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A. We analyze some qualitative properties of the one-step iterative methods
which serve as a mathematical model for the discretized heat conduction problem.
These properties are a discrete analogues of the qualitative properties of continu-
ous problems, and we give algebraic conditions of the step-matrix under which the
above basic properties are also preserved at the discrete level. We also construct the
corresponding step-matrices.

Mathematics Subject Classification:65F10

Keywords: qualitative analysis, one-step method, heat conduction problem

1. I

In this paper, we investigate the qualitative properties of the sequence{yk}, gener-
ated by the linear algebraic iterative process

Myk+1 = Nyk + b, k = 0,1, . . . (1.1)

whereM,N ∈ �n×n, b, yk ∈ �n andy0 is a given vector,yk denotes the successive
iterates. Model (1.1) is called one-step iterative method.

The discretisation of many physical and engineering problems leads to one-step
methods of the above form (1.1). In this model, as a necessary condition, we have to
guarantee the convergence of the iteration. On the other hand, we must also investi-
gate the model from the point of view of the preservation of the qualitative properties
of the continuous solution, like conservation of the non-negativity and the concavity
of the initial vectory0 (the discretization of the initial function), monotonicity in time,
etc. There are several papers which deal with the second problem (see, e. g., [3–8]).
But all those papers investigate this problem as a preservation property of a given ma-
trix splitting of some fixed matrixA. In this paper, we approach this question from
the other side, that is, the iterative model (1.1) is givena priori and we investigate its
qualitative properties. As a physical model, we consider the heat conduction problem
in dimension 1.

c© 2006 M U P
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The paper is organized as follows. In Section 2 we give those basic mathematical
preliminaries which are used in the paper. Then we collect the important properties
of the continuous solution of the physical problem in Section 3. In the next section
we investigate the algebraic properties of the step-matrix in the iteration, which guar-
antee the preservation of the basic qualitative properties of the continuous solution.
Namely, in Section 4 we consider the invariant subsets, in Section 5 the monotonicity
property and in Section 6 we define the relation between the different subspaces. Fi-
nally, in Section 7 we construct a corresponding step-matrix by using the symmetric
Latin squares.

2. M 

Throughout the paper all matrices are real, square matrices in the vector space
�n×n, i. e., A, B ∈ �n×n. The ordering relation is defined in the usual way, i. e.,
element-wise. This means thatA is non-negative (in notation:A ≥ 0) when all
elements ofA are non-negative. The partial ordering between two matrices is defined
asA ≥ B whenA− B ≥ 0. The strict ordering is the following:A is positive (A > 0)
when each of its elements is positive. Hence,A > B if A− B > 0. For a vector in the
vector space�n, the definitions are similar. This means that a vectorx ∈ �n is called
non-negative (x ≥ 0) if all the components ofx are non-negative. We say thatx ≥ y
if x − y ≥ 0. Analogously,x is positive (x > 0) if each of its elements is positive.
Therefore,x > y whenx− y > 0.

A matrix A ∈ �n×n is said to be positively diagonally dominant, or shortly PDD
(resp., strictly positively diagonally dominant, or shortly SPDD) when the relation
ai,i ≥ ∑

j,i |ai, j | (resp.,ai,i ≥ ∑
j,i |ai, j |) is fulfilled for every i = 1, 2, . . . ,n. This

means that they are diagonally dominant or strictly diagonally dominant with non-
negative diagonal elements.

If A ∈ �n×n, then%(A) denotes the spectral radius ofA; %(A) = maxi |λi |, whereλi ,
i = 1,2, . . . ,n are the eigenvalues ofA.

The matrixA ∈ �n×n, A = (ai, j), i, j = 1, 2, . . . ,n is reducible if there exists a non-
empty setR ( {1, 2, ..,n} such thatai, j = 0 for i ∈ R, j ∈ {1, 2, . . . ,n} \ R, otherwise
the matrixA is irreducible. Consequently, every positive matrix is irreducible.

