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AsstracT. We analyze some qualitative properties of the one-step iterative methods
which serve as a mathematical model for the discretized heat conduction problem.
These properties are a discrete analogues of the qualitative properties of continu-
ous problems, and we give algebraic conditions of the step-matrix under which the
above basic properties are also preserved at the discrete level. We also construct the
corresponding step-matrices.
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1. INTRODUCTION

In this paper, we investigate the qualitative properties of the sequgficgener-
ated by the linear algebraic iterative process

Myt = Ny<+b, k=0,1,... (1.1)

whereM,N € R™" b, % € R" andy° is a given vectoryX denotes the successive
iterates. Model (1.1) is called one-step iterative method.

The discretisation of many physical and engineering problems leads to one-step
methods of the above form (1.1). In this model, as a necessary condition, we have to
guarantee the convergence of the iteration. On the other hand, we must also investi-
gate the model from the point of view of the preservation of the qualitative properties
of the continuous solution, like conservation of the non-negativity and the concavity
of the initial vecton® (the discretization of the initial function), monotonicity in time,
etc. There are several papers which deal with the second problem (see, e. g., [3-8]).
But all those papers investigate this problem as a preservation property of a given ma-
trix splitting of some fixed matriXA. In this paper, we approach this question from
the other side, that is, the iterative model (1.1) is giggariori and we investigate its
gualitative properties. As a physical model, we consider the heat conduction problem
in dimension 1.
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The paper is organized as follows. In Section 2 we give those basic mathematical
preliminaries which are used in the paper. Then we collect the important properties
of the continuous solution of the physical problem in Section 3. In the next section
we investigate the algebraic properties of the step-matrix in the iteration, which guar-
antee the preservation of the basic qualitative properties of the continuous solution.
Namely, in Section 4 we consider the invariant subsets, in Section 5 the monotonicity
property and in Section 6 we define the relation between ffierdint subspaces. Fi-
nally, in Section 7 we construct a corresponding step-matrix by using the symmetric
Latin squares.

2. M ATHEMATICAL PRELIMINARIES

Throughout the paper all matrices are real, square matrices in the vector space
R™" i. e., A B € R™™. The ordering relation is defined in the usual way, i. e.,
element-wise. This means thAtis non-negative (in notationA > 0) when all
elements ofA are non-negative. The partial ordering between two matrices is defined
asA > BwhenA - B > 0. The strict ordering is the followingA is positive @ > 0)
when each of its elements is positive. Hernie; Bif A— B > 0. For a vector in the
vector spac®R", the definitions are similar. This means that a vegtarR" is called
non-negativeX > 0) if all the components ot are non-negative. We say that y
if x—y > 0. Analogouslyx is positive k > 0) if each of its elements is positive.
Thereforex > y whenx -y > 0.

A matrix A € R™" is said to be positively diagonally dominant, or shortly PDD
(resp., strictly positively diagonally dominant, or shortly SPDD) when the relation
aiji = Yijgilajl (resp.,aii > XYjyilajl) is fulfilled for everyi = 1,2,...,n. This
means that they are diagonally dominant or strictly diagonally dominant with non-
negative diagonal elements.

If Ae R™", thenp(A) denotes the spectral radiusAifo(A) = max |4;|, whereq;,
i=1,2,...,nare the eigenvalues &

The matrixA e R™", A= (& ),i, ] =1,2,...,nis reducible if there exists a non-
empty seR ¢ {1,2,..,n} such thatg; = Ofori e R, j € {1,2,...,n} \ R, otherwise
the matrixA is irreducible. Consequently, every positive matrix is irreducible.

In the sequel] € R™" is the unit matrix.E € R™" denotes the matrix with all
elements equal to 1. Similarlg,e R", e=(1,1,...,1)".

Let A € R™" be a matrix with the property

A=M-N. (2.1)

The iterative scheme (1.1) is convergent to the unique solytiol b for eachy® if
and only if M is nonsingular, and the corresponding step-matrix of the iterktien
M~IN has the property(H) < 1. Relation (1.1) can be rewritten in the following
form: y**1 = HyX + M~bor

XL = HXK, (2.2)
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wherex® = ¥ — A-lbis the so-called defect vector.

