R. ThenR.´/\.y�¤¿. Since Uy D .y�c 2Pi .X/, ´ 2rR.Uy/,
and as rR.Uy/ is increasing, x 2 rR.Uy/. Then, R.x/\ .y�¤¿. Thus, there exists
k 2X such that .x;k/ 2R and k � y, i. e., .x;y/ 2Rı �. The proof of the converse
implication is straightforward. �

Theorem 3. Let hX;�i be a poset and let R�, RÞ, R� and Rr be binary rela-
tions on X . Then:

(1) The following conditions are equivalent:
(a) R� � ..R�ı �/\ .RÞı ��1//ı � ;
(b) �R�.U [V /��R�.U /[ÞRÞ.V /, for all U;V 2Pi .X/.

(2) The following conditions are equivalent:
(a) RÞ � ..R�ı �/\ .RÞı ��1//ı � ;
(b) �R�.U /\ÞRÞ.V /�ÞRÞ.U \V /, for all U;V 2Pi .X/.

(3) The following conditions are equivalent:
(a) R� � ..R�ı ��1/\ .Rrı �//ı ��1 ;
(b) �R�.U \V /��R�.U /[rRr .V /, for all U;V 2Pi .X/.

(4) The following conditions are equivalent:
(a) Rr � ..R�ı ��1/\ .Rrı �//ı � ;
(b) �R�.U /\rRr .V /�rRr .U [V /, for all U;V 2Pi .X/.

Proof. (1) (a)) (b) Let x 2 X and U;V 2 Pi .X/ such that x 2 �R�.U [V /.
Assume that x …�R�.U /. Then there exists y 2X such that .x;y/2R� and y …U .
By assumption, there exists ´ 2X such that .x;´/ 2R�ı �, .x;´/ 2RÞı ��1, and
´ � y. As y … U , ´ … U , and since x 2 �R�.U [V / D �R�ı�.U [V /, ´ 2 V .
Then, ´ 2 .RÞı ��1/.x/\V , and thus x 2ÞRÞı��1.V /DÞRÞ.V /.

(b)) (a) Let x;y 2X such that .x;y/ 2R�. We shall prove that

.R�ı �/.x/\ .RÞı �
�1/.x/\ .y�¤¿:

Let us consider the sets

U DX n .RÞı �
�1/.x/D .RÞı �

�1/.x/c and V DX n .y�D .y�c :

It is clear that V 2Pi .X/. We prove that U 2Pi .X/. Let a� b and a 2U . If b …U ,
there exists c 2X such that .x;c/2RÞ and b� c. As a� b� c, .x;a/2 .RÞı��1/,
which is a contradiction. Then, U 2Pi .X/.

Moreover, since y 2 R�.x/, R�.x/\ .y� ¤ ¿. So, x … �R�.V /. Also, x …
ÞRÞ.U /, because .RÞı ��1/.x/\ .RÞı ��1/.x/c D ¿. Thus, x … �R�.V /[
ÞRÞ.U /, and consequently x …�R�.U [V /, i. e.,

.R�ı �/.x/ª U [V D ..RÞı ��1/.x/\ .y�/c :
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(3) (a) ) (b) Let x 2 X and U;V 2 Pi .X/ such that x 2 �R�.U \V /. Then
R�.x/\U \ V D ¿. Assume that x … �R�.U /. Then there exists y 2 X such
that .x;y/ 2 R� and y 2 U . By assumption, there exists ´ 2 X such that .x;´/ 2
.R�ı �

�1/\ .Rrı �/ and y � ´. Then ´ 2 U , and since x 2�R�.U \V /D x 2
�R�ı��1.U \V /, ´ … V . As ´ 2 .Rrı �/.x/, x 2 rRrı�.V /DrRr .V /.

