
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 8 (2007), No 2, pp. 169-179 DOI: 10.18514/MMN.2007.179

Two improved zone methods

F. Kálovics



Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 8 (2007), No. 2, pp. 169–179

TWO IMPROVED ZONE METHODS

F. KÁLOVICS

Received 11 August, 2007

Abstract. The first section gives a very simple introduction to zone functions. Using this func-
tion, the next two sections present algorithms for computing integral values and global maxima
with error bounds. These algorithms are simpler and more effective than the previous ones pub-
lished by the author. The last section describes some experience about the C++ and Fortran codes
used.

1991 Mathematics Subject Classification: 65D30, 65K05

Keywords: zone function, definite integral, global maximum

1. INTRODUCTION

Computational methods very often reduce the solving of a complicated task to
a set of elementary problems. Since the finding of solution boxes of a system of
inequalities, the computation of integral values with error bounds, the approximation
of global maxima and others can be reduced to computing solution boxes of one
inequality, therefore the creation and the handling by computer code of these solution
boxes (as new tools of computational methods) are useful issues. First consider a
particular case. Let

g WD � R2
! R; g.x1;x2/D sinx1C

x2
1

lnx2
; where D D ..0;�/; .1;10// :

Try to give a solution box to the inequality g.x1;x2/ > ˛ around the point cD .1;2/2
D for ˛D 1: Since g.c/ > 1 and g is continuous onD, there are solution boxes inD
around c: It comes from the structure of g that

sinx1 > 0:5;
x2

1

lnx2
> 0:5

is a sufficient condition for satisfying g.x1;x2/ > 1. Since x2
1 > 0:5 and lnx2 < 1

is a sufficient condition for satisfying x2
1= lnx2 > 0:5, therefore the three elementary

inequalities
sinx1 > 0:5; x2

1 > 0:5; lnx2 < 1

c
 2007 MISKOLC UNIVERSITY PRESS



170 F. KÁLOVICS

determine the solution box (zone)

Zg.c;˛/D
��

max.�=6;
p
0:5/;min.5�=6;�/

�
; .1;e/

�
� ..0:71;2:62/; .1;2:72// :

Fortunately, c 2 Zg.c;˛/ is satisfied, i. e., our casual choices in producing the three
elementary inequalities were suitable. Notice that the inequality g.x1;x2/ > ˛ is
equivalent to g.x1;x2/ ¤ ˛ because of the continuity, hence the cases <;> can be
discussed at the same time. Now let

g WD � Rm
! R; where D D

��
x1; xx1

�
;
�
x2; xx2

�
; : : : ;

�
xm; xxm

��
be such a continuous (multivariate real) function on the open box D that is built of
the well-known (univariate real) elementary functions

xa;ax; loga x; jxj ;sinx; : : : ;arcsinx; : : : ;sinhx; : : : ;sinh�1x; : : :

by function operations C, �, ı (the last symbol being used for composite functions).
The zone function

.c;˛/ 7!Zg.c;˛/; where c 2D; g.c/¤ ˛;

assigns a nonempty open box (interval, zone) Zg.c;˛/�D around point c to every
pair .c;˛/, in which the function value g.x/ is not equal to ˛ anywhere. If g.c/ < ˛,
then, because of the continuity of g on Zg.c;˛/,it is also true that x 2 Zg.c;˛/ im-
plies �1< g.x/ < ˛. Consequently, the zone function Zg assigns the box Zg.c;˛/

of the domain to the interval .�1;˛/ of function values. Similarly, if g.c/ > ˛, then
the zone function Zg assigns the box Zg.c;˛/ of the domain to the interval .˛;1/
of function values. This property was used intensively in finding solution boxes of
systems of inequalities [5], in computing integral values [4], and in approximating
global minima [3]. Here we note that interval extension functions used in interval
methods (see, e. g., [1, 6]) are inverse type functions, they assign intervals of func-
tion values to boxes of domain. The handling of zone functions and interval extension
functions requires a highly different computational background. The creation of zone
functions is based on two facts:

� zone functions to the above mentioned univariate elementary functions can
be created easily,
� the creation of a zone function of a multivariate function g can be reduced to

the previous case, by rules belonging to the function operations C, �, ı (by
suitable choices in every step of the reduction).