3. SOME BASIC QUALITATIVE PROPERTIES OF THE CONTINUOUS SOLUTION OF THE HEAT
CONDUCTION PROBLEM

In the following we list the most important qualitative properties of the following
one-dimensional heat conduction problem:
2
ou(x, t) _ 0 u(x,t)’ xe(0.1), t> 0,
ot X2
u(x, 0) = Uo(X), (3.1)
uO,t)=u(L,t)=0, t>0,
with a given (stificiently smooth) initial functiorupg(x). We denote the stationary
solution of problem (3.1) byg(X), i. €.,usi(X) = lim_ u(x, t). We denote by(x, t)
the diference of the solution of the problem (3.1) and the stationary soluti(x),
i. e, h(xt) = u(x,t) — use(X). Then this functiorh(x, t) is expected to possess the
following qualitative properties.
(1) h(x,t) exists, and lim,. h(x,t) = 0.
(2) If E0) = [ h(x,0)dx> O, thenE(t) = [ h(x, t)dx > O for every .
(3) If h(x,t*) > 0, thenh(x,t) > O for everyt > t*.
(4) If h(x,t") > h(x,t) for everyt > t’, then for everyt” > t’ the inequality
h(x,t”) > h(x, t*) holds for evernyt* > t”.
(5) If h(x,t") > h(x,t) for everyt > t’, thenh(x,t") > 0. If h(x,t”") > O, then
E(t") = [, h(xt")dx> 0.
(6) If E(0) = fol h(x, 0)dx > 0, thenE(t) is monotonically decreasing.
(7) M(t) = max|h(x, t)| is monotonically decreasing.
(8) J, In(xt)ldt < oo for every givenx.
(9) IfE(0) = fol h(x,0)dx > 0, then there exigt, t”,t" < t”, such thah(x,t’) > 0
andh(x, t”) > h(x, t) for everyt > t”.
In the sequel, under iteration we understand formula (2.2).

4. |NVARIANT SUBSETS
We start the investigation of the iteration with a definition.

Definition 1. A subsetS c R" is said to be invariant with respect to the iteration
if the relationx® € S implies thatX**1 e Sforallk = 0,1, ...

LetY € R™™ be a matrix, then we define the subS¢Y) c R" as follows:
S(Y) :={xeR": Yx> 0.

We note that in the analysis of the qualitative properties of the iteration (2.2) the
subset$S(E), S(1), S(I — H), andS(A) are of a special importance (see [3,4]).
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Lemma 1. If the step-matrixH is non-negative, an#l and Y commute, then the
subsetS(Y) is invariant with respect to the iteration.

Proor. Assume thak® € S. Then by use of the definition of the sub&&Y) and
the non-negativity of H, the relatiddY ¥ > 0 holds. Hence using the commutativity
assumption and the definition of the iteration (2.2), weXg&t! > 0, which proves
the statement. O

Corollary 1. Assume that the step-matitikis non-negative.

(&) Then the subs&(p(H)), wherep(H) is a polynomial of H, is invariant with
respect to the iteration. Consequensiyl) and S(I — H) are invariant with
respect to the iteration.

(b) If H and E/A commute, then the subs&tE)/S(A) is invariant with respect
to the iteration.

In the following we investigate the relation between the sut8@)sS(I1-H), S(E)
andS(A).

Lemma 2. The following relations hold between the substy, S(1 — H), S(E),
andS(A):
(@) If T >0, thenS(T) > S(I). Consequenths(E) o S(I).
(b) If T-1 > 0, thenS(1) o S(T). Consequently, iR1 > 0, thenS(1) > S(A).
(c) If M~1 > 0, thenS(l — H) > S(A).
(d) If (I =H)™1 >0, thenS(I) > S(I - H).

Proor. (@) T > 0, thereforex > O clearly results in the relatiofix > O.