In the sequel,I ∈ �n×n is the unit matrix.E ∈ �n×n denotes the matrix with all
elements equal to 1. Similarly,e ∈ �n, e = (1,1, . . . ,1)T .

Let A ∈ �n×n be a matrix with the property

A = M − N. (2.1)

The iterative scheme (1.1) is convergent to the unique solutiony = A−1b for eachy0 if
and only if M is nonsingular, and the corresponding step-matrix of the iterationH =

M−1N has the property%(H) < 1. Relation (1.1) can be rewritten in the following
form: yk+1 = Hyk + M−1b or

xk+1 = Hxk, (2.2)
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wherexk = yk − A−1b is the so-called defect vector.

3. S          

 

In the following we list the most important qualitative properties of the following
one-dimensional heat conduction problem:

∂u(x, t)
∂t

=
∂2u(x, t)
∂x2

, x ∈ (0,1), t > 0,

u(x, 0) = u0(x),

u(0, t) = u(1, t) = 0, t > 0,

(3.1)

with a given (sufficiently smooth) initial functionu0(x). We denote the stationary
solution of problem (3.1) byust(x), i. e.,ust(x) = limt→∞ u(x, t). We denote byh(x, t)
the difference of the solution of the problem (3.1) and the stationary solutionust(x),
i. e., h(x, t) = u(x, t) − ust(x). Then this functionh(x, t) is expected to possess the
following qualitative properties.

(1) h(x, t) exists, and limt→∞ h(x, t) = 0.
(2) If E(0) =

∫ 1
0

h(x,0)dx≥ 0, thenE(t) =
∫ 1
0

h(x, t)dx≥ 0 for every t.
(3) If h(x, t∗) ≥ 0, thenh(x, t) ≥ 0 for everyt ≥ t∗.
(4) If h(x, t′) ≥ h(x, t) for every t ≥ t′, then for everyt′′ ≥ t′ the inequality

h(x, t′′) ≥ h(x, t∗) holds for everyt∗ ≥ t′′.
(5) If h(x, t′) ≥ h(x, t) for every t ≥ t′, thenh(x, t′) ≥ 0. If h(x, t′′) ≥ 0, then

E(t′′) =
∫ 1
0

h(x, t′′)dx≥ 0.

(6) If E(0) =
∫ 1
0

h(x,0)dx≥ 0, thenE(t) is monotonically decreasing.
(7) M(t) = maxx |h(x, t)| is monotonically decreasing.
(8)

∫ ∞
0
|h(x, t)|dt < ∞ for every givenx.

(9) If E(0) =
∫ 1
0

h(x,0)dx> 0, then there existt′, t′′, t′ ≤ t′′, such thath(x, t′) > 0
andh(x, t′′) ≥ h(x, t) for everyt ≥ t′′.

In the sequel, under iteration we understand formula (2.2).

4. I 

We start the investigation of the iteration with a definition.

Definition 1. A subsetS ⊂ �n is said to be invariant with respect to the iteration
if the relationxk ∈ S implies thatxk+1 ∈ S for all k = 0, 1, . . . .

Let Y ∈ �n×n be a matrix, then we define the subsetS(Y) ⊂ �n as follows:

S(Y) := {x ∈ �n : Yx≥ 0}.
We note that in the analysis of the qualitative properties of the iteration (2.2) the

subsetsS(E), S(I ), S(I − H), andS(A) are of a special importance (see [3,4]).
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Lemma 1. If the step-matrixH is non-negative, andH and Y commute, then the
subsetS(Y) is invariant with respect to the iteration.

P. Assume thatxk ∈ S. Then by use of the definition of the subsetS(Y) and
the non-negativity of H, the relationHYxk ≥ 0 holds. Hence using the commutativity
assumption and the definition of the iteration (2.2), we getYxk+1 ≥ 0, which proves
the statement. �

Corollary 1. Assume that the step-matrixH is non-negative.

