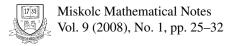


More on contra $\delta\text{-}\mathrm{precontinuous}$ functions

Miguel Caldas, Saeid Jafari, Takashi Noiri, and Marilda Simões



MORE ON CONTRA δ -PRECONTINUOUS FUNCTIONS

MIGUEL CALDAS, SAEID JAFARI, TAKASHI NOIRI, AND MARILDA SIMÕES

Received 3 June, 2006

Abstract. In [4], Dontchev introduced and investigated a new notion of continuity called contracontinuity. Recently, Jafari and Noiri [8–10] introduced new generalizations of contra-continuity called contra- α -continuity, contra-super-continuity and contra-precontinuity. Recently, Ekici and Noiri [6] have introduced a new class of continuity called contra δ -precontinuity as a generalization of contra-continuity. In this paper, we obtain some more properties of contra δ -precontinuous functions.

2000 Mathematics Subject Classification: 54C10, 54D10

Keywords: topological spaces, δ -preopen sets, preclosed sets, contra-continuous functions, contra δ -precontinuous functions

1. INTRODUCTION AND PRELIMINARIES

Recently, Jafari and Noiri have introduced and investigated the notions of contraprecontinuity [10], contra- α -continuity [9] and contra-super-continuity [8] as a continuation of research done by Dontchev [4] and Dontchev and Noiri [5] on the interesting notions of contra-continuity and contra-semi-continuity, respectively. Caldas and Jafari [3] introduced and investigated the notion of contra- β -continuous functions in topological spaces. Raychaudhuri and Mukherjee [15] introduced the notions of δ -preopen sets and δ -almost continuity in topological spaces. The class of δ -preopen sets is larger than one of preopen sets. Recently, by using δ -preopen sets, Ekici and Noiri [6] have introduced the notion of contra δ -precontinuity as a generalization of contra-precontinuity.

In this paper, we obtain the further properties of contra δ -precontinuous functions. Throughout this paper, all spaces (X, τ) and (Y, σ) (or X and Y) are topological spaces. A subset A of X is said to be regular open (resp., regular closed) if A = Int(Cl(A)) (resp., A = Cl(Int(A))) where Cl(A) and Int(A) denote the closure and interior of A. A subset A of a space X is called preopen [12] (resp., semi-open [11], α -open [14], β -open [1]) if $A \subset \text{Int}(\text{Cl}(A))$ (resp., $A \subset \text{Cl}(\text{Int}(A))$, $A \subset \text{Int}(\text{Cl}(\text{Int}(A)))$, $A \subset \text{Cl}(\text{Int}(\text{Cl}(A)))$). The complement of a preopen (resp., semi-open, α -open, β -open) set is said to be preclosed (resp., semi-closed, α -closed, β -closed). The collection of all closed (resp., semi-open) subsets of X will

© 2008 Miskolc University Press

be denoted by C(X) (resp., SO(X), CO(X)). We set $C(X, x) = \{V \in C(X) \mid x \in V\}$ for $x \in X$. We define CO(X, x) in a similar way.

The notion of the δ -closure of A which is denoted by $\delta \operatorname{Cl}(A)$ was introduced by Veličko [19] and is widely investigated in the literature. The δ -closure of A is the set $\{x \in X \mid \operatorname{Int}(\operatorname{Cl}(U)) \cap A \neq \emptyset$ for every open set U containing $x\}$. If $\delta \operatorname{Cl}(A) = A$, then A is said to be δ -closed [19]. The complement of a δ -closed set is said to be δ -open. The union of all δ -open sets contained in A is called the δ -interior of A and is denoted by $\delta \operatorname{Int}(A)$. A subset A of a topological space X is said to be δ -preopen [15] if $A \subset \operatorname{Int}(\delta \operatorname{Cl}(A))$. The complement of a δ -preopen set is said to be δ -preclosed. The intersection (union) of all δ -preclosed (δ -preopen) sets containing (contained in) A in X is called the δ -preclosure (δ -preinterior) of A and is denoted by $\delta \operatorname{Cl}_p(A)$ (resp., $\delta \operatorname{Int}_p(A)$). By $\delta PO(X)$ (resp., $\delta PC(X)$), we denote the collection of all δ -preopen (resp., δ -preclosed) sets of X.