(b)) (a) Let x;y 2X such that .x;y/ 2R�. We shall prove that

.R�ı �
�1/.x/\ .Rrı �/.x/\ Œy/¤¿:

Let us consider the sets

U D .Rrı �/.x/ and V D Œy/:

It is easy to see that .Rrı�/.x/2Pi .X/. Moreover, x …rRr .U /, becauseRr.x/�
.Rrı �/.x/. Also, x … �R�.V /, because y 2 R�.x/\ Œy/. Thus, x … �R�.U /[
rRr .V /, and consequently x …�R�.U \V /D�R�ı��1.U \V /. Therefore,

.R�ı �
�1/.x/\U \V D .R�ı �

�1/.x/\ .Rrı �/.x/\ Œy/¤¿:

The proofs of the assertions (2) and (4) are similar. �

Theorem 4. Let hX;�i be a poset. The following conditions are equivalent:
(1) There exists a binary relation R on X such that

(a) � ıR �Rı � ,
(b) ��1 ıR �Rı ��1.

(2) There exist two binary relations R� and RÞ on X such that
(a) R� � .R� ı �/\ .RÞ ı ��1/ı � ,
(b) RÞ � .R� ı �/\ .RÞ ı ��1/ı ��1,
(c) � ıR� �R� ı � ,
(d) ��1 ıRÞ �RÞ ı ��1.

(3) The�Þ-algebra hPi .X/;[;\;�R;ÞR;¿;Xi is a PM-algebra.
(4) The�Þ-algebra hPi .X/;[;\;�R� ;ÞRÞ ;¿;Xi is a PM-algebra.

Proof. (1)) (2) Define the binary relations R� D Rı � and RÞ D Rı ��1.
Since � is reflexive,

R �R�\RÞ � .R� ı �/\ .RÞ ı �
�1/:

So,
R� D .Rı �/� .R� ı �/\ .RÞ ı �

�1/ı � ;

and
� ıR� D .� ıRı �/�Rı � ı �DR� ı � :

The proof for the relation RÞ is similar.
(2)) (1) Given the relations R� and RÞ, we define the relation

RD .R� ı �/\ .RÞ ı �
�1/:
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Let x � y and .y;´/ 2 R D .R�ı �/\ .RÞı ��1/. Then there exists k 2 X such
that .y;k/ 2 R� and k � ´. As .x;k/ 2� ıR� � R�ı �, there exists w 2 X such
that .x;w/ 2 R� and w � k. Since R� � .R�ı �/\ .RÞı ��1/ı �, there exists
d 2X such that .x;d/ 2R and d � w. Thus .x;´/ 2Rı �.

The proof of the inclusion ��1 ıR � Rı ��1 is similar. The equivalence of (1)
and (3) follows from Proposition 2. The equivalence of (2) and (4) follows from
Theorem 3 and Proposition 2. �

Theorem 5. Let hX;�i be a poset. The following conditions are equivalent:

(1) There exists a binary relation R on X such that
(a) � ıR �Rı ��1,
(b) ��1 ıR �Rı ��1.

(2) There exist two binary relations R� and Rr on X such that
(a) R� � ..R� ı ��1/\ .Rr ı �//ı ��1,
(b) Rr � ..R� ı ��1/\ .Rr ı �//ı � ,
(c) � ıR� �R� ı ��1,
(d) ��1 ıRr �Rr ı � .

(3) There exists a binary relation R on X such that the�Þ-algebra

hPi .X/;[;\;�R;rR;¿;Xi

is a NM-algebra.
(4) There exist two binary relations R� and Rr on X such that the�Þ-algebra
hPi .X/;[;\;�R� ;rRr ;¿;Xi is a NM-algebra.

Proof. The proof of the direction (1)) (2) is similar to the proof of the previous
theorem, but taking R� DRı ��1 and Rr DRı �. For the direction (2)) (1) we
need define the relation R as RD .R� ı ��1/\ .Rr ı �/. �

3. CANONICAL VARIETIES

Let A be a bounded distributive lattice. By X.A/ we shall denote the set of all
prime filters of A: The filter (resp., ideal) generated by a subset H � A will be
denoted by ŒH/ (resp., .H�). The lattice of all filters (resp., ideals) of A is denoted
by Fi.A/ (resp., Id.A/).

