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Abstract. We consider second-order differential-operators inclusions with Volterra type opera-
tors. The problem of the existence of solutions of the Cauchy problem for the given inclusions is
investigated. Important a priori estimates are obtained. An example illustrating the approach is
given.
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1. INTRODUCTION

The progress in the investigation of non-linear boundary problems for partial dif-
ferential equations became possible thanks to the intense development of the methods
of non-linear analysis which had found their application in various parts of math-
ematics. It has recently become natural to reduce these problems to the study of
non-linear operator and differential-operator equations and inclusions in functional
spaces. Within such an approach, the results for concrete systems are obtained as
rather simple consequences of operator theorems [2, 10].

The evolution differential equations and inclusions are studied rather actively. To
prove the properties of the resolving operator (non-emptiness, compactness, connect-
edness), the method of monotony, method of compactness, and their combinations are
often used.

In the present work, we study the solvability of the evolution inclusion with multi-
valued non-coercive maps

y00CA.y0/CB.y/ 3 f;

which is important for applications.
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Recent related investigations concern a class of problems with a strongly mono-
tone operator A and multi-valued operator B that can be presented as the sum of
a single-valued linear self-conjugated monotone operator and a multi-valued demi-
closed bounded operator. These problems are coercive. They were considered, e. g.,
by Papageorgiou and Yannakakis [13, 14]. More particular cases of evolution inclu-
sions were studied by Ahmed and Kerbal [1], Gasiński and Smołka [3], Kartsatos
and Markov [4], Migórski [12], and other authors.

Our goal here is to extend the approach indicated to a wider class of problems,
namely, to problems with a multi-valued non-coercive non-monotone operator A and
a multi-valued operator B satisfying similar conditions.

The idea of passing to subsequences in the classical definition of a single-valued
pseudomonotone operator was suggested by Skrypnik [15]. It was developed for
the first order differential-operator equations and inclusions in infinite-dimensional
spaces with C-coercive W�0-pseudomonotone maps by Mel’nik, Zgurovskii, and
Novikov [11, 18, 19] and Kas’yanov [5–8]. This gave one the possibility to inves-
tigate a substantially wider class of problems arising in applications. In particular,
this methodology, combined with the non-coercive theory [2, 9, 18], which we apply
to the second-order evolution inclusions, allows one to sufficiently extend the class
of problems with multi-valued maps for which we can obtain the solvability. Since
the operators are multi-valued, such extension faced with considerable difficulties
which are not typical for the differential-operator equations. Here, the proof of the
solvability is based on the method of singular perturbations [9, 10] and allows us to
obtain important a priori estimates for solutions. It makes possible to study properties
for the obtained solutions (e. g., dynamics). As an example illustrating the suggested
approach, we consider a class of problems with non-linear operators. The obtained
results are new for both inclusions and equations.

We note that the solvability of second-order differential-operator equations was
investigated by the authors in [16, 17].

2. PROBLEM SETTING

Let H be a real Hilbert space with the inner product .�; �/, and let .V1;k�kV1/ and
.V2;k�kV2/ be some real reflexive separable Banach spaces continuously embedded
into H and such that

V WD V1\V2

is dense in the spaces V1, V2, andH . We assume that one of the embeddings Vi �H ,
i D 1;2, is compact. In what follows, the space topologically conjugate to H (with
respect to the bilinear form .�; �/) is identified with H . Then we have

Vi �H � V
�
i .i D 1;2/
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with continuous and dense embeddings, where .V �i ;k�kV �i /, i D 1;2; is the space
topologically conjugate to Vi , i D 1;2, with respect to the canonical bilinear form

h�; �iVi WV
�
i �Vi ! R .i D 1;2/

that coincides onH �V with the inner product .�; �/ inH . Let us consider the reflex-
ive function spaces Y D L2.S IH/ and

Xi WD Lri .S IH/\Lpi .S IVi / .i D 1;2/

with

kykXi WD kykLpi .S IVi /
CkykLri .S IH/

.i D 1;2/;

where S WD Œ0;T �, 1 < pi � ri <C1, i D 1;2, and maxfr1Ir2g � 2.
Let us consider the reflexive (it follows from [2, Chapter 1]) Banach space X WD

X1\X2 with the norm kykX WD kykX1CkykX2 . We note that the space X is con-
tinuously and densely embedded in Y .

