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ABSTRACT. We derive minimal periods of non-constant periodic solutions for semi-
linear damped wave equations on Hilbert spaces. Similar estimates are obtained for
symmetric nonconstant periodic solutions of Zp-symmetric autonomous ordinary
differential equations.
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1. INTRODUCTION

In this note, we present some estimates, lower bounds, concerning periods of non-
trivial periodic orbits for certain differential equations. First, in Section 2, we study
damped semilinear wave equations on Hilbert spaces. Here we are inspired by [14],
where semilinear parabolic equations are studied. We apply our method to the equa-
tion of a damped buckled beam [9] and also to the equation of a buckled elastic panel
excited by a fluid flow over its upper surface [3, 10].

Then, in Sections 3 and 4, we investigate Zp-symmetric autonomous ordinary dif-
ferential equations which are generalizations of odd systems and related antiperiodic
solutions (see [1]).

We note that recent results on minimal periods are also derived in [5, 12, 13, 15],
where discrete, continuous and delay dynamical systems are considered. Minimal
periods for ordinary differential equations on one-dimensional lattices are studied in
[6, 7]. Finally, we refer the reader to [14, 15] for the history of these topics.

2. SEMILINEAR DAMPED WAVE EQUATIONS

Let H be a Hilbert space with a norm k � k and inner product .�; �/. Let A be an
unbounded linear self-adjoint operator on H with an orthonormal basis of eigenvec-
tors fwj gj�1 on H and with corresponding eigenvalues �j , Awj D �jwj such that
�j !C1 as j !1 (see [16]).
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Let 0 � ˛ � 1. We put

H˛ WD
8
<
:x D

X

j�1

xjwj j
X

j�1

.�2˛
j C 1/x2

j <1
9
=
;

with an inner product .�; �/˛ and corresponding norm k � k˛ defined by the formulae

.x;y/˛ WD
X

j�1

.�2˛
j C 1/xj yj ; kxk˛ WD

p
.x;x/˛

for any x D P
j�1 xjwj and y D P

j�1 yjwj . Here, we consider �2˛
j D .�2

j /
˛ D

j�j j2˛.
Let f W H˛ ! H be globally Lipschitz continuous, i. e., 9L > 0 such that

kf .u1/ � f .u2/k � Lku1 � u2k˛ 8u1;2 2 H˛:

We consider a damped abstract wave equation

RuC ı PuCAuC f .u/ D 0: (2.1)

We put

L2
T .R;H / D

n
h 2 L2

loc .R;H / W h is T -periodic
o
;

L2
T;0 .R;H / D

�
h 2 L2

T .R;H / W
Z 1

0

h .t/ dt D 0

�
:

Similarly, we define Hilbert spaces L2
T
.R;H˛/ and L2

T;0
.R;H˛/. For ˛ > 0, the

usual integral norm on L2
T
.R;H˛/ is denoted by k � k˛;2, while for ˛ D 0, we take

the standard integral norm k � k2 on L2
T
.R;H /.

Definition 2.1. By a weak T -periodic solution of (2.1), we mean any function
u 2 L2

T
.R;H˛/ satisfying the relation

Z T

0

f.u.t/; Rv.t// � ı.u.t/; Pv.t//C .u.t/;Av.t//C .f .u.t//; v.t//g dt D 0

for all v 2 C 2
T
.R;H 1/, where C 2

T
.R;H 1/ is defined as above and H 1 D D.A/.

First we study the linear equation

RuC ı PuCAu D h (2.2)

for h 2 L2
T
.R;H /.

Lemma 2.2. Let 0 � ˛ � 1
2

. For any h 2 L2
T;0
.R;H /, equation (2.2) has a

unique weak solution u 2 L2
T;0
.R;H˛/ satisfying the estimate

kuk˛;2 � 	ı;˛.T /khk2;
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for a function 	ı;˛ 2 C.Œ0;1/; .0;1// with

lim
T!0C

	ı;˛.T /=T 1�2˛ D c˛;0;

lim
T!1

	ı;˛.T /=T D c˛;1;
(2.3)

where c˛;0 and c˛;1 are suitable positive constants.