Lemma 1 ([2, 15, 17]). *The following properties holds for the* δ *-preclosure of a set in a space X*:

- Arbitrary union (intersection) of δ-preopen (δ-preclosed) sets in X is δ-preopen (resp., δ-preclosed).
- (2) A is δ -preclosed in X iff $A = \delta \operatorname{Cl}_p(A)$.
- (3) $\delta \operatorname{Cl}_p(A) \subset \delta \operatorname{Cl}_p(B)$ whenever $A \subset B(\subset X)$.
- (4) $\delta \operatorname{Cl}_p(A)$ is δ -preclosed in X.
- (5) $\delta \operatorname{Cl}_p(\delta \operatorname{Cl}_p(A)) = \delta \operatorname{Cl}_p(A).$
- (6) $\delta \operatorname{Cl}_p(A) = \{x \in X \mid U \cap A \neq \emptyset \text{ for every } \delta \text{-preopen set } U \text{ containing } x\}.$
- (7) $\delta \operatorname{Cl}_{p}(A) = A \cup \operatorname{Cl}(\delta \operatorname{Int}(A)).$
- (8) If A is δ -open, then $\delta \operatorname{Cl}_p(A) = \operatorname{Cl}(A)$.
- (9) If $Y \subset X$ is δ -open and $U \in \delta PO(Y)$, then $U \in \delta PO(X)$.
- (10) $U \cap V \in \delta PO(U)$ if U is δ -open and $V \in \delta PO(X)$.

Definition 1. A function $f: X \to Y$ is said to be contra δ -precontinuous [6] (resp., δ -almost continuous [15]) if $f^{-1}(V)$ is δ -preclosed (resp., δ -preopen) in X for each open set V of Y.

Definition 2. Let A be a subset of a space (X, τ) . The set $\cap \{U \in \tau \mid A \subset U\}$ is called the kernel of A [13] and is denoted by ker(A).

Lemma 2 (Jafari and Noiri [8]). *The following properties hold for subsets A, B of a space X:*

(1) $x \in \text{ker}(A)$ if and only if $A \cap F \neq \emptyset$ for any $F \in C(X, x)$. (2) $A \subset \text{ker}(A)$ and A = ker(A) if A is open in X.

(3) If $A \subset B$, then ker $(A) \subset ker(B)$.

2. Contra δ -precontinuous functions

Theorem 1. The following assertions are equivalent for a function $f: X \to Y$:

- (1) f is contra δ -precontinuous.
- (2) For every closed subset F of Y, $f^{-1}(F) \in \delta PO(X)$.
- (3) For each $x \in X$ and each $F \in C(Y, f(x))$, there exists $U \in \delta PO(X, x)$ such that $f(U) \subset F$.
- (4) $f(\delta \operatorname{Cl}_p(A)) \subset \ker(f(A))$ for every subset A of X.
- (5) $\delta \operatorname{Cl}_p(f^{-1}(B)) \subset f^{-1}(\ker(B))$ for every subset B of Y.

Proof. The implications $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ are obvious.

(3) \Rightarrow (4) : Let A be any subset of X. Suppose that $y \notin \ker(f(A))$. Then, by Lemma 2, there exists $F \in C(Y, y)$ such that $f(A) \cap F = \emptyset$. For any $x \in f^{-1}(F)$, by (3) there exists $U_x \in \delta PO(X, x)$ such that $f(U_x) \subset F$. Hence $f(A \cap U_x) \subset f(A) \cap$ $f(U_x) \subset f(A) \cap F = \emptyset$ and $A \cup U_x = \emptyset$. This shows that $x \notin \delta \operatorname{Cl}_p(A)$ for any $x \in f^{-1}(F)$. Therefore, $f^{-1}(F) \cap \delta \operatorname{Cl}_p(A) = \emptyset$ and hence $F \cap f(\delta \operatorname{Cl}_p(A)) = \emptyset$. Thus, $y \notin f(\delta \operatorname{Cl}_p(A))$. Consequently, we obtain $f(\delta \operatorname{Cl}_p(A)) \subset \ker(f(A))$.

 $(4) \Rightarrow (5)$: Let B be any subset of Y. Them, by (4) and Lemma 2, we have $f(\delta \operatorname{Cl}_p(f^{-1}(B))) \subset \ker(f(f^{-1}(B))) \subset \ker(B)$ and therefore $\delta \operatorname{Cl}_p(f^{-1}(B)) \subset f^{-1}(\ker(B))$.