Naturally a zone function is not given by a formula, but its values (boxes, zones) are
defined uniquely by reduction rules. A variety of rules can be seen in [2]. A reduc-
tion seen in our particular example can be easily followed by a Maple code, because
Maple can recognize the operands of an expression. Unfortunately, the Maple pro-
grams are slow, therefore the author uses a simple numerically coded form of g in



TWO IMPROVED ZONE METHODS 171

C++ and Fortran programs nowadays. The experience with Maple V Release 5, Vi-
sual C++ version 6.0 and Lahey Fortran 90 version 4.5 codes used in [2] can be
summarized as follows:

� Maple requires only the conventional (convenient) form of g, C++ and For-
tran require a numerically coded form of g,
� the computation efforts (the evaluation times) belonging toZg.c;˛/ and g.c/

can be characterized by the formula: effort
�
Zg.c;˛/

�
� 10� effort.g.c//,

with respect to all three programming languages,
� the speeds belonging to the evaluation of Zg.c;˛/ satisfy the relations:

speed.C++/� 200� speed.Maple/, speed.Fortran/� 300� speed.Maple/.
At the end of this section, let us emphasize some facts about zone functions:

(i) The reduction process on the expression g.x/, the determination of the ele-
mentary inequalities, uses only the structure of the expression g.x/ and sup-
poses only the continuity of g on D.

(ii) The zone Zg.c;˛/ is not a symmetrical box around c. Often it has a large
volume, although g.c/¤ ˛ is only just satisfied.

(iii) The preparation of a numerically coded form of the expression g.x/ is easy
(see in [2]), nevertheless the author also has a short Maple program for this
work.

2. ALGORITHM FOR COMPUTING INTEGRALS

Let the definite integralZ
� � �

Z
V

f .x1;x2; : : : ;xm�1/dx1dx2 : : :dxm�1

be given, where the m� 1 dimensional point set V is described by the system of
inequalities

fi .x1;x2; : : : ;xm�1/� 0; i D 1;2; : : : ;n�1; m� 2; n� 1;

the multivariate real functions f;f1;f2; : : : ;fn�1 are continuous on the closed box
D � V and are built from the above univariate real elementary functions by using
the usual function operations. Let us assume that we know (rough) lower and upper
bounds xm � 0, xxm � 0 so that

xm � f .x1;x2; : : : ;xm�1/� xxm; 8.x1;x2; : : : ;xm�1/ 2D:

According to [4] the computation of the integral value is equivalent (consider the
geometrical meaning of definite integrals) to the computation of the volumes of the
solution sets of the two systems of inequalities

fi .x1;x2; : : : ;xm�1/� 0; i D 1;2; : : : ;n�1;

f .x1;x2; : : : ;xm�1/�xm � 0;
(2.1)



172 F. KÁLOVICS

where .x1; : : : ;xm/ 2 IC DD� Œ0; xxm�D
�
Œx1; xx1�; : : : ; Œxm�1; xxm�1�; Œ0; xxm�

�
, and

fi .x1;x2; : : : ;xm�1/� 0; i D 1;2; : : : ;n�1

�f .x1;x2; : : : ;xm�1/�xm � 0;
(2.2)

where .x1; : : : ;xm/ 2 I� D D � Œ0;�xm� D
�
Œx1; xx1�; : : : ; Œxm�1; xxm�1�; Œ0;�xm�

�
.