PROOF. We take h.t/ DPj�1 hj .t/wj ; u.t/ DPj�1 uj .t/wj ;

hj .t/ D
1p
T

X

k2Znf0g
hj ;ke2�kt{=T ; Nhj ;k D hj ;�k

uj .t/ D
1p
T

X

k2Znf0g
uj ;ke2�kt{=T ; Nuj ;k D uj ;�k :

Then

khk22 D
X

j�1

khjk22 D 2
X

j ;k�1

jhj ;k j2;

kuk2˛;2 D
X

j�1

kujk22.�2˛
j C 1/ D 2

X

j ;k�1

juj ;k j2.�2˛
j C 1/:

So (2.2) gives

uj ;k D
hj ;k

�j � 4�2k2

T 2 C ı 2�k
T

{
:

Hence

kuk2˛;2 � 2
X

j ;k�1

�2˛
j C 1

�
�j � 4�2k2

T 2

�2
C ı2 4�2k2

T 2

jhj ;k j2:

We evaluate

�2˛
j C 1

�
�j � 4�2k2

T 2

�2
C ı2 4�2k2

T 2

� T 2

4�2ı2
C

�2˛
j�

�j � 4�2k2

T 2

�2
C ı2 4�2k2

T 2

:

Let us put j�0j D max fj�i j j �i � 0g. Next, if �j � ı2

2
� 4�2

T 2 , then
 
�j �

4�2k2

T 2

!2

C ı2 4�2k2

T 2
� ı2

 
�j �

ı2

4

!
:

Hence, we have
�2˛

j�
�j � 4�2k2

T 2

�2
C ı2 4�2k2

T 2

� �2˛
0

T 2

4�2ı2
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for �j � 0,

�2˛
j�

�j � 4�2k2

T 2

�2
C ı2 4�2k2

T 2

�
 
ı2

2
C 4�2

T 2

!2˛
T 2

4�2ı2

for 0 � �j � ı2

2
C 4�2

T 2 , and

�2˛
j�

�j � 4�2k2

T 2

�2
C ı2 4�2k2

T 2

� �2˛
i

ı2
�
�i � ı2

4

�2
�

�
ı2

2
C 4�2

T 2

�2˛

ı2
�
ı2

4
C 4�2

T 2

�

for �j � ı2

2
C 4�2

T 2 . Summarising, we get

�2˛
j�

�j � 4�2k2

T 2

�2
C ı2 4�2k2

T 2

� ˚ı;˛.T /;

where

˚ı;˛.T / WD max

8
<̂
:̂
�2˛

0
T 2

4�2ı2
;

 
ı2

2
C 4�2

T 2

!2˛
T 2

4�2ı2
;

�
ı2

2
C 4�2

T 2

�2˛

ı2
�
ı2

4
C 4�2

T 2

�

9
>=
>;
:

We see that 	ı;˛ defined by the equality

	ı;˛.T / WD
s
˚ı;˛.T /C

T 2

4�2ı2

satisfies the conditions of this lemma. So we obtain

kuk2˛;2 � 2
X

j ;k�1

	2
ı;˛.T /jhj ;k j2 D 	2

ı;˛.T /khk22:

Consequently, we arrive at the estimate

kuk˛;2 � 	ı;˛.T /khk2:
The proof is complete. ¤

Now we return to (2.1) by splitting any u 2 L2
T
.R;H˛/ as

u D u1 C u0
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for u1 WD 1
T

R T
0 u.t/ dt and u0 D u � u1 2 L2

T;0
.R;H˛/. Hence (2.1) has the form

Ru0 C ı Pu0 CAu0 C f .u1 C u0/ �
1

T

Z T

0

f .u1 C u0.t// dt D 0; (2.4)

Au1 C
1

T

Z T

0

f .u1 C u0.t// dt D 0: (2.5)

We note that the linear operator P W L2
T
.R;H /! L2

T
.R;H / given by

Pu WD u � 1

T

Z T

0

u.t/ dt

is orthogonal and the Nemytskii operator N W L2
T
.R;H˛/ ! L2

T
.R;H / given by

the equality
N.u/.t/ WD f .u.t//

is globally Lipschitz continuous with a constant L. Then (2.4) gives

ku0k˛;2 � 	ı;˛.T /kPN.u1 C u0/k2
D 	ı;˛.T /kP ŒN.u1 C u0/ �N.u1/�k2
� 	ı;˛.T /Lku0k˛;2:

Consequently, if
	ı;˛.T /L < 1; (2.6)

then u0 D 0 and (2.5) becomes

Au1 C f .u1/ D 0:

Summarising, we have the following result.

Theorem 2.3. If 0 � ˛ � 1
2

and (2.6) holds, then any T -periodic weak solution
of (2.1) is constant.