The proof of (b) and (d) is straightforward.

The statement (c) follows directly from the fact that (2.1) can be rewritten in the
following form: A= M(l — H). O

Remarkl. Assume that the step-matrit is a non-negative convergent matrix,
i. e, H > 0ando(H) < 1. Then ( - H)™ = ¥ H¥, and hencel(- H)™! > 0.
ThereforeS(l) andS(l — H) are invariant with respect to the iteration, see part (a) in
Corollary 1, and5(1) > S(I — H), according to assertion (d) of Lemma 2.

Let us investigate the set of the matrices which commute with some given matrix
E.

We define the subspa ¢ R™" as follows:

Ce = {Xe R™: EX= XE}.

Remark2. The subse€Cg forms both a vector space and a ring.

The properties of the operations are obviously true. Moreover, the sGbpsst
closed for the operations, because for &y € Cg the following relations are
valid: (A+ B)E = AE+ BE = EA+ EB = E(A £ B), MAE = 1EA = E(1A),
ABE = AEB= EAB Clearly, the matrices 0 andA also belong t€Cg.
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Lemma 3. The following statements are equivalent:
(@) X € Cg;
(b) For all fixed1 < i, j < n, the relation

n n
Z Xki = Z Xjk
k=1 k=1
holds.
Proor. The statement follows by direct calculation of the elements of the matrices

XE andEX, respectively. O

5. MonNotoNICITY
First we define monotonicity in the subs®t
Definition 2. Let Z € R™" be a given matrix. The iteration is said to Be

monotone in a subs& c R" if the following two conditions are fulfilled:

(I) The subset c R" is invariant with respect to the iteration;
(I) ForanyxX € S, the relationZ X > Zx<*1 holds.

Lemma 4. For H > 0 the iteration isl-monotone in a subs&(l — H).

Proor. The invariance o5(l — H) follows from Corollary 1 (a).
In order to show the second property, assumexhatS(I —H), i. e., ( —H)x¥ > 0.
Thenxk > HxX, which, according to (2.2) means the required relatibr x<*1. o

Remark3. The above proof also shows that for the iteration the relatfon x<1
implies the inclusionk € S(I — H). This means that themonotonicity property of

the iteration is valid only in the subs8{l — H).

Corollary 2. Letus suppose th#* > 0,H > 0, M~ > 0andH andA commute.

Then the iteration i$-monotone in the subs8(A).

The first condition follows from the commutativity ¢ and A, see Lemma 1,

about the second condition statement (c) in Lemma 2 and Lemma 4.

Lemma 5. Let us suppose that the step-matrxs non-negativeH and E com-

mute and — H is PDD. Then the iteration iE-monotone in the subs8(E).

Proor. The invariance of the subs8{E) follows from the statement (b) in Corol-

lary 1.

For all x € S(E) the inequality [ — H)Ex > 0 is fulfilled, becaus&x > 0, and
for any 1< i, j < nthe relation EX); = (EX); = X, x holds. Moreover] — H
is PDD. Hence, for any € S(E) we have [ - H)EX > 0. So, by use of the
commutativity property, we havg(l — H)x* > 0, which implies the required relation
ExX< > ExX¢L, O

“For more details, we refer to [3, 4].
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Lemma 6. If the diagonal elements &f are non-negative, then the following two
statements are equivalent:
(@) I - His PDD (resp., SPDD);
(b) IHllee < 1 (resp.,lIHllw < 1).

Proor. Using the definition of PDD (resp., SPDD) and the non-negativity of the
diagonal elements df, we see that the properties-&j > 3. [ j| (resp., & >
Yjsilajl) and 1> B0, Ja jl (resp., 1> X7, |ai jl) are equivalent, which proves the
statement. i

Lemma 7. Letx’? € R", X0 # 0. Then the following statements are equivalent:
(@) IHlle < 1 (resp.,[Hlle < 1);
(D) [1Xlce = 11X+ Yoo (resp., XNl > [1X<+1]|00) for everyx? € R, x? # 0 and all
k=0,1,....