The integral value is the difference of the first and second volumes. Since problems
(2.1) and (2.2) are very similar, it is sufficient to make an algorithm for the first
problem. If f .x1;x2; : : : ;xm�1/ � 0 on D, then xm D 0 and only the system of
inequalities (2.1) is used indeed. Our algorithm is made for the case xm D 0 and the
codes of the algorithm run on the adequate segment once (with the data of (2.1)) or
twice (with the data of (2.1) and (2.2)). The notation

fn.x1;x2; : : : ;xm�1;xm/ WD f .x1;x2; : : : ;xm�1/�xm

is also used from now on. The volume of the box I D IC is known (denoted by
vol.I /), furthermore boxes to the solution set S of (2.1) and boxes to the comple-
mentary set xS D I nS can be computed by using zone functions. If the approxi-
mating value to the integral value is denoted by �.S/ and its error bound by ", then
�.S/ D 0, " D vol.I / are the initial values. If the computed box Z fulfils Z � S ,
then �.S/ D �.S/C vol.Z/, " D "� vol.Z/ and if Z � xS , then " D "� vol.Z/.
Hence the error bound is improved in every step and the approximating value of the
integral is improved in cases of Z � S . A detailed description of the algorithm is as
follows.

(a) Define the first element of a box (interval) sequence fIkg by I1 D I . Let
nb D 1, eb D 0, �.S/ D 0, " D vol.I /, where nb , eb , �.S/, " denote the
number of boxes in the sequence, the number of the examined boxes, the
approximating value of vol.S/, and the error bound, respectively.

(b) Let eb D ebC1. Compute minfi .c/, where 1 � i � n and c is the centre of
Inb

.
(1) If minfi .c/ < 0, then compute the box (zone) Z D Zf �

i
.c;0/ � xS ,

where the function f �i is the first among f1;f2; : : : ;fn, having the small-
est function value at c. (The “worst inequality” is used here.) Let
"D "�vol.Z/.

(2) If minfi .c/� 0, then Z WD Inb
and Z WDZ\Zfi

.c;0/, i D 1;2; : : : ;n.
Let �.S/D �.S/Cvol.Z/, "D "�vol.Z/.

(c) Divide the set Inb
nZ in L boxes (if the set is empty, then L WD 0). Filter the

“unimportant” (too small) boxes by the simple condition vol.box/> �, where
� is a (small) given value. Place theL� �L new boxes into the box sequence
as nbth; .nbC1/th; : : : ; .nbCL

��1/th elements and let nb D nbCL
��1.

If nb D 0, then give �.S/, ", eb and stop, otherwise go to (b).



TWO IMPROVED ZONE METHODS 173

The function and volume values used several times are computed once and are stored.
The partitioning of the set Inb

nZ comes from a special case of the box complemen-
tation algorithm (see [4, 6]). The box sequence fIkg always contains only the boxes
which are waiting for examination (the new boxes are indexed from nb/. There are
two essential differences between this algorithm and the algorithm of [4]:

(i) Before step (b), the (first) maximum volume element of the box sequence
fIkg is selected (the “most promising box” is used at the beginning of every
new loop) in [4].

(ii) The too small boxes are filtered by the simple condition vol.box/ > � here,
and by the sophisticated condition vol.box/� .Eb � eb/ > ", where Eb is a
given upper bound to eb , in [4].

Now survey the general case (xm < 0) and the final results more exactly. If (tem-
porarily) �.S/C, "C, eC

b
and �.S/�, "�, e�

b
denote the output values of the first and

second running of the adequate segment, respectively, then �.S/C� .�.S/�C "�/
is lower bound and .�.S/CC "C/��.S/� is upper bound for the exact integral
value (because �.S/C, �.S/� are lower approximations). Hence the mean value
�.S/D �.S/CC "C=2� .�.S/�C "�=2/ is an improved value for the integral, the
mean value " D ˙."C=2C "�=2/ is an improved value for the error and the value
eb D e