Function 	ı;˛.T / is depending also on �0. To avoid this, for �j � 0 we compute

�2˛
j�

�j � 4�2k2

T 2

�2
C ı2 4�2k2

T 2

�
�2˛

j�
�j � 4�2k2

T 2

�2
�
�

1 � ˛
4�2

�2�2˛

˛2˛T 4.1�˛/:

Then ˚ı;˛.T / is replaced by

z̊
ı;˛.T / WD max

(�
1 � ˛
4�2

�2�2˛

˛2˛T 4.1�˛/;

 
ı2

2
C 4�2

T 2

!2˛
T 2

4�2ı2
;

�
ı2

2
C 4�2

T 2

�2˛

ı2
�
ı2

4
C 4�2

T 2

�
)
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and

Q	ı;˛.T / WD
s
Q̊
ı;˛.T /C

T 2

4�2ı2
:

So (2.3) is replaced by

lim
T!0C

Q	ı;˛.T /=T 1�2˛ D Qc˛;0;

lim
T!1

Q	ı;˛.T /=T 2.1�˛/ D Qc˛;1
(2.7)

for suitable positive constants Qc˛;0 and Qc˛;1. Thus we have the following

Theorem 2.4. If 0 � ˛ � 1
2

and the inequality

Q	ı;˛.T /L < 1

holds, then any T -periodic weak solution of (2.1) is constant.

Remark 2.5. Semilinear parabolic differential equations on Hilbert spaces are stud-
ied in [7, 12, 14].

Remark 2.6. We see that limT!0C 	ı;1=2.T / ¤ 0 and limT!0C
z	ı;1=2.T / ¤ 0.

So for ˛ D 1=2 we do not get a result on the minimal periods. But we think that it is
not a handicap for our above estimates. Indeed, for ˛ D 1=2 and �j � 0, we consider
the function

x 7�! x C 1
�
x � 4�2k2

T 2

�2
C ı2 4�2k2

T 2

; (2.8)

which has a global maximum over Œ0;1/:
4�2k2 C T 2 C

p
16�4k4 C 4.2C ı2/�2k2T 2 C T 4

8ı2�2k2
: (2.9)

We can check that (2.9) is decreasing with respect to k 2 N. So for �j � 0, we get

�j C 1
�
�j � 4�2k2

T 2

�2
C ı2 4�2k2

T 2

� 4�2 C T 2 C
p

16�4 C 4.2C ı2/�2T 2 C T 4

8ı2�2
:

Consequently, when ˛ D 1=2 and �j � 0 8j 2 N, the best estimate for 	ı;1=2.T /
seems to be

	ı;1=2.T / D
s

4�2 C T 2 C
p

16�4 C 4.2C ı2/�2T 2 C T 4

8ı2�2
: (2.10)

Clearly, (2.10) is nonzero at T D 0.
Next, assuming �j > 0 8j 2 N, we cannot improve much the above estimates.

Now we can take
.x;y/˛ WD

X

j�1

�2˛
j xj yj
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for x D P
j�1 xjwj and y D P

j�1 yjwj . Then instead of the function (2.8), we
consider the function

x 7�! x
�
x � 4�2k2

T 2

�2
C ı2 4�2k2

T 2

: (2.11)

Making the above analysis for (2.11), we obtain

	ı;1=2.T / D
s

2� C
p

4�2 C ı2T 2

4ı2�
: (2.12)

Clearly (2.12) is again nonzero at T D 0. But (2.12) is simpler than (2.10). Then the
lower bound estimate is

2� C
p

4�2 C ı2T 2

4ı2�
� L�2: (2.13)

Analysing (2.13), we see that if L � ı, then (2.13) holds for any T > 0, while for
ı > L, relation (2.13) yields

T � L�24�
p
ı2 �L2:

Consequently, we are able to estimate T from below only for small L > 0 with
respect to ı.

Finally, the following semilinear parabolic equation is studied in [14]

PuCAuC f .u/ D 0; (2.14)

where A, f satisfy our assumptions with �j > 0 8j � 1. Then we have

�2˛
j

4�2k2

T 2 C �2
j

�
�2˛

j

4�2

T 2 C �2
j

:

Analysing the function

x 7�! x˛

4�2

T 2 C x

on Œ0;1/, we get its maximum ˛˛.1 � ˛/1�˛.2�/2.˛�1/T 2.1�˛/: So the minimal
period estimate for (2.14) is

T � K˛L�
1

1�˛ (2.15)

for any 0 � ˛ < 1 and

K˛ D
2�p

1 � ˛˛ ˛
2.1�˛/

:

Inequality (2.15) is consistent with a similar one in [14], but here we allow 0 � ˛ < 1.
We note that K0 D 2� and lim˛!1�K˛ D1.
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Remark 2.7. Theorem 2.4 could help when the shifts

A ! A � �I; f  ! f C �I

can improve an estimate of the Lipschitz constant L.
We also note that it follows from the proof of Lemma 2.2 that Pu 2 L2