Proor. The relation||xX** 1|, = [HX | < [IH]lollX]le0 < (resp.,<) [IX¥lec Shows
that (a) implies (b).

In order to obtain the converse implication, assume that (b) is true. Then, for any
x% e R" with the propertyx’ # 0, the inequalityl|X%l. > X}l is true. Since
x! = HX?, one has

IHX oo
Pl ~
Consequently,
IHXlo
xR 20 ||XO|0e ~
which yields (a). The proof of the strict inequality is similar. O

Lemma 8. Assume thaH is a non-negative convergent matrix, i. el,> 0 and
o(H) < 1. Theny, [(x)i| < oo for everyl <i < n.

Proor. Under the assumptions made we have

(o9

5 Joea] = S0) < 3301419 = 41 [ 3]

k=0
= 1l ([Z Hk] e] = X%l (1 = H) %), = XUl ll(l = H) Ml
k=0 i
The right-hand side here is finite, and this proves the statement. O

6. RELATION BETWEEN SUBSPACES

In this Section we analyze the relations between the subsi®&gs S(1), and
S(I — H) with respect to the iteration. The analysis is based on the so-called power
method.
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Lemma 9. If the step-matriX is non-negative, irreducible and € Cg, then

(1) the vectoreis an eigenvector dfl;

(2) o(H) is an eigenvalue afl;

(3) o(H) corresponds to the eigenvectr

(4) o(H) is in absolute value a simple eigenvalue.

Proor. Let us note thaHe = ||H||.€, hencel|H||» is an eigenvalue of. Since
IIHllw > o(H), it follows that||H||. is, in absolute value, the largest eigenvalue with
the eigenvectoe. For non-negative and irreducible matrices the Perron—Frobenius
theorem (see [9]) guarantees that this eigenvalue is in absolute value simplex

Theorem 1. Let us suppose thad is a non-negative, irreducible matrii € Cg
andH has an orthonormal system of eigenvectors. Assumexthgt € R" are two
arbitrary vectors with the propert(x®, e) = (4°,€) = z# 0. Then

MaxX<i<n{(X)i} _
k—eo MiNy<i<n{(y¥)i}
Proor. We denote the eigenvalues dfby A,, m = 1,2,...,n. Using the proof
of Lemma 9 and the notatioffH||.. = S, we can writes = A1 > |1 > -+ >

|1n|. Furthermore, we denote the corresponding orthonormal eigenvectdfsioy=
1,2...,n, respectively. Then, using again the Lemma 9 and the relﬁ&%enz =1,

we getv! = %e. Considering the decomposition with respect to the systéhn we
getx? = 30, anmv™, whereay = (x2,0™), andy® = 30, bno™, wherebm = (40, o™).

Note thatay = by = %\ Hence,

OO _ (HSO) (H r]m=1""mvm)i _ ( nmcl/l%amvm)i
@9 (Y0 (K Eha b (2h Albmo™),

K
(sk%e+ o, /lﬁamvm)i (e+ @ 2”22(%'“) amvm)

= = k
(sk%e+ o /lﬁquvm)j (e+ M%) bmvm)
Sinceldy| < s, form = 2,...,n, therefore liM_ (”—;”)k =0, form=2,...,n. This
completes the proof. O

We denote the maximum elementldfby max H), and the minimum element of
H by min (H), respectively.

Corollary 3. Let us apply the Theorem 1 to the columns of the step-madrix
SinceH is non-negative, irreduciblé{ € Cg andH has an orthonormal system of
eigenvectors, therefore

max (H*)
k—co min (HK)
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Theorem 2. Suppose that the step-matiikis non-negative, irreducible;l € Cg
and H has an orthonormal system of eigenvectors. x%et R", x° € S(E) and
EX # 0. Then there exists an indé € IN{ such that for everk € N{, k > ko, the
inequalityxX > 0 holds (in other words e S(1)).