C

b
C e�

b
is the full number of the boxes examined, i. e., these �.S/, ", eb are

printed as final results (if xm D 0, then �.S/� D "� D e�
b
D 0). The improved �.S/

is obtained by an “error equalization”, therefore it often has much less error than ".�

Our numerical examples illustrate very convincingly that simplicity is useful in this
integral algorithm, i. e., the selection mentioned in [4] can be too expensive. Table 1
contains the essential data for the following three integrals (where I˙ D IC[I�):Z

V

arctan
�
cosx�3x

�
dx

with I˙ D ŒŒ�1;3� ; Œ�10;10��;“
V

2C cos.x�3/cos.yC2/
1CjxjC4 jyj

dxdy;

(
16�x2�4y2 � 0;

x2�y2�4� 0;

with I˙ D ŒŒ�5;5� ; Œ�5;5� ; Œ0;3��;•
V

jxj

q
y2Cj´jdxdyd´; 4�2x2

�3y2
�4´2

� 0;

with I˙ D ŒŒ�2;2� ; Œ0;2� ; Œ�2;0� ; Œ0;6��.

The programs worked on a PC Pentium 4 with a 3.2 GHz processor and running
times belong to our Visual C++ version 6.0 code.

The experience is as follows. (1) Naturally, other numerical methods (e. g., the
quadrature methods for integrals with one variable) could compute approximating

�See the “likely errors” coming from the comparison of different results at the following integrals.



174 F. KÁLOVICS

Definite integral
�.S/˙ ";

eb; time,
for � D 10�5

�.S/˙ ";

eb; time,
for � D 10�6

�.S/˙ ";

eb; time,
with code of [4]R

V : : :
-3.2988˙0.0067
2953, 0.02 sec

-3.2987˙0.0021
9392, 0.06 sec

-3.2987˙0.0021
9813, 0.15 sec’

V : : :
2.4566˙0.1706
50052, 0.8 sec

2.4590˙0.0778
222029, 4 sec

2.4590˙0.0772
228740, 149 sec”

V : : :
0.6579˙0.1329
31486, 0.4 sec

0.6524˙0.0703
166939, 2 sec

0.6522˙0.0706
169198, 91 sec

TABLE 1. Approximating integral values with error bounds

integral values more quickly, without guaranteed error bounds. The author does not
know alternative computer codes for solving the problem stated here.

(2) In the 2nd and 3rd examples I˙ D IC and we use rough enough upper bounds
for the integrands. In the first example I˙D IC[I� and we use rough lower and up-
per bounds (�10 and 10 instead of ��=2 and �=2) for the integrand. The experience
is that the accuracy essentially does not depend on the circumstances mentioned. For
example, if ��=2 and �=2 are used in place of �10 and 10, respectively, the result is
practically the same.

(3) By the geometrical meaning, the solution set S was covered with rectangles in
the 1st example, with cuboids in the 2nd example, with four dimensional (abstract)
boxes in the third integral. In general, the computational effort to achieve a good
covering is greater and greater as the number of dimensions increases. (The second
example requires prominent computational effort because the integrand is “wavy”
over a large box of 100 units in volume, and the set V contains two disjunct parts.)

(4) The real strength of our algorithm compared to [4] is illustrated in the 2nd and
3rd columns of Table 1. The results of the second column come by the algorithm of
[4] after 2.5, 37.25, 45.5 times more time, respectively. Hence the selection step of
[4] could be too expensive indeed.

