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Abstract. In [4], Dontchev introduced and investigated a new notion of continuity called contra-
continuity. Recently, Jafari and Noiri [8–10] introduced new generalizations of contra-continuity
called contra-˛-continuity, contra-super-continuity and contra-precontinuity. Recently, Ekici and
Noiri [6] have introduced a new class of continuity called contra ı-precontinuity as a generaliza-
tion of contra-continuity. In this paper, we obtain some more properties of contra ı-precontinuous
functions.
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1. INTRODUCTION AND PRELIMINARIES

Recently, Jafari and Noiri have introduced and investigated the notions of contra-
precontinuity [10], contra-˛-continuity [9] and contra-super-continuity [8] as a con-
tinuation of research done by Dontchev [4] and Dontchev and Noiri [5] on the inter-
esting notions of contra-continuity and contra-semi-continuity, respectively. Caldas
and Jafari [3] introduced and investigated the notion of contra-ˇ-continuous functions
in topological spaces. Raychaudhuri and Mukherjee [15] introduced the notions of
ı-preopen sets and ı-almost continuity in topological spaces. The class of ı-preopen
sets is larger than one of preopen sets. Recently, by using ı-preopen sets, Ekici and
Noiri [6] have introduced the notion of contra ı-precontinuity as a generalization of
contra-precontinuity.

In this paper, we obtain the further properties of contra ı-precontinuous func-
tions. Throughout this paper, all spaces .X;�/ and (Y;�/ (or X and Y ) are topo-
logical spaces. A subset A of X is said to be regular open (resp., regular closed)
if A D Int.Cl.A/) (resp., A D Cl.Int.A/// where Cl.A/ and Int.A/ denote the clo-
sure and interior of A. A subset A of a space X is called preopen [12] (resp.,
semi-open [11], ˛-open [14], ˇ-open [1]) if A � Int.Cl.A// (resp., A � Cl.Int.A//,
A � Int.Cl.Int.A///, A � Cl.Int.Cl.A////. The complement of a preopen (resp.,
semi-open, ˛-open, ˇ-open) set is said to be preclosed (resp., semi-closed, ˛-closed,
ˇ-closed). The collection of all closed (resp., semi-open, clopen) subsets of X will
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be denoted by C.X/ (resp., SO.X/, CO.X//. We set C.X;x/D fV 2C.X/ j x 2 V g
for x 2X . We define CO.X;x/ in a similar way.

The notion of the ı-closure of A which is denoted by ıCl.A/ was introduced by
Veličko [19] and is widely investigated in the literature. The ı-closure of A is the set
fx 2 X j Int.Cl.U //\A ¤ ¿ for every open set U containing xg. If ıCl.A/ D A,
then A is said to be ı-closed [19]. The complement of a ı-closed set is said to be ı-
open. The union of all ı-open sets contained in A is called the ı-interior of A and is
denoted by ı Int.A/. A subset A of a topological space X is said to be ı-preopen [15]
if A� Int.ıCl.A//. The complement of a ı-preopen se is said to be ı-preclosed. The
intersection (union) of all ı-preclosed (ı-preopen) sets containing (contained in) A
in X is called the ı-preclosure (ı-preinterior) of A and is denoted by ıClp.A/ (resp.,
ı Intp.A/). By ıPO.X/ (resp., ıPC.X/), we denote the collection of all ı-preopen
(resp., ı-preclosed) sets of X .

Lemma 1 ([2,15,17]). The following properties holds for the ı-preclosure of a set
in a space X :

(1) Arbitrary union (intersection) of ı-preopen (ı-preclosed) sets in X is ı-pre-
open (resp., ı-preclosed).

(2) A is ı-preclosed in X iff AD ıClp.A/.
(3) ıClp.A/� ıClp.B/ whenever A� B.�X/.
(4) ıClp.A/ is ı-preclosed in X .
(5) ıClp.ıClp.A//D ıClp.A/.
(6) ıClp.A/D fx 2X j U \A¤¿ for every ı-preopen set U containing xg.
(7) ıClp.A/D A[Cl.ı Int.A//.
(8) If A is ı-open, then ıClp.A/D Cl.A/.
(9) If Y �X is ı-open and U 2 ıPO.Y /, then U 2 ıPO.X/ .

(10) U \V 2 ıPO.U / if U is ı-open and V 2 ıPO.X/.

Definition 1. A function f WX! Y is said to be contra ı-precontinuous [6] (resp.,
ı-almost continuous [15]) if f �1.V / is ı-preclosed (resp., ı-preopen) in X for each
open set V of Y .