Proor. Corollary 3 means that for all € R, there exists an inde € INj such
that for eactk € N[, k > ko. the inequality

k
< w <l+e¢
min (HK)
holds. We introduce the notatign p*, andp~ as follows. We puEX’ = pe, where
p € R*; in other words p denotes the sum of the elements®f We denote the sum

of the non-negative elements ¥ by p*, and the sum of the negative elementsbf
by p~. Hence,p™ + p~ = p. We consider the following estimate:

(X = (H*); > min (HY) p* + max H*) p~ > min (H*) p* + (1 + &) min (H¥) p~
=min(HX) (p* + (L + &)p~) = min (H) (p + &p").

The number minKi¥) is non-negative. The choice of an indeXarge enough (which
depends og = —p/p~) guarantees the non-negativity xffor eachk > ko. O

Theorem 3. Suppose that the step-matkiis non-negative, irreducibld{ € Cg,
| — His PDD, andH has an orthonormal system of eigenvectors. et R", X0 €
S(l). Then there exists ky € INJ such that the inequalityl — H)xX > 0 holds for

everyk e N, k > ko (in other words X € S(I — H) for such indices).

Proor. In the same way as proof of the Theorem 2, and finally using the proof of
Lemma 5. m]

We summarize the results in what follows.

Corollary 4. Suppose that the step-matkikis non-negative, irreducible] € Cg,
IHll» < 1, andH has an orthonormal system of eigenvectors. %t S(E) and
ExX? # 0. Then

(a) the iteration is convergent aniny_., X< = O;

(b) S(E), S(1), andS(I — H) are invariant with respect to the iteration;
(c) S(E) o S(I) o S(I — H);

(d) the iteration isE-monotone (respl-monotone) irS(E) (resp.,S(I — H));
(e) the iteration is strictly monotonically decreasing in maximum norm;
(M T2ol(XN)il < oo, foreveryl <i <n;

(9) Fko,lo € Nf, k<1, Yk > ko, X € S(1), ¥l > lg, X € S(I — H).

The above-listed properties (a)—(g) are the discrete analogues of (1)—(9) from Sec-
tion 3.
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7. CONSTRUCTING CORRESPONDING H

A Latin square is aflR™" matrix which consists of n sets of n numbers arranged
in such a way that no orthogonal (row or column) contains the same number twice.

Lemma 10. There exists a symmetric Latin square.
Proor. Assume thasy, ..., a, are arbitrary numbers. The choice
hij:=ac If i+j=k+1(modn)
for the elements of the matrid creates a symmetric Latin square. O

Corollary 5. Leta,i = 1,2,...,n, be arbitrary positive numbers with the property

I, a < 1. With the help of; we construct the step-matrix, which is a symmetric
Latin square. Then the properties (a)—(g) are satisfied because such a rHaisix
non-negative, irreducibleil € Cg, ||H|l» < 1, andH has an orthonormal system of
eigenvectors.

8. CONCLUDING REMARKS

In this paper we listed the basic qualitative properties of the continuous solution
of the heat conduction problem (3.1), arising from the physical process. After that
we investigated the algebraic properties of the step-matrix in the corresponding one-
step iteration, and we have determined conditions under which the above qualitative
properties of the continuous solution are preserved. Finally we constructed a suitable
corresponding step-matrix.

However, there are fferent open problems and possible extensions which can be
considered in our future works:

(1) Our aim is to analyze the independence of the important qualitative proper-
ties of the continuous solution and the important properties of the discrete
solution as well.

(2) We constructed a corresponding step-matrix. But naturally it would be useful
to define the necessary (andistient) conditions for the step-matrix in order
to fulfil the qualitative properties (a)—(g).

(3) We analyzed the heat conduction problem in 1D. We can extend this analysis
both for higher dimensions and for other time-dependent (parabolic type)
physical problems as well.

(4) Our goal is to investigate this method from the point of view of the matrix
splitting theory, namely how we can get a corresponding step-matrix from
some given matriXA with some splitting procedure (regular matrix splitting,
weak regular matrix splitting). These splitting procedures can be found in
several papers, e. g., [1,2,10-12]. However, their qualitative properties are
less investigated.
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