3. ALGORITHM FOR FINDING GLOBAL MAXIMA

Consider the problem

maximize f .x1;x2; : : : ;xm�1/

subject to fi .x1;x2; : : : ;xm�1/� 0; i D 1;2; : : : ;n�1; m� 2; n� 1I

.x1; : : : ;xm�1/ 2D D
�
Œx1; xx1�; : : : ; Œxm�1; xxm�1�

�
� Rm�1;

where the multivariate real functions fi , i D 1; : : : ;n�1 and f are continuous on the
box D and built from the elementary functions mentioned. Let us assume that we



TWO IMPROVED ZONE METHODS 175

know (rough) lower and upper bounds xm, xxm that

xm � f .x1;x2; : : : ;xm�1/� xxm; 8.x1;x2; : : : ;xm�1/ 2D:

Define the system of inequalities

fi .x1;x2; : : : ;xm�1/� 0; i D 1;2; : : : ;n�1

f .x1;x2; : : : ;xm�1/�xm � 0;

where .x1;x2; : : : ;xm/ 2 I D
�
Œx1; xx1�; : : : ; Œxm�1; xxm�1�; Œxm; xxm�

�
, or briefly

fi .x1;x2; : : : ;xm/� 0; i D 1;2; : : : ;n; .x1;x2; : : : ;xm/ 2 I; (3.1)

where fn.x1;x2; : : : ;xm/D f .x1;x2; : : : ;xm�1/�xm. The solution of our problem
is a point of the solution set S of (3.1) with the largest mth coordinate. By a fine
scanning of S seen in the integral algorithm, a good approximation value ! can be
obtained for the maximum function value (belonging to the set of feasible points) and
henceforth it is proved that the value !C " (where " is a supposed error bound) is an
upper bound to the maximum value. More exactly the aim is to do a fine scanning
only around the solution point, therefore a second filter is used besides the simple one
seen in the integral algorithm. A detailed description of the algorithm is as follows
(it is supposed that the set of feasible points is not empty).

(a) Define the first element of a box (interval) sequence fIkg by I1 D I . Let
nb D 1, eb D 0, ! D�1, where nb , eb , ! denote the number of boxes in the
sequence, the number of the examined boxes, and the approximating value to
the maximum function value, respectively.

(b) Let eb D ebC 1. Compute minfi .c/, where 1 � i � n and c is the centre
of Inb

. If minfi .c/ � 0 (c is a feasible point) and f .c/ > !; then p WD c;
! WD f .c/:

(1) If minfi .c/ < 0, then compute the box (zone) Z D Zf �
i
.c;0/ � xS ,

where the function f �i is the first among f1;f2; : : : ;fn having the small-
est function value at c. (The “worst inequality” is used here.)

(2) If minfi .c/� 0, then Z WD Inb
and Z WDZ\Zfi

.c;0/, i D 1;2; : : : ;n.
(c) Divide the set Inb

nZ in L boxes (if the set is empty, then L WD 0). Filter the
‘unimportant’ boxes by the conditions vol.box/ > � (where � is a small given
value) and xx�m >! (where xx�m is the maximum value of themth coordinate in
the box). Place the L� � L new boxes into the box sequence as nbth; .nbC

1/th; : : : ; .nbCL
�� 1/th elements and let nb D nbCL

�� 1. If nb D 0 or
eb � Eb (Eb is an upper bound to the number of the examined boxes), then
give p, !, eb and go to (d), otherwise go to (b).

(d) Modify I and �. Let I D
�
Œx1; xx1�; : : : ; Œxm�1; xxm�1�; Œ!C "; xxm�

�
and �D 0.

Run (a)-(c) with the new initial values again. If the second return to (d) is
realized by nb D 0 (in such a case ! D �1), then give !C " as an upper
bound to the maximum function value and eb as the number of the examined



176 F. KÁLOVICS

boxes in the second running. If the second return to (d) is realized by eb �

Eb , then give eb . Stop.
The function and volume values used several times are computed once and are stored.
The partitioning of the set Inb

nZ comes from a special case of the box complemen-
tation algorithm (see [4, 6]). The box sequence fIkg always contains only the boxes
which are waiting for examination (the new boxes are indexed from nb). There are
three essential differences between this algorithm and the algorithm of [3]:

(i) The latter one is a strongly heuristic (with hindsight, also a little confused)
method for our problem without using solution boxes of nonlinear systems
of inequalities.