 $(5) \Rightarrow (1)$: Let V be any open set of Y. Then, by virtue of Lemma 2, we have $\delta \operatorname{Cl}_p(f^{-1}(V)) \subset f^{-1}(\ker(V)) = f^{-1}(V)$ and $\delta \operatorname{Cl}_p(f^{-1}(V)) = f^{-1}(V)$. This shows that $f^{-1}(V)$ is δ -preclosed in X.

The following two examples show that δ -almost continuous and contra δ -precontinuous are independent concepts.

Example 1. The identity function on the real line (with the usual topology) is continuous and hence δ -almost continuous but not contra δ -precontinuous, since the preimage of each singleton fails to be δ -preopen.

Example 2. Let $X = \{a, b\}$ be the Sierpinski space endowed with the topology $\tau = \{\emptyset, \{a\}, X\}$. Let $f: X \to X$ be defined by f(a) = b and f(b) = a. Since the inverse image of every open set is δ -preclosed, then f is contra δ -precontinuous, but $f^{-1}(\{a\})$ is not δ -preopen in (X, τ) . Therefore f is not δ -almost continuous.

Definition 3. A function $f: X \to Y$ is said to be contra-continuous [4] (resp., contra- α -continuous [9], contra-precontinuous [10], contra-semi-continuous [5], contra- β -continuous [3]) if, for each open set V of Y, $f^{-1}(V)$ is closed (resp., α -closed, preclosed, semi-closed, β -closed) in X.

For the functions defined above, we have the following implications:

The meaning of symbols here is as follows: A = contra-continuity, $B = \text{contra-}\alpha$ continuity, C = contra-precontinuity, $D = \text{contra} \delta$ -precontinuity, E = contra-semicontinuity, and $F = \text{contra-}\beta$ -continuity.

It should be mentioned that none of these implications is reversible as shown by the examples stated below.

Example 3 (Jafari and Noiri [9]). Let $X = \{a, b, c\}$. Put $\tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$. Then the identity function $f: (X, \tau) \to (X, \sigma)$ is contra- α -continuous but not contra-continuous.

Lemma 3 (Caldas et al. [7]). Let A be a subset of (X, τ) . Then the following properties hold:

- (1) If A is preopen in (X, τ) , then it is δ -preopen in (X, τ) .
- (2) A is δ -preopen in (X, τ) if and only if it is preopen in (X, τ_s) .
- (3) A is δ -preclosed in (X, τ) if and only if it is preclosed in (X, τ_s) .

Since $Cl(A) \subset \delta Cl(A)$ for any subset A of X, therefore, every contra-precontinuous is contra- δ -precontinuous but not conversely as following example shows.

Example 4 ([5]). A contra-semi-continuous function need not be contra-precontinuous. Let $f: R \to R$ be the function f(x) = [x], where [x] is the Gaussian symbol. If V is a closed subset of the real line, its preimage $U = f^{-1}(V)$ is the union of the intervals of the form [n, n + 1], $n \in Z$; hence U is semi-open being union of semi-open sets. But f is not contra-precontinuous, because $f^{-1}(0.5, 1.5) = [1, 2)$ is not preclosed in R.

Example 5 ([5]). A contra-precontinuous function need not be contra-semi-continuous. Let $X = \{a, b\}, \tau = \{\emptyset, X\}$ and $\sigma = \{\emptyset, \{a\}, X\}$. The identity function $f: (X, \tau) \to (Y, \sigma)$ is contra-precontinuous as only the trivial subsets of X are open in (X, τ) . However, $f^{-1}(\{a\}) = \{a\}$ is not semi-closed in (X, τ) ; hence f is not contra-semi-continuous.

Example 6 ([6]). Let *R* be the set of real numbers, τ be the countable extension topology on *R*, i.e., the topology with subbase $\tau_1 \cup \tau_2$, where τ_1 is the Euclidean topology of *R* and τ_2 is the topology of countable complements of *R*, and σ be the discrete topology of *R*. Define a function $f:(R,\tau) \to (R,\sigma)$ as follows: f(x) = 1 if *x* is rational, and f(x) = 2 if *x* is irrational. Then *f* is contra δ -precontinuous but not contra- β -continuous, because {1} is closed in (R,σ) and $f^{-1}(\{1\}) = Q$, where *Q* is the set of rationals, is not β -open in (R,τ) .