(a) Then the subsetS(p(H)), wherep(H) is a polynomial of H, is invariant with
respect to the iteration. ConsequentlyS(I ) andS(I − H) are invariant with
respect to the iteration.

(b) If H andE/A commute, then the subsetS(E)/S(A) is invariant with respect
to the iteration.

In the following we investigate the relation between the subsetsS(I ),S(I−H),S(E)
andS(A).

Lemma 2. The following relations hold between the subsetsS(I ),S(I −H),S(E),
andS(A):

(a) If T ≥ 0, thenS(T) ⊃ S(I ). Consequently,S(E) ⊃ S(I ).
(b) If T−1 ≥ 0, thenS(I ) ⊃ S(T). Consequently, ifA−1 ≥ 0, thenS(I ) ⊃ S(A).
(c) If M−1 ≥ 0, thenS(I − H) ⊃ S(A).
(d) If (I − H)−1 ≥ 0, thenS(I ) ⊃ S(I − H).

P. (a)T ≥ 0, thereforex ≥ 0 clearly results in the relationT x≥ 0.
The proof of (b) and (d) is straightforward.
The statement (c) follows directly from the fact that (2.1) can be rewritten in the

following form: A = M(I − H). �

Remark1. Assume that the step-matrixH is a non-negative convergent matrix,
i. e., H ≥ 0 and%(H) < 1. Then (I − H)−1 =

∑∞
k=1 Hk, and hence (I − H)−1 ≥ 0.

ThereforeS(I ) andS(I − H) are invariant with respect to the iteration, see part (a) in
Corollary 1, andS(I ) ⊃ S(I − H), according to assertion (d) of Lemma 2.

Let us investigate the set of the matrices which commute with some given matrix
E.

We define the subspaceCE ⊂ �n×n as follows:

CE := {X ∈ �n×n : EX = XE}.
Remark2. The subsetCE forms both a vector space and a ring.
The properties of the operations are obviously true. Moreover, the subsetCE is

closed for the operations, because for anyA, B ∈ CE the following relations are
valid: (A ± B)E = AE ± BE = EA± EB = E(A ± B), (λA)E = λEA = E(λA),
ABE = AEB= EAB. Clearly, the matrices 0 and−A also belong toCE.
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Lemma 3. The following statements are equivalent:

(a) X ∈ CE;
(b) For all fixed1 ≤ i, j ≤ n, the relation

n∑

k=1

xk,i =

n∑

k=1

x j,k

holds.

P. The statement follows by direct calculation of the elements of the matrices
XE andEX, respectively. �

5. M

First we define monotonicity in the subsetS.

Definition 2. Let Z ∈ �n×n be a given matrix. The iteration is said to beZ-
monotone in a subsetS ⊂ �n if the following two conditions are fulfilled:∗

(I) The subsetS ⊂ �n is invariant with respect to the iteration;
(II) For anyxk ∈ S, the relationZxk ≥ Zxk+1 holds.

Lemma 4. For H ≥ 0 the iteration isI -monotone in a subsetS(I − H).

P. The invariance ofS(I − H) follows from Corollary 1 (a).
In order to show the second property, assume thatxk ∈ S(I−H), i. e., (I−H)xk ≥ 0.

Thenxk ≥ Hxk, which, according to (2.2) means the required relationxk ≥ xk+1. �

Remark3. The above proof also shows that for the iteration the relationxk ≥ xk+1

implies the inclusionxk ∈ S(I − H). This means that theI -monotonicity property of
the iteration is valid only in the subsetS(I − H).

Corollary 2. Let us suppose thatA−1 ≥ 0, H ≥ 0, M−1 ≥ 0 andH andA commute.
Then the iteration isI -monotone in the subsetS(A).

The first condition follows from the commutativity ofH and A, see Lemma 1,
about the second condition statement (c) in Lemma 2 and Lemma 4.