Definition 2. Let A be a subset of a space .X;�/. The set \fU 2 � j A� U g is
called the kernel of A [13] and is denoted by ker.A/.

Lemma 2 (Jafari and Noiri [8]). The following properties hold for subsets A, B
of a space X :

(1) x 2 ker.A/ if and only if A\F ¤¿ for any F 2 C.X;x/.
(2) A� ker.A/ and AD ker.A/ if A is open in X .
(3) If A� B , then ker.A/� ker.B/.

2. CONTRA ı-PRECONTINUOUS FUNCTIONS

Theorem 1. The following assertions are equivalent for a function f WX ! Y :
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(1) f is contra ı-precontinuous.
(2) For every closed subset F of Y , f �1.F / 2 ıPO.X/.
(3) For each x 2 X and each F 2 C.Y;f .x//, there exists U 2 ıPO.X;x/ such

that f .U /� F .
(4) f .ıClp.A//� ker.f .A// for every subset A of X .
(5) ıClp.f �1.B//� f �1.ker.B// for every subset B of Y .

Proof. The implications .1/) .2/ and .2/) .3/ are obvious.
.3/) .4/ W Let A be any subset of X . Suppose that y … ker.f .A//. Then, by

Lemma 2, there exists F 2C.Y;y/ such that f .A/\F D¿. For any x 2 f �1.F /, by
(3) there exists Ux 2 ıPO.X;x/ such that f .Ux/� F . Hence f .A\Ux/� f .A/\
f .Ux/ � f .A/\F D ¿ and A[Ux D ¿. This shows that x … ıClp.A/ for any
x 2 f �1.F /. Therefore, f �1.F /\ ıClp.A/D¿ and hence F \f .ıClp.A//D¿.
Thus, y … f .ıClp.A//. Consequently, we obtain f .ıClp.A//� ker.f .A//.
.4/) .5/ W Let B be any subset of Y . Them, by (4) and Lemma 2, we have

f .ıClp.f �1.B/// � ker.f .f �1.B/// � ker.B/ and therefore ıClp.f �1.B// �

f �1.ker.B//.
.5/) .1/ W Let V be any open set of Y . Then, by virtue of Lemma 2, we have

ıClp.f �1.V // � f �1.ker.V // D f �1.V / and ıClp.f �1.V // D f �1.V /. This
shows that f �1.V / is ı-preclosed in X . �

The following two examples show that ı-almost continuous and contra ı-precon-
tinuous are independent concepts.

Example 1. The identity function on the real line (with the usual topology) is
continuous and hence ı-almost continuous but not contra ı-precontinuous, since the
preimage of each singleton fails to be ı-preopen.

Example 2. Let X D fa;bg be the Sierpinski space endowed with the topology
� D f¿;fag;Xg. Let f WX ! X be defined by f .a/ D b and f .b/ D a. Since the
inverse image of every open set is ı-preclosed, then f is contra ı-precontinuous, but
f �1.fag/ is not ı-preopen in .X;�/. Therefore f is not ı-almost continuous.

Definition 3. A function f WX ! Y is said to be contra-continuous [4] (resp.,
contra-˛-continuous [9], contra-precontinuous [10], contra-semi-continuous [5], con-
tra-ˇ-continuous [3]) if, for each open set V of Y , f �1.V / is closed (resp., ˛-closed,
preclosed, semi-closed, ˇ-closed) in X .

For the functions defined above, we have the following implications:

A +3 B

��

+3 C

��

+3 D

C +3 F
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The meaning of symbols here is as follows: A D contra-continuity, B D contra-˛-
continuity, C D contra-precontinuity,D D contra ı-precontinuity, E D contra-semi-
continuity, and F D contra-ˇ-continuity.

It should be mentioned that none of these implications is reversible as shown by
the examples stated below.

Example 3 (Jafari and Noiri [9]). Let X D fa;b;cg. Put � D f¿;fag;Xg and
� D f¿;fbg;fcg;fb;cg;Xg. Then the identity function f W.X;�/! .X;�/ is contra-
˛-continuous but not contra-continuous.

Lemma 3 (Caldas et al. [7]). Let A be a subset of .X;�/. Then the following
properties hold:

(1) If A is preopen in .X;�/, then it is ı-preopen in .X;�/.
(2) A is ı-preopen in .X;�/ if and only if it is preopen in .X;�s/.
(3) A is ı-preclosed in .X;�/ if and only if it is preclosed in .X;�s/ .

Since Cl.A/� ıCl.A/ for any subset A of X , therefore, every contra-precontinu-
ous is contra-ı-precontinuous but not conversely as following example shows.