T
.R;H / and

k Puk2 �
1

ı
khk2

in Lemma 2.2. Then of course any T -periodic weak solution u of (2.1) satisfies
Pu 2 L2

T
.R;H /. Hence we get

kuk˛;2 C kPuk2 �
�
	ı;˛.T /C

1

ı

�
khk2: (2.16)

Example 2.8. Let us consider the system

RuC ı Pu � u00 C sin.u � v/ D 0;

Rv C ı Pv � v00 C sin.uC v/ D 0;

u.0; �/ D v.0; �/ D u.1; �/ D v.1; �/ D 0:

(2.17)

Now H D L2.0; 1/2, ˛ D 0 and

A.u; v/ D �.u00.x/; v00.x//; f .u; v/ D .sin.u � v/; sin.uC v// :
We see that �j > 0 8j 2 N and L D 2. So we can choose a better function
	ı;0.T / D T

2�ı
than in the proof of Lemma 2.2. Then for (2.17), the minimal period

estimate is T � �ı.
Now we present the following simple result which seems to be known but we prove

it here for the reader’s convenience.

Theorem 2.9. Let us suppose that
(1) f W H˛ ! H is locally Lipschitz continuous, i. e. 8k > 0 9Lk > 0 such

that
kf .u1/ � f .u2/k � Lkku1 � u2k˛

for all u1;2 2 H˛, ku1;2k˛ � k.
(2) 9F 2 C 1.H˛;R/ W .f .v/; w/ D DF.v/w 8v;w 2 H˛.

Then any T -periodic weak solution u 2 L1
T
.R;H˛/ of (2.1) is constant for all

T > 0.

PROOF. Let � WD kuk˛;1C1 where k�k˛;1 is the usual sup-norm on L1
T
.R;H˛/.

Assumption (1) gives

kf .u1/ � f .u2/k � L� ku1 � u2k˛; 8u1;2 2 H˛; ku1;2k˛ � �: (2.18)

So we get

kf .u.t//k � L� ku.t/k˛ C kf .0/k � �L� C kf .0/k;



MINIMAL PERIODS OF PERIODIC SOLUTIONS 129

which implies f .u/ 2 L1
T
.R;H /. Then the argument of Remark 2.7 shows that

Pu 2 L2
T
.R;H /. Moreover, (2.18) yields

kf .u1/ � f .u2/k2 � L� ku1 � u2k˛;2
8u1;2 2 L1T .R;H

˛/; ku1;2k˛;1 � �: (2.19)

Next using the notation of the proof of Lemma 2.2, from (2.1) we get the system

Ruj C ı Puj C �j uj C .f .u/; wj / D 0; 8j 2 N:

Since 




nX

jD1

uj .t/wj






˛

� ku.t/k˛ � kuk˛;1 � �; (2.20)

we obtain that f
�Pn

jD1 ujwj

� 2 L1
T
.R;H˛/ for any n 2 N. Then

nX

jD1

ık Pujk22 D �
Z T

0

 
f .u.t//;

nX

jD1

Puj .t/wj

!
dt

D �
Z T

0

 
f

 
nX

jD1

uj .t/wj

!
;

nX

jD1

Puj .t/wj

!
dt

C
Z T

0

 
f

 
nX

jD1

uj .t/wj

!
� f .u.t//;

nX

jD1

Puj .t/wj

!
dt

�
 
f

 
nX

jD1

ujwj

!
� f .u/

!

2

p
nX

jD1

k Pujk22:

Hence (2.19) and (2.20) give

ı2
nX

jD1

k Pujk22 �
ˇ̌
ˇ̌
ˇf
 

nX

jD1

ujwj

!
� f .u/

ˇ̌
ˇ̌
ˇ
2

2

� L2
�

ˇ̌
ˇ̌
ˇ

nX

jD1

ujwj � u

ˇ̌
ˇ̌
ˇ
2

˛;2

: (2.21)

Since
Pn

jD1 ujwj ! u in L2
T
.R;H˛/ and

Pn
jD1 Pujwj ! Pu in L2

T
.R;H / as n !