Lemma 5. Let us suppose that the step-matrixH is non-negative,H andE com-
mute andI − H is PDD. Then the iteration isE-monotone in the subsetS(E).

P. The invariance of the subsetS(E) follows from the statement (b) in Corol-
lary 1.

For all x ∈ S(E) the inequality (I − H)Ex ≥ 0 is fulfilled, becauseEx ≥ 0, and
for any 1 ≤ i, j ≤ n the relation (Ex)i = (Ex) j =

∑n
l=1 xl holds. Moreover,I − H

is PDD. Hence, for anyxk ∈ S(E) we have (I − H)Exk ≥ 0. So, by use of the
commutativity property, we haveE(I −H)xk ≥ 0, which implies the required relation
Exk ≥ Exk+1. �

∗For more details, we refer to [3,4].
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Lemma 6. If the diagonal elements ofH are non-negative, then the following two
statements are equivalent:

(a) I − H is PDD (resp., SPDD);
(b) ‖H‖∞ ≤ 1 (resp.,‖H‖∞ < 1).

P. Using the definition of PDD (resp., SPDD) and the non-negativity of the
diagonal elements ofH, we see that the properties 1−ai,i ≥ ∑

j,i |ai, j | (resp., 1−ai,i >∑
j,i |ai, j |) and 1≥ ∑n

j=1 |ai, j | (resp., 1>
∑n

j=1 |ai, j |) are equivalent, which proves the
statement. �

Lemma 7. Let x0 ∈ �n, x0 , 0. Then the following statements are equivalent:

(a) ‖H‖∞ ≤ 1 (resp.,‖H‖∞ < 1);
(b) ‖xk‖∞ ≥ ‖xk+1‖∞ (resp.,‖xk‖∞ > ‖xk+1‖∞) for everyx0 ∈ �n, x0 , 0 and all

k = 0, 1, . . . .

P. The relation‖xk+1‖∞ = ‖Hxk‖∞ ≤ ‖H‖∞‖xk‖∞ ≤ (resp.,<) ‖xk‖∞ shows
that (a) implies (b).

In order to obtain the converse implication, assume that (b) is true. Then, for any
x0 ∈ �n with the propertyx0 , 0, the inequality‖x0‖∞ ≥ ‖x1‖∞ is true. Since
x1 = Hx0, one has

‖Hx0‖∞
‖x0‖∞

≤ 1.

Consequently,

max
x∈�n, x,0

‖Hx0‖∞
‖x0‖∞

≤ 1,

which yields (a). The proof of the strict inequality is similar. �

Lemma 8. Assume thatH is a non-negative convergent matrix, i. e.,H ≥ 0 and
%(H) < 1. Then

∑∞
k=0 |(xk)i | < ∞ for every1 ≤ i ≤ n.

P. Under the assumptions made we have

∞∑

k=0

∣∣∣(xk)i

∣∣∣ =

∞∑

k=0

∣∣∣
(
Hkx0

)
i

∣∣∣ ≤
∞∑

k=0

(
Hk

∥∥∥x0
∥∥∥∞e

)
i
=

∥∥∥x0
∥∥∥∞


∞∑

k=0

Hke


i

= ‖x0‖∞


∞∑

k=0

Hk

 e


i

= ‖x0‖∞
(
(I − H)−1e

)
i
= ‖x0‖∞‖(I − H)−1‖∞.

The right-hand side here is finite, and this proves the statement. �

6. R  

In this Section we analyze the relations between the subspacesS(E), S(I ), and
S(I − H) with respect to the iteration. The analysis is based on the so-called power
method.
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Lemma 9. If the step-matrixH is non-negative, irreducible andH ∈ CE, then

(1) the vectore is an eigenvector ofH;
(2) %(H) is an eigenvalue ofH;
(3) %(H) corresponds to the eigenvectore;
(4) %(H) is in absolute value a simple eigenvalue.