(ii) A selection step is used at the beginning of every new loop in [3].
(iii) The algorithm of [3] does not prove upper bound to the maximum function

value (this is why there are no comparisons between the two algorithms in
the next table).

Global optimum problem
!C ";

ebC eb; time,
for � D 10�5

!C ";

ebC eb; time,
for � D 10�6

arctan.cosx�3x/ : : :
0.2988+0.01
265+64, 0.002sec

0.2988+0.01
542+64, 0.004sec

2C cos.x�3/cos.yC2/
1CjxjC4 jyj

: : :
0.6206+0.01
3160+497, 0.05sec

0.6256+0.01
6481+419, 0.11sec

jxj
p
y2Cj´j : : :

0.9222+0.01
3104+578715, 6sec

0.9312+0.01
7643+45165, 0.5sec

TABLE 2. Approximations of global maxima with error bounds

Table 2 contains the essential data for the three problems (the functions of the integral
problems are used again):

arctan
�
cosx�3x

�
!max

with I D ŒŒ�1;3� ; Œ�10;10��;

2C cos.x�3/cos.yC2/
1CjxjC4 jyj

!max;

(
16�x2�4y2 � 0;

x2�y2�4� 0;

with I D ŒŒ�5;5� ; Œ�5;5� ; Œ0;3��;

jxj

q
y2Cj´j !max; 4�2x2

�3y2
�4´2

� 0;

with I D ŒŒ�2;2� ; Œ0;2� ; Œ�2;0� ; Œ0;6��.

The programs worked on a PC Pentium 4 with a 3.2 GHz processor and running
times belong to our Visual C++ version 6.0 code.



TWO IMPROVED ZONE METHODS 177

The experience is as follows.
(1) Comparing the first member of eb C eb to the value eb seen in the integral

problem (265, 3160, 3104 instead of 2953, 50052, 31486 for � D 10�5, respectively)
the effect of the second filter xx�m >! is illustrated. Without this filter the examination
in the first step would be similar to the examination of the integral algorithm, the
filter xx�m > ! can utilize the intermediate ! values very well. (A good second filter
to integral algorithms could be applied only with difficulty.)

(2) A very sharp or faulty value !C " as upper bound to the maximum function
value belonging to the set of feasible points could cause huge computational efforts.
The stop criterion eb � Eb can prevent the needless work. In the above 6 cases the
value Eb D 10

6 was used, and it allows the entire computation with the sharp upper
bound of the 5th problem (eb D 578715 shows the computational effort in proving
the solution set is empty in a system of inequalities which very nearly has some
solutions).

(3) A faulty result never happened to be obtained because of the effect of rounding
errors. The boxes are computed by lower estimates, see the proofs of rules in [2],
and our C++ program uses double type for real variables. (The circumstances are the
same for the integral algorithm.)

4. CODES FOR THE TWO ALGORITHMS

Our Visual C++ version 6.0 and Lahey Fortran 90 version 4.5 programs have 5
segments for both algorithms. The first 3 segments are the same in the integral and
global maximum algorithms. The function (subroutine) segment fval computes the
function values from the numerically coded form, i. e., it handles the function

fval W .G;c/ 7! g.c/;

where G is a numerically coded form of the multivariate real function g, and c is a
point of the domain. For computing the zone function values (boxes) the function
(subroutine) segment zone is used, which handles the function

zone W .D;G;c;˛/ 7!Zg.c;˛/;

where D is the domain box of the multivariate real function g, G is a numerically
coded form of g, c 2D and ˛ 2R. To divide the difference of a closedm-dimensional
box U and an openm-dimensional box T into closed boxes B1;B2; : : : ;BL which do
not contain common interior points, our function (subroutine) segment ints handles
the function

ints W .U;T / 7! .L;fB1;B2; : : : ;BLg/ :

In the integral algorithm, the function (subroutine) segment appr, for computing ap-
proximating values to problem (2.1), handles the function

appr W .F;I;�/ 7! .�.S/;";eb/ ;