Example 4 ([5]). A contra-semi-continuous function need not be contra-preconti-
nuous. Let f WR!R be the function f .x/D Œx�, where Œx� is the Gaussian symbol.
If V is a closed subset of the real line, its preimage U D f �1.V / is the union of the
intervals of the form Œn;nC 1�, n 2 Z; hence U is semi-open being union of semi-
open sets. But f is not contra-precontinuous, because f �1.0:5;1:5/D Œ1;2/ is not
preclosed in R.

Example 5 ([5]). A contra-precontinuous function need not be contra-semi-con-
tinuous. Let X D fa;bg, � D f¿;Xg and � D f¿;fag;Xg. The identity function
f W.X;�/! .Y;�/ is contra-precontinuous as only the trivial subsets of X are open
in .X;�/. However, f �1.fag/ D fag is not semi-closed in .X;�/; hence f is not
contra-semi-continuous.

Example 6 ([6]). Let R be the set of real numbers, � be the countable extension
topology on R, i. e., the topology with subbase �1 [ �2, where �1 is the Euclidean
topology of R and �2 is the topology of countable complements of R, and � be the
discrete topology of R. Define a function f W.R;�/! .R;�/ as follows: f .x/D 1
if x is rational, and f .x/D 2 if x is irrational. Then f is contra ı-precontinuous but
not contra-ˇ-continuous, because f1g is closed in .R;�/ and f �1.f1g/DQ, where
Q is the set of rationals, is not ˇ-open in .R;�/.

Example 7 ([3]). Let X D fa;b;cg; � D f¿;fag;fbg;fa;bg;Xg and Y D fp;qg;
� Df¿;fpg;Y g: Let f W .X;�/! .Y;�/ be defined by f .a/Dp and f .b/D f .c/D
q: Then f is contra-ˇ-continuous but not contra ı-precontinuous since f �1.fqg/D

fb;cg is ˇ-open but not ı-preopen.

Theorem 2. If a function f WX ! Y is contra ı-precontinuous and Y is regular,
then f is ı-almost continuous.
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Proof. Let x be an arbitrary point of X and V an open set of Y containing f .x/.
Since Y is regular, there exists an open set W in Y containing f .x/ such that
Cl.W / � V . Since f is contra ı-precontinuous, so by Theorem 1 there exists U 2
ıPO.X;x/ such that f .U / � Cl.W /. Then f .U / � Cl.W / � V . Hence, f is ı-
almost continuous. �

The converse of Theorem 2 is not true. Example 1 shows that ı-almost continuity
does not necessarily imply contra ı-precontinuity even if the range is regular.

Definition 4. A function f WX ! Y is said to be:
(1) .ı;s/-preopen if f .U / 2 SO.Y / for every ı-preopen set of X .
(2) contra-I.ı;p/-continuous if for each x 2 X and each F 2 C.Y;f .x//, there

exists U 2 ıPO.X;x/ such that Int.f .U //� F .

Theorem 3. If a function f WX ! Y is contra-I.ı;p/-continuous and .ı;s/-pre-
open, then f is contra ı-precontinuous.

Proof. Suppose that x 2 X and F 2 C.Y;f .x//. Since f is contra-I.ı;p/-con-
tinuous, there exists U 2 ıPO.X;x/ such that Int.f .U // � F . By hypothesis f is
.ı;s/-preopen, therefore f .U /2 SO.Y / and f .U /�Cl.Int.f .U //�F . This shows
that f is contra ı-precontinuous. �

Definition 5. A space .X;�/ is said to be:
(1) locally .ı;p/-indiscrete if every ı-preopen set of X is closed in X .
(2) ıp-space if every ı-preopen set of X is open in X .
(3) ıS -space if and only if every ı-preopen subset of X is semi-open.

The following theorem follows immediately from Definition 5.

Theorem 4. If a function f WX ! Y is contra ı-precontinuous and X is a ıS -
space (resp., ıp-space, locally .ı;p/-indiscrete), then f is contra-semi-continuous
(resp., contra-continuous, continuous).

Recall that a topological space is said to be:
(1) .ı;p/-T2 ([16]) if for each pair of distinct points x and y in X there exist

U 2 ıPO.X;x/ and V 2 ıPO.X;y/ such that U \V D¿.
(2) Ultra Hausdorff [18] if for each pair of distinct points x and y in X there

exist U 2 CO.X;x/ and V 2 CO.X;y/ such that U \V D¿ .

Theorem 5. If X is a topological space and for each pair of distinct points x1
and x2 in X there exists a map f of X into a Urysohn topological space Y such that
f .x1/¤ f .x2/ and f is contra ı-precontinuous at x1 and x2; then X is .ı;p/-T2.