P. Let us note thatHe = ‖H‖∞e, hence‖H‖∞ is an eigenvalue ofH. Since
‖H‖∞ ≥ %(H), it follows that‖H‖∞ is, in absolute value, the largest eigenvalue with
the eigenvectore. For non-negative and irreducible matrices the Perron–Frobenius
theorem (see [9]) guarantees that this eigenvalue is in absolute value simple.�

Theorem 1. Let us suppose thatH is a non-negative, irreducible matrix,H ∈ CE

andH has an orthonormal system of eigenvectors. Assume thatx0, y0 ∈ �n are two
arbitrary vectors with the property(x0, e) = (y0, e) = z, 0. Then

lim
k→∞

max1≤i≤n{(xk)i}
min1≤i≤n{(yk)i}

= 1.

P. We denote the eigenvalues ofH by λm, m = 1,2, . . . ,n. Using the proof
of Lemma 9 and the notation‖H‖∞ = s, we can writes = λ1 > |λ2| ≥ · · · ≥
|λn|. Furthermore, we denote the corresponding orthonormal eigenvectors byvm, m =

1,2 . . . ,n, respectively. Then, using again the Lemma 9 and the relation
∥∥∥ 1√

n
e
∥∥∥

2 = 1,

we getv1 = 1√
n
e. Considering the decomposition with respect to the system (vm), we

getx0 =
∑n

m=1 amv
m, wheream = (x0, vm), andy0 =

∑n
m=1 bmv

m, wherebm = (y0, vm).
Note thata1 = b1 = z√

n
. Hence,

(xk)i

(yk) j
=

(
Hkx0)

i(
Hky0)

j

=

(
Hk ∑n

m=1 amv
m
)
i

(Hk ∑n
m=1 bmvm) j

=

(∑n
m=1 λ

k
mamv

m
)
i(∑n

m=1 λ
k
mbmvm

)
j

=

(
sk z√

n
e+

∑n
m=2 λ

k
mamv

m
)
i(

sk z√
n
e+

∑n
m=2 λ

k
mbmvm

)
j

=

(
e+

√
n

z

∑n
m=2

(
λm
s

)k
amv

m
)
i(

e+
√

n
z

∑n
m=2

(
λm
s

)k
bmvm

)
j

.

Since|λm| < s, for m = 2, . . . ,n, therefore limk→∞
(
λm
s

)k
= 0, for m = 2, . . . ,n. This

completes the proof. �

We denote the maximum element ofH by max (H), and the minimum element of
H by min (H), respectively.

Corollary 3. Let us apply the Theorem 1 to the columns of the step-matrixH.
SinceH is non-negative, irreducible,H ∈ CE andH has an orthonormal system of
eigenvectors, therefore

lim
k→∞

max (Hk)

min (Hk)
= 1.
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Theorem 2. Suppose that the step-matrixH is non-negative, irreducible,H ∈ CE

and H has an orthonormal system of eigenvectors. Letx0 ∈ �n, x0 ∈ S(E) and
Ex0 , 0. Then there exists an indexk0 ∈ �+

0 such that for everyk ∈ �+
0 , k ≥ k0, the

inequalityxk ≥ 0 holds (in other wordsxk ∈ S(I )).

P. Corollary 3 means that for allε ∈ �+, there exists an indexk0 ∈ �+
0 such

that for eachk ∈ �+
0 , k ≥ k0. the inequality

1 ≤ max (Hk)

min (Hk)
≤ 1 + ε

holds. We introduce the notationp, p+, andp− as follows. We putEx0 = pe, where
p ∈ �+; in other words,p denotes the sum of the elements ofx0. We denote the sum
of the non-negative elements ofx0 by p+, and the sum of the negative elements ofx0

by p−. Hence,p+ + p− = p. We consider the following estimate:

(xk)i = (Hkx0)i ≥ min (Hk) p+ + max (Hk) p− ≥ min (Hk) p+ + (1 + ε) min (Hk) p−

= min(Hk) (p+ + (1 + ε)p−) = min (Hk) (p + εp−).