1, relation (2.21) implies that

k Puk22 D
1X

jD1

k Pujk22 D 0:

Hence, Pu D 0. The proof is complete. ¤
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Example 2.10. A standard p.d.e. which fits into the framework of Theorem 2.9 is
an equation of a damped buckled beam [9]

RuC ı PuC u0000 C
"
~1 � ~2

 Z 1

0

u02.�; �/ d�

!#
u00 D 0;

u.0; �/ D u.1; �/ D u00.0; �/ D u00.1; �/ D 0;

(2.22)

where ~1 and ~2 are constants. Now we take H D L2.0; 1/, ˛ D 1=2, so H 1=2 D
H 2

0
.0; 1/, and

Au D u0000.x/; f .u/ D
"
~1 � ~2

 Z 1

0

u02.�; �/ d�

!#
u00;

F.u/ D �1

2

Z 1

0

~1u02.�/ d� C ~2

1

4

 Z 1

0

u02.�/ d�

!2

:

Example 2.11. We finish this section with another partial differential equation dif-
ferent from (2.17) and (2.22) of the form

RuC ı PuC u0000 C
"
~1 � ~2

 Z 1

0

u02.�; �/ d�

!#
u00 C �u0 D 0;

u.0; �/ D u.1; �/ D u00.0; �/ D u00.1; �/ D 0;

(2.23)

where ~1; ~2 > 0, � > 0 are constants. Problem (2.23) models the oscillation of a
buckled elastic panel excited by a fluid flow over its upper surface [3, 10]. Now we
again take H D L2.0; 1/ with the usual integral norm k � k, H 1=2 D H 2

0
.0; 1/ and

kuk1=2 D ku00k. Then any weak T -periodic solution u 2 L1
T
.R;H 1=2/ of (2.23)

satisfies the relations

ık Puk22 C �.u0; Pu/2 D 0;

k Puk22 D ku00k22 � ~1ku0k22 C ~2

Z T

0

ku0.�; t/k4 dt:
(2.24)

Since

ku0k42 � T

Z T

0

ku0.�; t/k4 dt; �ku0k2 � ku00k2;
from (2.24) we derive

�2ku0k22 C
~2

T
ku0k42 � ku00k22 C ~2

Z T

0

ku0.�; t/k4 dt

D ~1ku0k22 C kPuk22 � ~1ku0k22 C
�2

ı2
ku0k22: (2.25)
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Hence

ku0k22 �
T

~2

 
~1 C

�2

ı2
� �2

!
D TK1:

So we get

Theorem 2.12. If �2 � ı2.�2 � ~1/; then the only periodic weak solution u 2
L1

T
.R;H 1=2/ of (2.23) is the zero one, u D 0.

Note that Theorem 2.12 is consistent with Proposition 2.1 of [10]. Now, let

�2 > ı2.�2 � ~1/: (2.26)

Then (2.25) implies

ku00k22 �
 
~1 C

�2

ı2

!
ku0k22 � T

 
~1 C

�2

ı2

!
K1 D TK2;

k Puk22 �
�2

ı2
ku0k22 � T

�2

ı2
K1 D TK3:

Hence
ku00k22 � TK2; k Puk22 � TK3: (2.27)

Since u 2 L2
T
.R;H 2

0
.0; 1// and Pu 2 L2

T
.R;L2.0; 1//, Theorem 4 from [4, p. 288]

gives u 2 C 0
T
.R;H 1

0
.0; 1// along with

max
t2R
ku0.�; t/k2 � 1

T
ku0k22 C ku00k22 C kPuk22 � K1 C TK2 C TK3 D K4: (2.28)

Let us put

X WD
n
u j u 2 L2

T .R;H
2
0 .0; 1//; Pu 2 L2

T .R;L
2.0; 1//

o
:

Then X is a Hilbert space with the norm

jujX WD ku00k2 C kPuk2:
Again from Theorem 4 of [4, p. 288], we have X � C 0

T
.R;H 1

0
.0; 1// along with

max
R
kv0.�; t/k2 �

�
1

�2T
C 1

�
kv00k22 C kPvk22 �

�
1

�2T
C 1

�
kvk2X (2.29)

for any v 2 X .
We put

Au D u0000.x/C ~1u00; f .u/ D ~2g.u/C �Bu;

g.u/ WD �ku0k2u00; Bu WD u0:
For any v;w 2 X satisfying (2.27), we derive

kBv � Bwk2 D kv0 � w0k2 � kv00 � w00k2=� � jv � ujX =�;
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and by (2.28) and (2.29)

kg.v/ � g.w/k2 D kkv0k2v00 � kw0k2w00k2
� kkv0k2.v00 � w00/k2 C kw00.kv0k2 � kw0k2/k2

D
0
@
Z T

0

Z 1

0

"Z 1

0

v02.�; t/ d�

#2

.v00.x; t/ � w00.x; t//2 dx dt

1
A

1=2

C
0
@
Z T

0

Z 1

0

w002.x; t/

"Z 1

0

.v02.�; t/ � w02.�; t// d�

#2

dx dt

1
A

1=2

� K4kv00 � w00k2

C
 Z T

0

Z 1

0

w002.x; t/
Z 1

0

.v0.�; t/C w0.�; t//2 d�

�
Z 1

0

.v0.�; t/ � w0.�; t//2 d� dx dt

!1=2

� K4jv � wjX

C 2

s
K4

�
1

�2
C T

�
jv � wjX

 
1

T

Z T

0

Z 1

0

w002.x; t/ dx dt

!1=2

�
 

K4 C 2

s
K2K4

�
1

�2
C T

�!
jv � wjX D K5jv � wjX :