Proof. Let x1 and x2 be any distinct points in X . Then by hypothesis, there is
a Urysohn space Y and a function f WX ! Y , which satisfies the conditions of the
theorem. Let yi D f .xi / for i D 1;2. Then y1 ¤ y2. Since Y is Urysohn, there



30 MIGUEL CALDAS, SAEID JAFARI, TAKASHI NOIRI, AND MARILDA SIMÕES

exist open neighbourhoods Uy1
and Uy2

of y1 and y2 respectively in Y such that
Cl.Uy1

/\Cl.Uy2
/ D ¿. Since f is contra ı-precontinuous at xi , there exists a ı-

preopen neighbourhood Wxi
of xi in X such that f .Wxi

/ � Cl.Uyi
/ for i D 1;2.

Hence we get Wx1
\Wx2

D ¿ because Cl.Uy1
/\Cl.Uy2

/ D ¿. Then X is .ı;p/-
T2. �

Corollary 1. If f is a contra ı-precontinuous injection of a topological space X
into a Urysohn space Y , then X is .ı;p/-T2.

Proof. For each pair of distinct points x1 and x2 in X , f is a contra ı-preconti-
nuous function of X into a Urysohn space Y such that f .x1/¤ f .x2/ because f is
injective. Hence by Theorem 5, X is .ı;p/-T2 . �

Corollary 2. If f is a contra ı-precontinuous injection of a topological space X
into a Ultra Hausdorff space Y , then X is .ı;p/-T2.

Proof. Let x1 and x2 be any distinct points inX . Then since f is injective and Y is
Ultra Hausdorff f .x1/¤ f .x2/, and there exist V1;V2 2 CO.Y / such that f .x1/ 2
V1, f .x2/ 2 V2 and V1\V2 D ¿: Then xi 2 f �1.Vi / 2 ıPO.X/ for i D 1;2 and
f �1.V1/\f

�1.V2/D¿. Thus X is .ı;p/-T2. �

Lemma 4 ([15]). If Ai is a ı-preopen set in a topological space Xi for i D
1;2; : : : ;n, then A1� � � ��An is also ı-preopen in the product space X1� � � ��Xn.

Theorem 6. Let f1WX1! Y and f2WX2! Y be two functions, where
(1) Y is a Urysohn space,
(2) f1 and f2 are contra ı-precontinuous.

Then the set
f.x1;x2/ j f1.x1/D f2.x2/g

is ı-preclosed in the product space X1�X2.

Proof. Let A denote the set
˚
.x1;x2/ j f1.x1/ D f2.x2/

	
. In order to show that

A is ı-preclosed, we show that .X1�X2/nA is ı-preopen. Let .x1;x2/ … A. Then
f1.x1/ ¤ f2.x2/. Since Y is Urysohn, there exist open V1 and V2 of f1.x1/ and
f2.x2/ such that C.V1/\C.V2/D¿. Since fi .i D 1;2/ is contra ı-precontinuous,
f �1
i .C.Vi // is a ı-preopen set containing xi in Xi .i D 1;2/. Hence, by virtue of

Lemma 4, f �1
1 .C.V1//�f

�1
2 .C.V2// is ı-preopen. Further .x1;x2/ 2 f �1

1 C.V1/�

f �1
2 C.V2/ � .X1�X2/ nA. It follows that .X1�X2/ nA is ı-preopen. Thus A is
ı-preclosed in the product space X1�X2. �

Corollary 3. If f WX ! Y is contra ı-precontinuous and Y is a Urysohn space,
then

AD f.x1;x2/ j f .x1/D f .x2/g

is ı-preclosed in the product space X1�X2 .
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Definition 6. A topological space X is said to be:
(1) .ı;p/-normal if each pair of non-empty disjoint closed sets can be separated

by disjoint ı-preopen sets.
(2) Ultra normal [18] if each pair of non-empty disjoint closed sets can be sepa-

rated by disjoint clopen sets.

Theorem 7. If f WX ! Y is a contra ı-precontinuous, closed injection and Y is
ultra normal, then X is .ı;p/-normal.

Proof. Let F1 and F2 be disjoint closed subsets of X . Since f is closed and
injective, f .F1/ and f .F2/ are disjoint closed subsets of Y . Since Y is ultra normal
f .F1/ and f .F2/ are separated by disjoint clopen sets V1 and V2, respectively. Hence
Fi � f

�1.Vi /, f �1.Vi / 2 ıPO.X;x/ for i D 1;2, and

f �1.V1/\f
�1.V2/D¿:

Thus, X is .ı;p/-normal. �
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