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Abstract. In this paper, we obtain the necessary and sufficient conditions for having the maxi-
mum principle and existence of positive solutions for some cooperative systems involving Schrö-
dinger operators defined on unbounded domains. Then, we deduce the existence of solutions for
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1. INTRODUCTION

We consider the following semilinear system�
LY CQY D Ag.x/Y CF.x;Y / in ˝;

Y ! 0 as jxj !1;

Y D 0 on @˝;

(S)

where ˝ is an unbounded domain of RN , L is an n�n diagonal matrix of Laplace
operators, Q is an n�n diagonal matrix of potential functions qi .1 � i � n/, g.x/
is a weight function tending to zero at infinity, F is a given n-vector function and
AD .aij / is a constant n�n cooperative matrix such that

aij � 0 for all i 6D j: (1)

It is well known that the maximum principle plays an important role in the theory
of partial differential equations. An analogous theory has been appeared for semilin-
ear systems in [1,5–9,11,14,22]. In [7,9], the authors studied system (S) with qi D 0
and g.x/D 1 , defined on bounded domains with Dirichlet conditions. The problem
with qi D 0 defined on the whole space RN has been established in [12, 13]. The
system with equal potentials defined on RN has been considered in [3, 4].
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Some applications concerning the optimal control of systems like (S) have been
introduced in [15–21].

Here, we extend these results to system (S). In section two, we obtain necessary
or sufficient conditions for having the maximum principle and existence of positive
solutions for cooperative linear systems. Then, we study semilinear systems in sec-
tion three; we adapt the method of sub and super solutions for proving the existence
of nonnegative solutions. Finally, in section four, we study the generalized maximum
principle ('q-positivity) for non-cooperative systems.

To prove our theorems, we make use of earlier results by Djellit and Yechoui [10]
who proved that, forN > 2 and q > 0, if there exist ˛ > 0, ˇ � 1, ˛ > ˇ, and k;c > 0
such that

0 < g.x/�
k

.1Cjxj2/˛
; 0 < q.x/�

c

.1Cjxj2/ˇ
; (2)

then the eigenvalue problem
�
.��Cq/y D �g.x/y in ˝;

y! 0 as jxj !1;

y D 0 on @˝

(E)

has simple principal eigenvalue .�Cq / which is associated with positive eigenfunction
'q on V .

Moreover .�Cq / is characterized by

�Cq

Z
˝

g.x/jyj2dx � jryj2Cqjyj2; (3)

where

V.˝/D
n
y 2D0.˝/ j j

�
1Cjxj2

�� 1
2y 2 L2.˝/; ry 2 L2.˝/

o
is a Hilbert space with an inner product .y; /V D

R
˝

�
ry:r C 1

1Cjxj2
y 

�
dx and

a norm

kykV D

�Z
˝

�
jryj2C

1

1Cjxj2
jyj2

�
dx

� 1
2

which is equivalent to

kykq D

�Z
˝

�
jryj2Cqjyj2

�
dx

� 1
2

:

We also introduce the Hilbert space

H D

�
yW˝!R j

Z
˝

gy2dx �1

�
D L2g.˝/
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with an inner product

.y; /g D

Z
˝

gy dx:

2. COOPERATIVE LINEAR SYSTEMS

In this section, we study the maximum principle and existence of positive solutions
for system .S/ when the right-hand side is linear.

Definition 1. We say that the maximum principle holds for system (S) if F � 0
and Y is a solution of (S), then Y � 0.

Definition 2. A non-singular square matrix B D .bij / is said to be an M -matrix
if bij � 0 for i 6D j , bi i > 0 for i D 1; : : : ;n, and if all the principal minors extracted
from B are positive.