So f W X ! L2
T
.R;H / has the Lipschitz constant

L D ~2K5 C
�

�

on the subset K � X of all u 2 X satisfying (2.27).
It is clear that K is a closed and convex subset of X . Then it is well-known (see

Lemma 3.5 in [2]) that there existsa retraction R W X ! K � X with a global
Lipschitz constant 1. Using R, we modify f outside of K as follows

Qf .u/ WD f .Ru/:

Clearly Qf W X ! L2
T
.R;H / is a globally Lipschitzian continuous with the con-

stant L. According to the above construction, each T -periodic weak solution u 2
L1

T
.R;H 1=2/ of (2.23) is also a T -periodic weak solution of the modified one with

Qf in place of f . Furthermore, now �j D �j 2�2.~1 � j 2�2/ and let us assume for
simplicity that ~1 < �2 (see (2.26)). Then we can apply Remarks 2.6 and 2.7 (see
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(2.12) and (2.16)). So if u is nonstationary, then

�
~2K5 C

�

�

�
0
@
s

2� C
p

4�2 C ı2T 2

4ı2�
C 1

ı

1
A � 1: (2.30)

Clearly, relation (2.30) makes sense if
�
~2

�
K1 C

2

�

p
K1K2

�
C �

�

�
2

ı
< 1: (2.31)

We do not express K5 in terms of parameters ~1; ~2; �, ı and period T , since it is
an awkward formula. But we note that for � D ı

p
�2 � ~1 (see (2.26)), we get

K1 D K2 D K3 D K4 D K5 D 0, and (2.31) becomes

3�2=4 < ~1: (2.32)

Hence if (2.32) holds, then there is a unique

�0 D �.~1; ~2; ı/ > ı

q
�2 � ~1

solving equation (see (2.31))
�
~2

�
K1 C

2

�

p
K1K2

�
C �0

�

�
2

ı
D 1: (2.33)

We note that the left-hand side of (2.33) is increasing with respect to �0. Then by
fixing � such that ı

p
�2 � ~1 < � < �0, there is a unique T0 > 0 solving the

equation (see (2.30))

�
~2K5 C

�

�

�
0
BB@

p
2� C

q
4�2 C ı2T 2

0

4ı2�
C 1

ı

1
CCA D 1: (2.34)

We note that the left-hand side of (2.34) is increasing with respect to T0.
Summarising, we have the following result.

Theorem 2.13. If 3�2=4 < ~1 < �
2 and ı

p
�2 � ~1 < � < �0, then the period T

of any weak nonstationary T -periodic solution u 2 L1
T
.R;H 1=2/ of (2.23) satisfies

inequality T � T0. Here, �0 and T0 are the unique positive solutions of (2.33) and
(2.34), respectively.

For instance if ~1 D 8, ~2 D 5 and ı D 100, then equation (2.33) gives �0 D
152:667. So we get 136:733 < � < 152:667. Taking � D 138, we find from (2.34)
that T0 D 0:122. Consequently, we obtain T � 0:122 in Theorem 2.13.
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3. NONRESONANT Zp-SYMMETRIC AUTONOMOUS ORDINARY
DIFFERENTIAL EQUATION

Let S W Rn ! Rn be an orthonormal matrix, i. e., S� D S�1, such that Sp D I

for some p 2 N. In this section, we deal with the ordinary differential equation

Px D g.x/ (3.1)

under the following assumptions:
(H1) g W Rn ! Rn is globally Lipschitz continuous, i. e., there is a constant L > 0

such that kg.x/ � g.y/k � Lkx � yk 8x;y 2 Rn.
(H2) g is S-symmetric, i. e., g.Sx/ D Sg.x/ 8x 2 Rn.
(H3) 1 … �.S/, the spectrum of S .
We call (3.1) under conditions (H1)-(H3) a nonresonant Zp-symmetric autonomous

ordinary differential equation.
Remark 3.1. Assumptions (H1) and (H2) are reasonable, i. e., there are many

g satisfying both (H1) and (H2). Indeed, let Lip .Rn/ be the space of all globally
Lipschitz continuous mappings h W Rn ! Rn endowed with the norm

khkLip WD inf fL > 0 j L is the Lipschitz constant of hg C kh.0/k:
Then Lip .Rn/ becomes a Banach space. Moreover, we define a linear mapping S W
Lip .Rn/! Lip .Rn/ by

.Sh/.x/ WD 1

p

p�1X

iD0

S�ih.S ix/:

Clearly, S is a continuous projection of Lip .Rn/ onto LipS .R
n/, the space of all S -

symmetric elements of Lip .Rn/. Furthermore, if h has a Lipschitz constant L > 0,
then Sh has also a Lipschitz constant L. Finally we note

a0I C a1S C � � � C ap�1Sp�1 2 LipS .R
n/

for any aj 2 R, 0 � j � p � 1. Hence LipS .R
n/ ¤ ¿.