The number min (Hk) is non-negative. The choice of an indexk0 large enough (which
depends onε = −p/p−) guarantees the non-negativity ofxk for eachk ≥ k0. �

Theorem 3. Suppose that the step-matrixH is non-negative, irreducible,H ∈ CE,
I − H is PDD, andH has an orthonormal system of eigenvectors. Letx0 ∈ �n, x0 ∈
S(I ). Then there exists ak0 ∈ �+

0 such that the inequality(I − H)xk ≥ 0 holds for
everyk ∈ �+

0 , k ≥ k0 (in other words,xk ∈ S(I − H) for such indices).

P. In the same way as proof of the Theorem 2, and finally using the proof of
Lemma 5. �

We summarize the results in what follows.

Corollary 4. Suppose that the step-matrixH is non-negative, irreducible,H ∈ CE,
‖H‖∞ < 1, and H has an orthonormal system of eigenvectors. Letx0 ∈ S(E) and
Ex0 , 0. Then

(a) the iteration is convergent andlimk→∞ xk = 0;
(b) S(E), S(I ), andS(I − H) are invariant with respect to the iteration;
(c) S(E) ⊃ S(I ) ⊃ S(I − H);
(d) the iteration isE-monotone (resp.,I -monotone) inS(E) (resp.,S(I − H));
(e) the iteration is strictly monotonically decreasing in maximum norm;
(f)

∑∞
k=0 |(xk)i | < ∞, for every1 ≤ i ≤ n;

(g) ∃k0, l0 ∈ �+
0 , k ≤ l, ∀k ≥ k0, xk ∈ S(I ), ∀l ≥ l0, xl ∈ S(I − H).

The above-listed properties (a)–(g) are the discrete analogues of (1)–(9) from Sec-
tion 3.
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7. C  H

A Latin square is an�n×n matrix which consists of n sets of n numbers arranged
in such a way that no orthogonal (row or column) contains the same number twice.

Lemma 10. There exists a symmetric Latin square.

P. Assume thata1, . . . ,an are arbitrary numbers. The choice

hi, j := ak if i + j = k + 1 (modn)

for the elements of the matrixH creates a symmetric Latin square. �

Corollary 5. Letai , i = 1,2, . . . ,n, be arbitrary positive numbers with the property∑n
i=1 ai < 1. With the help ofai we construct the step-matrixH, which is a symmetric

Latin square. Then the properties (a)–(g) are satisfied because such a matrixH is
non-negative, irreducible,H ∈ CE, ‖H‖∞ < 1, andH has an orthonormal system of
eigenvectors.

8. C 

In this paper we listed the basic qualitative properties of the continuous solution
of the heat conduction problem (3.1), arising from the physical process. After that
we investigated the algebraic properties of the step-matrix in the corresponding one-
step iteration, and we have determined conditions under which the above qualitative
properties of the continuous solution are preserved. Finally we constructed a suitable
corresponding step-matrix.

However, there are different open problems and possible extensions which can be
considered in our future works:

(1) Our aim is to analyze the independence of the important qualitative proper-
ties of the continuous solution and the important properties of the discrete
solution as well.

(2) We constructed a corresponding step-matrix. But naturally it would be useful
to define the necessary (and sufficient) conditions for the step-matrix in order
to fulfil the qualitative properties (a)–(g).

(3) We analyzed the heat conduction problem in 1D. We can extend this analysis
both for higher dimensions and for other time-dependent (parabolic type)
physical problems as well.

(4) Our goal is to investigate this method from the point of view of the matrix
splitting theory, namely how we can get a corresponding step-matrix from
some given matrixA with some splitting procedure (regular matrix splitting,
weak regular matrix splitting). These splitting procedures can be found in
several papers, e. g., [1, 2, 10–12]. However, their qualitative properties are
less investigated.
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