Example 7 ([3]). Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $Y = \{p, q\}, \sigma = \{\emptyset, \{p\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by f(a) = p and f(b) = f(c) = q. Then f is contra- β -continuous but not contra δ -precontinuous since $f^{-1}(\{q\}) = \{b, c\}$ is β -open but not δ -preopen.

Theorem 2. If a function $f: X \to Y$ is contra δ -precontinuous and Y is regular, then f is δ -almost continuous.

Proof. Let x be an arbitrary point of X and V an open set of Y containing f(x). Since Y is regular, there exists an open set W in Y containing f(x) such that $Cl(W) \subset V$. Since f is contra δ -precontinuous, so by Theorem 1 there exists $U \in \delta PO(X, x)$ such that $f(U) \subset Cl(W)$. Then $f(U) \subset Cl(W) \subset V$. Hence, f is δ -almost continuous.

The converse of Theorem 2 is not true. Example 1 shows that δ -almost continuity does not necessarily imply contra δ -precontinuity even if the range is regular.

Definition 4. A function $f: X \to Y$ is said to be:

- (1) (δ, s) -preopen if $f(U) \in SO(Y)$ for every δ -preopen set of X.
- (2) contra- $I(\delta, p)$ -continuous if for each $x \in X$ and each $F \in C(Y, f(x))$, there exists $U \in \delta PO(X, x)$ such that $Int(f(U)) \subset F$.

Theorem 3. If a function $f: X \to Y$ is contra- $I(\delta, p)$ -continuous and (δ, s) -preopen, then f is contra δ -precontinuous.

Proof. Suppose that $x \in X$ and $F \in C(Y, f(x))$. Since f is contra- $I(\delta, p)$ -continuous, there exists $U \in \delta PO(X, x)$ such that $Int(f(U)) \subset F$. By hypothesis f is (δ, s) -preopen, therefore $f(U) \in SO(Y)$ and $f(U) \subset Cl(Int(f(U)) \subset F$. This shows that f is contra δ -precontinuous.

Definition 5. A space (X, τ) is said to be:

- (1) locally (δ, p) -indiscrete if every δ -preopen set of X is closed in X.
- (2) δp -space if every δ -preopen set of X is open in X.
- (3) δS -space if and only if every δ -preopen subset of X is semi-open.

The following theorem follows immediately from Definition 5.

Theorem 4. If a function $f: X \to Y$ is contra δ -precontinuous and X is a δS -space (resp., δp -space, locally (δ, p) -indiscrete), then f is contra-semi-continuous (resp., contra-continuous, continuous).

Recall that a topological space is said to be:

- (1) (δ, p) - T_2 ([16]) if for each pair of distinct points x and y in X there exist $U \in \delta PO(X, x)$ and $V \in \delta PO(X, y)$ such that $U \cap V = \emptyset$.
- (2) Ultra Hausdorff [18] if for each pair of distinct points x and y in X there exist $U \in CO(X, x)$ and $V \in CO(X, y)$ such that $U \cap V = \emptyset$.

Theorem 5. If X is a topological space and for each pair of distinct points x_1 and x_2 in X there exists a map f of X into a Urysohn topological space Y such that $f(x_1) \neq f(x_2)$ and f is contra δ -precontinuous at x_1 and x_2 , then X is (δ, p) -T₂.

Proof. Let x_1 and x_2 be any distinct points in X. Then by hypothesis, there is a Urysohn space Y and a function $f: X \to Y$, which satisfies the conditions of the theorem. Let $y_i = f(x_i)$ for i = 1, 2. Then $y_1 \neq y_2$. Since Y is Urysohn, there

exist open neighbourhoods U_{y_1} and U_{y_2} of y_1 and y_2 respectively in Y such that $\operatorname{Cl}(U_{y_1}) \cap \operatorname{Cl}(U_{y_2}) = \emptyset$. Since f is contra δ -precontinuous at x_i , there exists a δ -preopen neighbourhood W_{x_i} of x_i in X such that $f(W_{x_i}) \subset \operatorname{Cl}(U_{y_i})$ for i = 1, 2. Hence we get $W_{x_1} \cap W_{x_2} = \emptyset$ because $\operatorname{Cl}(U_{y_1}) \cap \operatorname{Cl}(U_{y_2}) = \emptyset$. Then X is (δ, p) - T_2 .