Definition 3.2. Let T > 0. We call any x 2 C 1.R;Rn/ satisfying (3.1) and

x.t C T / D Sx.t/ 8t 2 R (3.2)

the T -S-symmetric solution of (3.1).

We note that any x.t/ satisfying (3.2) is also pT -periodic. Moreover, (H2) and
(H3) imply g.0/ D Sg.0/, so g.0/ D 0. Thus x.t/ D 0 is a trivial T -S-symmetric
solution of (3.1) for any T > 0, which is the only constant function satisfying (3.2).

We put
C r

T;S WD
˚
x 2 C r .R;Rn/ j x.t/ satisfies (3.2)

	

with the usual maximum norm kxkr on the interval Œ0;T �. We note that (3.2) implies

kx.r/.t C T /k D kSx.r/.t/k D kx.r/.t/k:
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So norms k � kr are well-defined.
First we solve the linear boundary value problem

Px D h; x 2 C 1
T;S ; h 2 C 0

T;S : (3.3)

It is easy to find its solution

x.t/ D .S � I/�1

Z T

0

h.s/ ds C
Z t

0

h.s/ ds:

So we arrive at the following.

Lemma 3.3. For any h 2 C 0
T;S

, problem (3.3) has a unique solution x 2 C 1
T;S

with an estimate
kxk0 � Œk.I � S/�1k C 1� khk0T:

The Banach fixed point theorem together with Lemma 3.3 give

Theorem 3.4. If Œk.I�S/�1kC1�TL < 1; then x D 0 is the only T -S-symmetric
solution of (3.1).

When S D �I , the T -S-symmetric solutions are called T -antiperiodic ones [1].
Then condition (H3) holds and g is just an odd mapping. Hence Theorem 3.4 implies

Theorem 3.5. Let (H1) hold and g be odd. If x is a nonzero T -antiperiodic
solution of (3.1), i. e., x.t C T / D �x.t/ 8t 2 R, then T � 2

3L
.

Example 3.6. Now let n D 2, R2 ' C, and Sz D e{2�=pz, z 2 C, p 2 N, p � 3.
So S W R2 ! R2 is a rotation by the angle 2�=p. Then jz � Szj D 2 sin �

p
jzj, and

k.I � S/�1k D 1

2 sin .�=p/
:

Theorem 3.4 implies

Theorem 3.7. Let Sz D e{2�=pz, z 2 C, p 2 N, p � 3, be a rotation in the
plane by the angle 2�=p. If x is a nonzero T -S-symmetric solution of (3.1) for g

satisfying (H1), (H2), then

T � 2L�1 sin .�=p/
1C 2 sin .�=p/

:

Such result as in Theorem 3.7 should hold for a general S , since from Sp D I

and (H3) it follows that �.S/ consists of the unit roots, i. e.,

�.S/ � ˚e2�k{=p j k D 1; 2; : : : ;p � 1
	
:

Indeed, it is not difficult to show [11] that conditions S� D S�1, Sp D I , S ¤ �I

and 1 … �.S/ imply both p � 3 and the existence of an orthonormal basis

fe11; e12; e21; e22; : : : ; ek1; ek2; ekC1; : : : ; eng
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of Rn such that on each invariant subspace Vj WD Œej1; ej2�, 1 � j � k, matrix S ,
S W Vj ! Vj acts as a rotation by the angle 2�rj=p, 1 � rj < p, rj ¤ p=2. While
Sej D �ej , k C 1 � j � n, naturally, only for even p. We can suppose that

sin .�r1=p/ D min
˚
sin .�rj=p/ j j D 1; 2; : : : ; k

	
:

Then

k.I � S/�1k D 1

2 sin .�r1=p/
:

Summarising, we get

Theorem 3.8. When assumptions (H1)-(H3) and S ¤ �I are satisfied, then

T � 2L�1 sin .�r1=p/

1C 2 sin .�r1=p/

for any nonzero T -S-symmetric solution of (3.1).