178 F. KÁLOVICS

where F is the numerically coded form of

.x1; : : : ;xm/ 7! .f1.x1; : : : ;xm/; : : : ;fn.x1; : : : ;xm//

and I , �, �.S/, ", eb come from our algorithm description. The main (program)
segment produces data for calling the segment appr. These data are m, n, F , I˙ D
IC[I� and �. The segment appr is called only once if I˙D IC and it is called twice
if vol.I�/¤ 0. At the global maximum algorithm, the function (subroutine) segment
glob, for computing approximating values to problem (3.1), handles the function

glob W .F;I;�;Eb/ 7! .p;!;eb/ ;

where F is the numerically coded form of

.x1; : : : ;xm/ 7! .f1.x1; : : : ;xm/; : : : ;fn.x1; : : : ;xm//

and I , �, Eb , p, !, eb come from our algorithm description. The main (program)
segment produces data for calling the segment glob. These data arem, n, F , I , � and
Eb . First the segment glob is called for finding p and !, and the aim of the second
call is to prove that the value !C " is upper bound to the exact solution. Naturally,
these segments have some other (auxiliary) parameters and sometimes their notations
cannot follow names in this paper perfectly. Finally, some remarks and comparisons
between C++ and Fortran programs are given.

(1) The organization of the C++ and Fortran programs differs from one another
essentially in two cases only. The Fortran subroutine segments can handle all output
parameters and large arrays in natural mode (as local variables), the C++ function
segments use global variables for these data. The lengths of numerical coded forms
of multivariate functions are stored as zero indexed elements of the arrays in question
in C++ programs and they are stored in an independent array in Fortran programs.
Naturally, the first 4 segments of both C++ and Fortran programs are unaltered in the
3 different problems, only the calling segment has to be changed.

(2) Our C++ programs use double type for real variables, and double precision
variables are in the Fortran programs. The results of Table 1 and Table 2 (obtained by
C++ programs) are the same essentially as those by Fortran programs. The Fortran
codes are hardly faster than the C++ ones (only 0-10 percent are the differences in
running time). This fact is somewhat surprising, because in the former methods (with
selections) or in the zone function tests (with simple real variables) differences of 30-
50 percent often appeared.

(3) The author would gladly send the Maple, C++, and Fortran codes mentioned
to interested readers in e-mail as an attached file.

REFERENCES

[1] R. Hammer, M. Hocks, U. Kulisch, and D. Ratz, Numerical toolbox for verified computing. I,
ser. Springer Series in Computational Mathematics. Berlin: Springer-Verlag, 1993, vol. 21, ba-
sic numerical problems, Theory, algorithms, and Pascal-XSC programs, With separately available
computer disks.



TWO IMPROVED ZONE METHODS 179

[2] F. Kálovics, “Creating and handling box valued functions used in numerical methods,” J. Comput.
Appl. Math., vol. 147, no. 2, pp. 333–348, 2002.

[3] F. Kálovics, “Solving nonlinear constrained minimization problems with a new interval valued
function,” Reliab. Comput., vol. 5, no. 4, pp. 395–406, 1999.

[4] F. Kálovics, “Zones and integrals,” J. Comput. Appl. Math., vol. 182, no. 2, pp. 243–251, 2005.
[5] F. Kálovics and G. Mészáros, “Box valued functions in solving systems of equations and inequali-

ties,” Numer. Algorithms, vol. 36, no. 1, pp. 1–12, 2004.
[6] R. B. Kearfott, Rigorous global search: continuous problems, ser. Nonconvex Optimization and its

Applications. Dordrecht: Kluwer Academic Publishers, 1996, vol. 13.

Author’s address

F. Kálovics
University of Miskolc, Department of Analysis, H-3515 Miskolc–Egyetemváros, Hungary
E-mail address: matkf@uni-miskolc.hu