Let A be a distributive modal algebra. We define binary relations RA
�

, RA
Þ

, RA
� ,

and RA
r

on X.A/ as follows:

(1) .P;Q/ 2RA
�
,��1.P /�Q,

(2) .P;Q/ 2RA
Þ
,Q �Þ�1.P /,

(3) .P;Q/ 2RA
� ,Q � .��1.P //c ,

(4) .P;Q/ 2RA
r
, .r�1.P //c �Q

with P;Q 2X.A/.
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Lemma 6. Let A be a distributive modal algebra. Then, for each P 2 X.A/ and
for each a 2 A, the following assertions hold:

(1) �a 2 P if and only if for every Q 2 X.A/ such that .P;Q/ 2 RA
�

it holds
a 2Q.

(2) Þa 2 P if and only if there exists Q 2 X.A/ such that .P;Q/ 2 RA
Þ

and
a 2Q.

(3) �a 2 P if and only if for every Q 2 X.A/ such that .P;Q/ 2 RA
� it holds

a …Q.
(4) ra 2 P if and only if there exists Q 2 X.A/ such that .P;Q/ 2 RA

r
and

a …Q.

Proof. For the proof for the operators � and Þ, see [1, 5]. For the weak negation
�, see [3]. Let ra 2P , and let us consider the filter .r�1.P //c . As a … .r�1.P //c ,
there exists Q 2X.A/ such that .r�1.P //c �Q and a …Q. The converse implica-
tion is immediate. �

Let us consider the relational structure F .A/D hX.A/;RA
�
;RA
Þ
;RA
� ;R

A
r
i. It is

easy to see that

� ıRA
�
�RA
�
ı �; �

�1
ıRA
Þ
�RA
Þ
ı �
�1;

� ıRA
� �R

A
�ı �

�1; �
�1
ıRA
r �R

A
r ı � :

Thus, by Proposition 2, we get that the algebra

Ec.A/D hPi .X.A//;[;\;�;Þ;�;r;¿;X.A/i

is a distributive modal algebra, and the map ˇAWA!Pi .X.A// defined by the equal-
ity ˇA.a/DfP 2X.A/ W a 2P g is an injective homomorphism of distributive modal
algebras. The algebra Ec.A/ is called the canonical extension of A.

Definition 1. A variety V of distributive modal algebras is canonical if for any
A 2 V , Ec.A/ 2 V .

The notion of canonical varieties is the algebraic interpretation of canonical modal
logics (see [6]). Let us recall that a modal logic is canonical if their canonical frame
is a frame of the logic.

Now, we shall see that if A is a PM-algebra (resp., NM-algebra), then Ec.A/ is
a PM-algebra (resp., NM-algebra).

Theorem 7. Let A be distributive modal algebra. Then:
(1) �a^Þb �Þ.a^b/ is valid in A if and only if RA

Þ
� .RA

�
\RA
Þ
/ı ��1.

(2) �.a_b/��a_Þb is valid in A if and only if RA
�
� .RA

�
\RA
Þ
/ı � .

(3) �.a^b/��a_rb is valid in A if and only if RA
� � .R

A
� \R

A
r
/ı ��1.

(4) �a^rb � r.a_b/ is valid in A if and only if RA
r
� .RA

� \R
A
r
/ı � .
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Proof. We prove only (3) and (4).
For (3), we assume that�.a^b/��a_rb is valid in A. Let P;Q 2X.A/ such

that Q ���1.P /c . Let us consider the filter F.r�1.P /c [Q/. We prove that

F.r�1.P /c [Q/\��1.P /D¿:

Suppose the opposite. Then there are a 2 r�1.P /c , b 2 Q and c 2 ��1.P / such
that a^b � c. So,

�c ��.a^b/;

and by the hypothesis we obtain

�c ��a_rb:

Since �c 2 P , �a_rb 2 P , and as P is a prime filter, �a 2 P or rb 2 P , which
is a contradiction. Thus, there exists D 2X.A/ such that

r
�1.P /c �D; Q �D; and D\��1.P /D¿;

i. e., .P;Q/ 2 .RA
� \R

A
r
/ı ��1.