We note that any nonzero T -S-symmetric solution of (3.1) is nonconstant.
Remark 3.9. The existence and nonexistence of forced symmetric oscillations like

(3.1) are studied in [8].
Remark 3.10. We note that if S W Rn ! Rn is a matrix with Sp D I for some

p 2 N. Then there is a scalar product .�; �/ for which S is unitary, i. e., .Su;Sv/ D
.u; v/ 8u; v 2 Rn. Indeed, let h�; �i be any scalar product on Rn. Then we take [11]

.u; v/ D 1

p

p�1X

jD0

hS iu;S ivi:

4. RESONANT Zp-SYMMETRIC AUTONOMOUS ORDINARY DIFFERENTIAL
EQUATION

In this section, we proceed to study (3.1) only under assumptions (H1) and (H2),
and we call (3.1) a resonant Zp-symmetric autonomous ordinary differential equa-
tion, since 1 2 �.S/. Then there is an orthogonal decomposition

Rn D Rn1 ˚ Rn2

such that S W Rn1;2 ! Rn1;2 and S=Rn1 D I , 1 … �. QS/ for QS WD S=Rn2 .
We split (3.1) as

Px1 D g1.x1 C x2/ ;

Px2 D g2.x1 C x2/ ;
(4.1)

for gi.x/ D Pig.x/, where Pi W Rn ! Rni are orthogonal projections, and xi 2 Rni ,
i D 1; 2. Clearly gi W Rn ! Rni are globally Lipschitz continuous with a constant
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L. Assumption (H2) implies

g1.x1 C x2/ D g1.x1 C QSx2/ ;

QSg2.x1 C x2/ D g2.x1 C QSx2/:

Hence g2.x1/ D 0, 8x1 2 Rn1 . Now T -S -symmetric solutions of (4.1) are given by
conditions

x1.t C T / D x1.t/; x2.t C T / D QSx2.t/: (4.2)
We see that any constant functions satisfying (4.2) are x1.t/ D const and x2.t/ D 0.

As in Section 2, we further split

x1.t/ D u.t/C c; u 2 L2
T;0.R;R

n1/; c 2 Rn1 ;

and decompose (4.1) as

Pu.t/ D Œg1.u.t/C c C x2.t// � g1.c/�

� 1

T

Z T

0

Œg1.u.s/C c C x2.s// � g1.c/� ds;

Px2.t/ D g2.u.t/C c C x2.t//;

(4.3)

and

0 D
Z T

0

g1.u.s/C c C x2.s// ds: (4.4)

Let us put

L2

T; QS .R;R
n2/ WD

n
h 2 L2

loc.R;R
n2/ j h.t C T / D QSh.t/

o
;

W
1;2

T; QS .R;R
n2/ WD W

1;2
loc .R;R

n2/ \L2

T; QS .R;R
n2/:

We need the following result similarly to Lemmas 2.2 and 3.3:

Lemma 4.1. (a) For any h 2 L2

T; QS .R;R
n2/ there is a unique function x2 2

W
1;2

T; QS .R;R
n2/ satisfying the equation Px2 D h and the estimate

kx2k2 � .k. QS � I/�1k C 1/T khk2;
where k � k2 is the usual integral norm in L2..0;T /;Rn2/.

(b) For any h 2 L2
T;0
.R;Rn1/ there is a unique u 2 W

1;2
T;0
.R;Rn1/ satisfying

Pu D h along with the estimate

kuk2 �
T

2�
khk2:

Then from (4.3) we obtain

kuk22 C kx2k22 �
�

1

4�2
C .k. QS � I/�1k C 1/2

�
T 2L2

�
kuk22 C kx2k2

�
:
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So if r
1

4�2
C .k. QS � I/�1k C 1/2TL < 1;

then u D 0, x2 D 0. Using results of Section 3, we arrive at the following

Theorem 4.2. The number/period T of any nonconstant solution of (4.1)) satis-
fying (4.2) fulfils the inequality

T � L�1 2�p
9�2 C 1

for QS D �I , and

T � L�1 2� sin.� Qr1=p/q
sin2.� Qr1=p/C �2.1C 2 sin .� Qr1=p//2

for QS ¤ �I , where Qr1 is defined for QS as in Theorem 3.8 in place of S .

Remark 4.3. Theorems 3.5, 3.8, 4.2 and Remark 3.10 completely solve the min-
imal period problem for Zp-symmetric autonomous ordinary differential equations,
i. e., lower bounds for T of T -S-symmetric solutions are derived for (3.1) satisfying
assumptions (H1) and (H2) for a matrix S W Rn ! Rn with Sp D I for some p 2 N.
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