Corollary 1. If f is a contra δ -precontinuous injection of a topological space X into a Urysohn space Y, then X is (δ, p) - T_2 .

Proof. For each pair of distinct points x_1 and x_2 in X, f is a contra δ -precontinuous function of X into a Urysohn space Y such that $f(x_1) \neq f(x_2)$ because f is injective. Hence by Theorem 5, X is (δ, p) - T_2 .

Corollary 2. If f is a contra δ -precontinuous injection of a topological space X into a Ultra Hausdorff space Y, then X is (δ, p) - T_2 .

Proof. Let x_1 and x_2 be any distinct points in X. Then since f is injective and Y is Ultra Hausdorff $f(x_1) \neq f(x_2)$, and there exist $V_1, V_2 \in CO(Y)$ such that $f(x_1) \in V_1$, $f(x_2) \in V_2$ and $V_1 \cap V_2 = \emptyset$. Then $x_i \in f^{-1}(V_i) \in \delta PO(X)$ for i = 1, 2 and $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$. Thus X is $(\delta, p) \cdot T_2$.

Lemma 4 ([15]). If A_i is a δ -preopen set in a topological space X_i for i = 1, 2, ..., n, then $A_1 \times \cdots \times A_n$ is also δ -preopen in the product space $X_1 \times \cdots \times X_n$.

Theorem 6. Let $f_1: X_1 \to Y$ and $f_2: X_2 \to Y$ be two functions, where

(1) Y is a Urysohn space,

(2) f_1 and f_2 are contra δ -precontinuous.

Then the set

$$\{(x_1, x_2) \mid f_1(x_1) = f_2(x_2)\}\$$

is δ -preclosed in the product space $X_1 \times X_2$.

Proof. Let A denote the set $\{(x_1, x_2) | f_1(x_1) = f_2(x_2)\}$. In order to show that A is δ -preclosed, we show that $(X_1 \times X_2) \setminus A$ is δ -preopen. Let $(x_1, x_2) \notin A$. Then $f_1(x_1) \neq f_2(x_2)$. Since Y is Urysohn, there exist open V_1 and V_2 of $f_1(x_1)$ and $f_2(x_2)$ such that $C(V_1) \cap C(V_2) = \emptyset$. Since f_i (i = 1, 2) is contra δ -precontinuous, $f_i^{-1}(C(V_i))$ is a δ -preopen set containing x_i in X_i (i = 1, 2). Hence, by virtue of Lemma 4, $f_1^{-1}(C(V_1)) \times f_2^{-1}(C(V_2))$ is δ -preopen. Further $(x_1, x_2) \in f_1^{-1}C(V_1) \times f_2^{-1}C(V_2) \subset (X_1 \times X_2) \setminus A$. It follows that $(X_1 \times X_2) \setminus A$ is δ -preopen. Thus A is δ -preclosed in the product space $X_1 \times X_2$.

Corollary 3. If $f: X \to Y$ is contra δ -precontinuous and Y is a Urysohn space, then

$$A = \{(x_1, x_2) \mid f(x_1) = f(x_2)\}$$

is δ -preclosed in the product space $X_1 \times X_2$.

Definition 6. A topological space *X* is said to be:

- (1) (δ, p) -normal if each pair of non-empty disjoint closed sets can be separated by disjoint δ -preopen sets.
- (2) Ultra normal [18] if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets.

Theorem 7. If $f: X \to Y$ is a contra δ -precontinuous, closed injection and Y is ultra normal, then X is (δ, p) -normal.

Proof. Let F_1 and F_2 be disjoint closed subsets of X. Since f is closed and injective, $f(F_1)$ and $f(F_2)$ are disjoint closed subsets of Y. Since Y is ultra normal $f(F_1)$ and $f(F_2)$ are separated by disjoint clopen sets V_1 and V_2 , respectively. Hence $F_i \subset f^{-1}(V_i), f^{-1}(V_i) \in \delta PO(X, x)$ for i = 1, 2, and

$$f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset.$$

Thus, X is (δ, p) -normal.