The i th equation of system (S) can be written as
†
.��Cqi /yi D g.x/

nX
jD1

aijyj Cfi in ˝;

yi ! 0 as jxj !1;

yi D 0 on @˝:

(Si )

Theorem 1. Assume that (1) and (2) with q D qi hold, and fi � 0. System (S)
satisfies the maximum principle if

the matrix .�CQ�A/ is a non-singular M -matrix, where (4)

�CQ D

˙
�Cq1

0 : : : 0

0 �Cq2
: : : 0

:::
:::

: : :
:::

0 0 : : : �Cqn

�

: (5)

Moreover, if the maximum principle holds for system (S), then

the matrix .�Cq �A/ is a non-singular M -matrix, where (6)

q Dmaxfqi W 1� i � ng ; �Cq D

˙
�Cq 0 : : : 0

0 �Cq : : : 0
:::

:::
: : :

:::

0 0 : : : �Cq

�

:

Proof. First assume that fi � 0 and .yi /niD1 2
Qn
iD1Vqi

is a solution of (S). Mul-
tiplying (Si ) by y�i D maxf�yi ;0g and integrating over ˝, we obtain by Green’s
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formula thatZ
˝

ryi :ry
�
i dxC

Z
˝

qiyiy
�
i dx D

nX
jD1

aij

Z
˝

g.x/yjy
�
i dxC

Z
˝

fiy
�
i dx;

i. e.,Z
˝

jry�i j
2dxC

Z
˝

qi jy
�
i j
2dx

D ai i

Z
˝

g.x/jy�i j
2dx�

nX
j 6Di

aij

Z
˝

g.x/yjy
�
i dx�

Z
˝

fiy
�
i dx;

and thus, by (3), we get

�Cqi

Z
˝

g.x/jy�i j
2dx

� ai i

Z
˝

g.x/jy�i j
2dx�

nX
j 6Di

aij

Z
˝

g.x/yjy
�
i dx�

Z
˝

fiy
�
i dx:

Therefore

.�Cqi
�ai i /

Z
˝

j
p
gy�i j

2dx �

nX
j 6Di

aij

Z
˝

g.x/y�j y
�
i dx

and, by the Cauchy-Schwartz inequality, we have

.�Cqi
�ai i /

�Z
˝

j
p
gy�i j

2dx

� 1
2

�

nX
j 6Di

aij

�Z
˝

j
p
gy�j j

2dx

� 1
2

� 0;

which can be rewritten to the form

˙
�Cq1
�a11 �a12 � � � �a1n
�a21 �Cq2

�a22 � � � �a2n
:::

:::
: : :

:::

�an1 �an2 � � � �Cqn
�ann

�ˇ�R
˝ j
p
gy�1 j

2dx
�1=2�R

˝ j
p
gy�2 j

2dx
�1=2

:::�R
˝ j
p
gy�n j

2dx
�1=2



� 0:

Now, (4), y�1 D y
�
2 D �� � D y

�
n D 0 and hence y1;y2; : : : ;yn � 0.
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Assume now that 0 � fi 2 L21=g.˝/ and that the maximum principle holds for
system .S/. We rewrite .Si / as follows:

†
.��Cq/yi D g.x/

nX
jD1

aijyj CHi in ˝

yi ! 0 as jxj !1

yi D 0 on @˝;

where 0�Hi D .q�qi /yi Cfi 2 L21=g.˝/.
Multiplying by 'q (the eigenfunction corresponding �Cq ) and integrating over ˝,

we get Z
˝

.��Cq/yi'qdx D

nX
jD1

aij

Z
˝

g.x/yj'qdxC

Z
˝

Hi'qdx

and, by using Green’s formula and (3), we obtain

.�Cq �ai i /

Z
˝

g.x/yi'qdx�

nX
j 6Di

aij

Z
˝

g.x/yj'qdx D

Z
˝

Hi'qdx (7)

which is a Cramer system in Xi D
R
˝ g.x/yi'qdx, 1 � i � n. Since the right-hand

side is non-negative as well as Xi , we obtainˇ̌̌̌
ˇ̌̌̌
ˇ
�Cq �a11 �a12 � � � �a1n
�a21 �Cq �a22 � � � �a2n
:::

:::
: : :

:::

�an1 �an2 � � � �Cq �ann

ˇ̌̌̌
ˇ̌̌̌
ˇD

ˇ̌
�Cq �A

ˇ̌
> 0:

The inequality �Cq �ai i > 0 is satisfied from the scalar case (see [13]), because the
functions g, yi , Hi and the coefficients aij for i 6D j are non-negative. �

Remark 1. If qi D q for 1� i � n, then condition (6) is the necessary and sufficient
condition for having the maximum principle for system (S).

Theorem 2. Let (1) and (2) with q D qi hold. Then, for F � 0, system (S) has
a unique positive solution if condition (4) is satisfied.