Assume that RA
� � .R

A
� \R

A
r
/ı ��1. Let a;b 2 A and suppose that �.a^b/ —

�a_rb. Then there exits P 2 X.A/ such that �.a^ b/ 2 P , and �a;rb … P .
So there exists Q 2 X.A/ such that .P;Q/ 2 RA

� and a 2Q. By assumption, there
exist D 2 X.A/ such that .P;D/ 2 RA

� \R
A
r

and Q � D. Since �.a^ b/ 2 P
and .P;D/ 2 RA

� , a ^ b … D, but as .P;D/ 2 RA
r

, and rb … P , b 2 D. Also,
c 2 D, because c 2 Q � D. Then, b ^ c 2 D, which is a contradiction. Thus,
�.a^b/��a_rb for all a;b 2 A.

(4) Suppose that �a^rb � r.a_ b/ is valid in A. Let P;Q 2 X.A/ such that
r�1.P /c �Q. Let us consider the ideal I D I.��1.P /[Qc/. We prove that

r
�1.P /c \I D¿:

Suppose the contrary. Then, there exists c 2 r�1.P /c , a …Q, and b 2��1.P / such
that c � a_b. So, r.a_b/� rc. By hypothesis we have

�b^ra � rc:

Since�b 2 P and a 2 r�1.P /, rc 2 P , which is a contradiction. Thus, there exists
D 2 X.A/ such that .P;D/ 2 RA

� \R
A
r

and D �Q, i. e., RA
r
� .RA

� \R
A
r
/ı � .

The proof of the other implication is omitted. �

Let A be a PM-algebra. Let us define the relation RA DRA�\R
A
Þ

. Then it is easy
to see that RA

�
DRA ı �, RA

Þ
DRA ı �

�1, and � ıRA �RA ı � and ��1 ıRA �
RA ı �

�1. Consequently, by Theorem 7 we can deduce that the axioms that relate
the operators� andÞ allow us to define the single relation RA DRA�\R

A
Þ

.
Let A be a NM-algebra. Let us define the relation RA D RA� \R

A
r

. Then it
is easy to see that RA� D RA ı �

�1, RA
r
D RA ı �, and � ı RA � RA ı � and



NOTES ON THE REPRESENTATION OF DISTRIBUTIVE MODAL ALGEBRAS 89

��1 ıRA �RA ı �
�1. So, by Theorem 7 we can deduce that the axioms that relate

the operators � and r allow us to define the single relation RA DRA�\R
A
r

.
Let V be a variety and let ˚ be a set of identities in the algebraic language of V .

We denote by VC˚ the variety generated by V and by ˚ . We note that the previous
results imply that, whenever A belongs to some of the varieties DMLC˚; where
˚ � f(P1); (P2); (N1); (N2)g, then the relational structure hX.A/;RA

�
;RA
Þ
;RA
� ;R

A
r
i

satisfies the appropriate first-order conditions that correspond to the identities of ˚ .

Theorem 8. Let DMA be the variety of distributive modal algebras. The variety
DML and any extension of it that is obtained by adding any subset of the set of
identities f(P1); (P2); (N1); (N2)g is canonical.

Proof. It is clear that if A 2DMA, then Ec.A/2DMA. Thus, DMA is canon-
ical. If A is an algebra in some of the varieties DMAC˚ , where ˚ is any subset
of f(P1); (P2); (N1); (N2)g, then we should verify that the canonical extension Ec.A/
belong to DMAC˚ . But this it follows from Theorem 7 and the results of the
previous section. �
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