REFERENCES

- M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud, "β-open sets and β-continuous mapping," Bull. Fac. Sci. Assiut Univ. A, vol. 12, no. 1, pp. 77–90, 1983.
- [2] M. Caldas, T. Fukutake, S. Jafari, and T. Noiri, "Some applications of δ-preopen sets in topological spaces," *Bull. Inst. Math. Acad. Sinica*, vol. 33, no. 3, pp. 261–276, 2005.
- [3] M. Caldas and S. Jafari, "Some properties of contra-β-continuous functions," Mem. Fac. Sci. Kochi Univ. Ser. A Math., vol. 22, pp. 19–28, 2001.
- [4] J. Dontchev, "Contra-continuous functions and strongly S-closed spaces," Internat. J. Math. Math. Sci., vol. 19, no. 2, pp. 303–310, 1996.
- [5] J. Dontchev and T. Noiri, "Contra-semicontinuous functions," *Math. Pannon.*, vol. 10, no. 2, pp. 159–168, 1999.
- [6] E. Ekici and T. Noiri, "Contra δ -precontinuous functions," submitted.
- [7] T. Fukutake, T. Noiri, M. Caldas, and S. Jafari, "An Alexandroff space defined by δ-preopen sets," Bull. Fukuoka Univ. Ed. III, vol. 54, pp. 1–6, 2005.
- [8] S. Jafari and T. Noiri, "Contra-super-continuous functions," Ann. Univ. Sci. Budapest. Eötvös Sect. Math., vol. 42, pp. 27–34 (2000), 1999.
- [9] S. Jafari and T. Noiri, "Contra-α-continuous functions between topological spaces," *Iran. Int. J. Sci.*, vol. 2, no. 2, pp. 153–167, 2001.
- [10] S. Jafari and T. Noiri, "On contra-precontinuous functions," Bull. Malays. Math. Sci. Soc. (2), vol. 25, no. 2, pp. 115–128, 2002.
- [11] N. Levine, "Semi-open sets and semi-continuity in topological spaces," *Amer. Math. Monthly*, vol. 70, pp. 36–41, 1963.
- [12] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deep, "On precontinuous and weak precontinuous mappings," *Proc. Math. Phys. Soc. Egypt*, no. 53, pp. 47–53 (1983), 1982.
- [13] M. Mršević, "On pairwise R₀ and pairwise R₁ bitopological spaces," Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), vol. 30(78), no. 2, pp. 141–148, 1986.
- [14] O. Njastad, "On some classes of nearly open sets," Pacific J. Math., vol. 15, pp. 961–970, 1965.
- [15] S. Raychaudhuri and M. N. Mukherjee, "On δ-almost continuity and δ-preopen sets," Bull. Inst. Math. Acad. Sinica, vol. 21, no. 4, pp. 357–366, 1993.

- [16] S. Raychaudhuri, "Concerning δ^* -almost continuity and δ -preregularity," *Bull. Calcutta Math. Soc.*, vol. 85, no. 5, pp. 385–392, 1993.
- [17] S. Raychoudhuri and M. N. Mukherjee, "δp-closedness for topological spaces," J. Indian Acad. Math., vol. 18, no. 1, pp. 89–99, 1996.
- [18] R. Staum, "The algebra of bounded continuous functions into a nonarchimedean field," *Pacific J. Math.*, vol. 50, pp. 169–185, 1974.
- [19] N. V. Veličko, "H-closed topological spaces," Mat. Sb. (N.S.), vol. 70 (112), pp. 98–112, 1966, English transl. in Amer. Math. Soc. Transl., II. Ser., vol. 78, pp. 103–118, 1968.

Authors' addresses

Miguel Caldas

Universidade Federal Fluminense, Departamento de Matematica Aplicada, Rua Mario Santos Braga, s/n, 24020-140, Niteroi, RJ, Brasil

E-mail address: gmamccs@vm.uff.br

Saeid Jafari

College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, Denmark *E-mail address:* jafari@stofanet.dk

Takashi Noiri

Yatsushiro College of Technology, Hirayama shinmachi, Yatsushiro-shi, Kumamoto-ken, 866-8501, Japan

E-mail address: noiri@as.yatsushiro-nct.ac.jp

Marilda Simões

Universitá Di Roma "La Sapienza", Dipartimento Di Matematica "Guido Castelnuovo", Roma, Italia

E-mail address: simoes@mat.uniromal.it