Proof. We consider the bilinear form aW
Qn
iD1Vqi

�
Qn
iD1Vqi

!R defined by

a.Y;	/D a..y1;y2; : : : ;yn/; . 1; 2; : : : ; n//

D

nX
iD1

Z
˝

ryi :r idxC

nX
iD1

Z
˝

qiyi idx
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�

nX
j 6Di

Z
˝

g.xaijyj idx�

nX
iD1

Z
˝

g.x/ai iyi idx

We choose m� 0 such that mCai i > 0. Then, we have

a.Y;Y /D

nX
iD1

Z
˝

�
jryi j

2
Cqiy

2
i

�
dx

�

nX
j 6Di

Z
˝

g.x/aijyiyjdx�

nX
iD1

Z
˝

g.x/ai iy
2
i dx

D

nX
iD1

Z
˝

�
jryi j

2
C .qi Cmg/y

2
i

�
dx

�

nX
j 6Di

Z
˝

g.x/aijyiyjdx�

nX
iD1

.mCai i /

Z
˝

g.x/y2i dx

and, by the Cauchy-Schwartz inequality and (3), we get

a.Y;Y /�

nX
iD1

Z
˝

�
jryi j

2
C .qi Cmg/y

2
i

�
dx

�

nX
j 6Di

aij

�Z
˝

.
p
gyi /

2dx

� 1
2
�Z

˝

.
p
gyj /

2dx

� 1
2

�

nX
iD1

.mCai i /

Z
˝

g.x/y2i dx

�

nX
iD1

 
1�

mCai i

mC�Cqi

!Z
˝

�
jryi j

2
C .qi Cmg/y

2
i

�
dx

�

nX
j 6Di

aijq
.mC�Cqi

/.mC�Cqj
/

�Z
˝

�
jryi j

2
C .qi Cmg/y

2
i

�
dx

� 1
2

�

�Z
˝

�
jryj j

2
C .qj Cmg/y

2
j

�
dx

� 1
2

:

Therefore, using (4), it follows that

a.Y;Y /� C

nX
iD1

Z
˝

�
jryi j

2
C .qi Cmg/.yi /

2
�
dx
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� C

nX
iD1

Z
˝

�
jryi j

2
Cqi .yi /

2
�
dx D C

nX
iD1

kyik
2
qi
;

where C > 0. Then, by the Lax Milgram lemma, since a is a continuous coercive
bilinear form, there exists a unique solution Y D .yi /niD1 2

Qn
iD1Vqi

. This solution
is non-negative by the maximum principle. �

3. SEMILINEAR SYSTEMS

In this section, we adapt the method of sub and super solutions, to prove the exis-
tence of solutions for semilinear cooperative system (S). The proof here is analogous
to that of [3, 13].

We assume that fi .x;Y /D fi .x;y1;y2; : : : ;yn/ is a Carathéodory function such
that

0� F.x;Y /D .f1.x;Y /;f2.x;Y /; : : : ;fn.x;Y //�Ng.x/Y Ch
0 (8)

for all Y � 0 and x 2˝, where N is a positive constant and 0 < h0 D .h;h; : : : ;h/ is
a bounded vector-function in

�
L2
1=g
.˝/

�n.

Theorem 3. Let (1), (2) with q D qi , and (8) be satisfied. Then there exists a pos-
itive solution of system (S) if

the matrix
�
�CQ� .ACNI/

�
is a non-singular M -matrix, (9)

where �CQ is defined by the relation (5) and I denotes the identity matrix.

Proof. We divide the proof into several steps.
Step (i): Construction of sub and super solutions. It is clear that

Y 0 D .y01 ;y
0
2 ; : : : ;y

0
n/D .0;0; : : : ;0/

is a sub solution of (S), because

LY 0CQY 0�g.x/AY 0�F.x;Y 0/� 0:

Consider now the system�
LY CQY D g.x/.ACNI/Y Ch0 in ˝:

Y ! 0 as jxj !1;

Y D 0 on @˝;

(10)

It follows from Theorem 2 that, under condition (9), system (10) has a unique positive
solution

Y � D .y�1 ;y
�
2 ; : : : ;y

�
n/:

By (8), we have
0� .LCQ/Y ��g.x/AY ��F.x;Y �/; (11)

i. e., Y � D .y�1 ;y
�
2 ; : : : ;y

�
n/ is a super solution of (S).
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Step (ii): Definition of a compact operator. We introduce

T WHn
3 Y D

�
y1
:::

yn

�

� 0 7! 	 D

�
 1
:::

 n

�

D T Y 2

nY
iD1

Vqi
;

where 	 is a unique solution of the following system:�
.LCQCmg.x/I /	 D .mI CA/g.x/Y CF.x;Y / in ˝;

	 ! 0 as jxj !1;

	 D 0 on @˝;

(12)

where m� 0 is such that mCai i > 0. Since the equation in (12) can be rewritten as

.LCQ/	 D�mg.x/	 C xF ; xF D .mI CA/g.x/Y CF.x;Y /� 0;

system (12) has a unique solution 	 2
Qn
iD1Vqi

and therefore T is well-defined.

Step (iii): K D ŒY 0;Y �� is invariant by T , i. e., T .K/ � K. For every Y 2Qn
iD1Vqi

, Y � 0, we have T .Y / D 	 � 0. We show now that if Y � Y �, then
	 � Y �. From (10) and (12), we obtain

.LCQCmg.x/I /.Y ��	/D �;

where � WD .mI CA/g.x/.Y ��Y /CNg.x/Y ��F.x;Y /� 0. Therefore

.LCQ/.Y ��	/D�mg.x/.Y ��	/C �

and thus Y ��	 is non-negative, i. e., 	 � Y �.

Step (iv): T is a continuous operator. Let Yk! Y in Hn. Then we get

F.x;Yk/! F.x;Y / in
�
H 0
�n
:

If we denote 	k D T .Yk/, by (12) it follows that

.LCQCmg.x/I /.	 �	k/D .mI CA/g.x/.Y �Yk/CF.x;Y /�F.x;Yk/:

Multiplying by .	 �	k/ and integrating over ˝, we getZ
˝

.LCQCmg.x/I /.	 �	k/:.	 �	k/dx

D .mI CA/

Z
˝

g.x/.Y �Yk/:.	 �	k/dx

C

Z
˝

�
F.x;Y /�F.x;Yk/

�
:.	 �	k/dx;

which, by virtue of the Green formula, yields thatZ
˝

ˇ̌
r.	 �	k/

ˇ̌2
dxC

Z
˝

Qj	 �	kj
2dxCm

Z
˝

g.x/j	 �	kj
2dx
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D .mI CA/

Z
˝

g.x/.Y �Yk/:.	 �	k/dx

C

Z
˝

�
F.x;Y /�F.x;Yk/j/:.	 �	k/dx:

Now, using the Cauchy-Schwarz inequality, we getZ
˝

ˇ̌
r.	 �	k/

ˇ̌2
dxC

Z
˝

Qj	 �	kj
2dxCm

Z
˝

g.x/j	 �	kj
2dx

� .mI CA/kY �YkkHnk	 �	kkHn

CkF.x;Y /�F.x;Yk/k.H 0/nk	 �	kkHn

and thus

k	 �	kk
2
Q � .mI CA/kY �YkkHnk	 �	kkHn

CkF.x;Y /�F.x;Yk/k.H 0/nk	 �	kkHn ;

where k � kQ denotes the norm in
Qn
iD1Vqi

. Since kY �YkkH ! 0, we have k	 �
	kkQ! 0.

Step (v): T is a compact operator. First note the following: Let Y � 0 and 	 D
T .Y /. Multiplying (12) by 	 and integrating over ˝, we getZ

˝

ˇ̌
r	

ˇ̌2
dxC

Z
˝

Qj	 j2dxCm

Z
˝

g.x/j	 j2dx

D .mI CA/

Z
˝

g.x/Y 	dxC

Z
˝

F.x;Y /	dx;

which, in view of (8), yields thatZ
˝

ˇ̌
r	

ˇ̌2
dxC

Z
˝

Qj	 j2dxCm

Z
˝

g.x/j	 j2dx

� .mI CA/

Z
˝

g.x/Y 	dxCN

Z
˝

g.x/Y 	dxC

Z
˝

p
g	

h
p
g
dx

D .mI CACNI/

Z
˝

g.x/Y 	dxC

Z
˝

p
g	

h
p
g
dx:

By the Cauchy-Schwarz inequality, we obtain

k kQ � C
�
kY k.H/nCkhkH 0

�
� C

�
kY kQCkhkH 0

�
Therefore if fYkgk2N is a bounded sequence in

Qn
iD1Vqi

, the associated sequence
f	kgk2N is bounded in

Qn
iD1Vqi

. We show now that f	kgk2N is a Cauchy sequence
in
Qn
iD1Vqi

.
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Suppose that kYkk2Q �E for k 2N ,E is a constant. In view of (2), we can choose
R large enough such that�

1Cjxj2
�
g.x/ <

�

8E
for jxj �R; (13)

where � > 0 is fixed and  is given byZ
˝

�
1Cjxj2

��1
y2dx � 

Z
˝

jryj2dx: (14)

Let B D fx 2˝ j jxj<Rg and B 0 D fx 2˝ j jxj �Rg. Since fYkgk2N is bounded
in
Qn
iD1Vqi

, Yk is bounded in .H .B//n. However B is bounded and therefore the
embedding .H .B//n into .L2.B//n is compact. Hence there exists a convergent
subsequence still denoted by fYkgk2N , which is a Cauchy sequence and thus, for
every j and k large enough, we haveZ

B

g.x/jYk �Yj j
2dx �

Z
B

jYk �Yj j
2dx <

�

2
:

Moreover using (13) and (14), we obtainZ
B 0

g.x/jYk �Yj j
2dx D

Z
B 0

�
1Cjxj2

�
g.x/

1

1Cjxj2
jYk �Yj j

2dx

�
"

8E

Z
B 0

1

1Cjxj2
jYk �Yj j

2dx

�
"

8E
kYk �Yj k

2
Q

so
R
B 0 g.x/jYk �Yj j

2dx < �
2

.
Then f	kgk2N is a Cauchy sequence in

Qn
iD1Vqi

. Hence it converges to 	 and
therefore T is compact in

Qn
iD1Vqi

. By Schauder fixed point theorem, there exists
at least one positive solution Y D .yi /niD1 2

Qn
iD1Vqi

of system (S) satisfying Y 0 �
Y � Y �. �

4. NON-COOPERATIVE SYSTEMS

In this section, we study the generalized maximum principle ('q-positivity) for
n�n non-cooperative systems.

Definition 3. System (S) (with qi D q) satisfies the generalized maximum prin-
ciple if F � 0 and Y D .y1;y2; : : : ;yn/ is a solution of (S), then there exists C > 0

such that

yi � C'q in ˝ for all i D 1;2; : : : ;n:
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We start with 2�2 non cooperative systems:
„
Lqy1 D a11g.x/y1Ca12g.x/y2Cf1 in ˝;

Lqy2 D a21g.x/y1Ca22g.x/y2Cf2 in ˝;

y1;y2! 0 as jxj !1;

y1 D y2 D 0 on @˝;

(S2)

As in [2], we can prove

Theorem 4. Assume that a12 < 0, a21 > 0, a11 > a22, f1� �2f2 � 0, and .a11�
a22/

2C 4a12a21 � 0 are satisfied. The generalized maximum principle holds for
system (S2) if

a11��q < r < �q �a22:

Now, let us consider the following 3�3 non cooperative system˚
Lqy1 D a11g.x/y1Ca12g.x/y2Ca13g.x/y3Cf1 in ˝

Lqy2 D a21g.x/y1Ca22g.x/y2Ca23g.x/y3Cf2 in ˝

Lqy3 D a31g.x/y1Ca32g.x/y2Ca33g.x/y3Cf3 in ˝

y1;y2;y3! 0 as jxj !1

y1 D y2 D y3 D 0 on @˝

(S3)

Assume that
a12;a13 < 0; a21;a23;a31;a32 � 0 (15)

We insert our 3�3 non-cooperative system into a 4�4 cooperative one. We introduce
the following fourth equation of a new variable y4 D y1� �2y2� �3y3:

Lqy4 D .a11� �2a21� �3a31� s/g.x/y1

C .a12� �2a22� �3a32C s�2/g.x/y2

C .a13� �2a23� �3a33C s�3/g.x/y3C sg.x/y4Cf4;

where �2 and �3 are positive numbers and f4 D f1� �2f2� �3f3. Then system .S3/

can be changed into system of the form
�
LqY DN g.x/Y CF in ˝

Y ! 0 as jxj !1

Y D 0 on @˝

(S 03)

where

Lq D

�
��Cq 0 0 0

0 ��Cq 0 0

0 0 ��Cq 0

0 0 0 ��Cq

˘

;
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Y D .y1;y2;y2;y4/, F D .f1;f2;f3;f4/, and

N D

�
a11� r a12C r�2 a13C r�3 r

a21 a22 a23 0

a31 a32 a33 0

b1 b2 b3 s

˘

with
b1 D a11� �2a21� �3a31� s; b2 D a12� �2a22� �3a32C s�2;

b3 D a13� �2a23� �3a33C s�3:
(16)

For the cooperativeness of system .S 03/, we can choose r , s, �2, and �3 such that

r > 0; a12C r�2 D 0; a13C r�3 D 0; (17)

a11� �2a21� �3a31� s D 0; (18)

a12� �2a22� �3a32C s�2 D 0; (19)

a13� �2a23� �3a33C s�3 D 0; (20)

and then, using (15), we get �3 D �a13

r
> 0 and �2 D �a12

r
> 0. Now, system (S 03)

satisfies the maximum principle if the matrix�
�q �a11C r �a12� r�2 �a13� r�3 �r

�a21 �q �a22 �a23 0

�a31 �a32 �q �a33 0

�b1 �b2 �b3 �q � s

˘

is a non-singular M -matrix, which means that

�q �a11C r > 0;ˇ̌̌̌
�q �a11C r �a12� r�2
�a21 �q �a22

ˇ̌̌̌
> 0;ˇ̌̌̌

ˇ̌�q �a11C r a12C r�2 �a13� r�3
�a21 �q �a22 �a23
�a31 �a32 �q �a33

ˇ̌̌̌
ˇ̌> 0;

and ˇ̌̌̌
ˇ̌̌̌�q �a11� r �a12� r�2 �a13� r�3 �r

�a21 �q �a22 �a23 0

�a31 �a32 �q �a33 0

�b1 �b2 �b3 �q � s

ˇ̌̌̌
ˇ̌̌̌> 0:

Therefore, using (17)–(20), we obtain

�q �a11C r > 0; .�q �a11C r/.�q �a22/ > 0;

.�q �a11C r/
�
.�q �a22/.�q �a33/�a23a32

�
> 0;
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and

.�q �a11C r/
�
.�q �a22/.�q �a33/.�q � s/�a23a32.�q � s/

�
> 0;

which implies that

�q �a11C r > 0; �q �a22 > 0; .�q �a22/.�q �a33/ > a23a32; �q � s > 0:

From (15), we obtain .�q �a22/.�q �a33/ > 0 and, thus,

a11� r < �q; a22 < �q; a33 < �q; s < �q:

It follows from (17) and (19) that

a22C rC
�3

�2
a32 D s; (21)

whereas (17) and (20) yield that

a33C rC
�2

�3
a23 D s (22)

Since s < �q , from (21) and (22) we obtain

�q > a22C rC
�3

�2
a32; �q > a33C rC

�2

�3
a23;

which, in view of (15), guarantee that

�q > a22C r �q > a33C r;

i. e.,
r < �q �a22; r < �q �a33; and r > a11��q:

Consequently, we have

Theorem 5. Assume that (15) holds. Then for 0� �3f3 � �2f2 � f1, system (S3)
satisfies the generalized maximum principle if

a11��q < r < �q �a22; a11��q < r < �q �a33:

For non-cooperative system (S), we set the following conditions:

a1j < 0 for j D 2;3; : : : ;n;

aij � 0 for i D 2;3; : : : ;n; j D 1;2; : : : ;n; i 6D j:
(23)

Similarly, to construct .nC1/� .nC1/ cooperative system, we introduce the follow-
ing equation of a new variable ynC1 D y1�

Pn
iD2 �iyi , where �2; : : : ; �n are positive

numbers and thus we have

Theorem 6. Assume that (23) holds. Then for 0� �nfn � � � � � �2f2 � f1, system
(S) satisfies the generalized maximum principle if

a11��q < r < �q �ai i for all i D 2;3; : : : ;n:
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