We identify Lqi .S IV
�
i /CLr 0i

.S IH/ with X�i . Similarly, Y � � Y and

X� DX�1 CX
�
2 � Lq1.S IV

�
1 /CLq2.S IV

�
2 /CLr 01

.S IH/CLr 02
.S IH/;

where ri�1C r 0i
�1
D pi

�1Cqi
�1 D 1.

Let A;BWX�X� be strict multi-valued maps. We consider the Cauchy problem
for the differential-operator inclusion with non-coercive multi-valued maps of W�0-
pseudomonotone type(

y00CAy0CBy 3 f;

y.0/D a0; y
0.0/D x0; y 2 C.S IV /; y0 2 C.S IH/;

(2.1)

where a0 2 V and f 2X� are fixed.
On X��X we consider the pairing

hf;yi D

Z
S

.f11.�/;y.�//H d�C

Z
S

.f12.�/;y.�//H d�

C

Z
S

hf21.�/;y.�/iV1 d�C

Z
S

hf22.�/;y.�/iV2 d�

D

Z
S

.f .�/;y.�//d�;

where f D f11Cf12Cf21Cf22, f1i 2 Lr 0
i
.S IH/, and f2i 2 Lqi .S IV

�
i /. Note

that, for any f 2X�,

kf kX� D inf
fDf11Cf12Cf21Cf22W

f1i2Lr0
i
.S IH/; f2i2Lqi .S IV

�
i
/ .iD1;2/

'.f11;f12;f21;f22/;
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where

'.f11;f12;f21;f22/D

max
n
kf11kL

r0
1
.S IH/;kf12kL

r0
2
.S IH/;kf21kLq1 .S IV

�
1 /
;kf22kLq2 .S IV

�
2 /

o
:

Moreover, let
W D fy 2X j y0 2X�g

and kykW D kykX Cky0kX� for all y 2 W , where the derivative y0 of the ele-
ment y 2 X is considered in the sense of scalar distribution space D�.S IV �/ D

L.D.S/IV �w / with V D V1\V2 and V �w D .V
�;�.V �;V // [2]. We note that W is a

reflexive Banach space with a compact embedding W � Y [10].

3. CLASSES OF MAPS

Let Y be a reflexive Banach space, Y � be its topologically conjugated space,
h�; �iY WY

��Y ! R be the pairing, and AWY � Y � be a strict multi-valued map. Let
us define its upper support function ŒA.y/;w�C WD supd2A.y/hd;wiY and lower sup-
port function ŒA.y/;w�� WD infd2A.y/hd;wiY , where y;w 2 Y , and its upper norm
kA.y/kC WD supd2A.y/ kdkY � and lower norm kA.y/k� WD infd2A.y/ kdkY � . Con-
sider the associated maps coAWY � Y � and coAWY � Y � defined by the relations
.coA/.y/ D co.A.y// and .coA.y// D co.A.y// respectively, where .co�A.y// is
the weak closure of co.A.y// in Y � and co.A.y// is the convex hull of A.y/� Y �.

Proposition 1 ([18]). Let A;B W Y � Y �. Then
(1) for all y;v1;v2 2 Y the relations

ŒA.y/;v1Cv2�C � ŒA.y/;v1�CC ŒA.y/;v2�C;

ŒA.y/;v1Cv2�� � ŒA.y/;v1��C ŒA.y/;v2��;

ŒA.y/;v1Cv2�C � ŒA.y/;v1�CC ŒA.y/;v2��;

ŒA.y/;v1Cv2�� � ŒA.y/;v1�CC ŒA.y/;v2��

are satisfied;
(2) the equalities

ŒA.y/;v�C D�ŒA.y/;�v��;

ŒA.y/CB.y/;v�C.�/ D ŒA.y/;v�C.�/C ŒB.y/;v�C.�/

hold for all y;v 2 Y ;
(3) ŒA.y/;v�C.�/ D Œco�A.y/;v�C.�/ for all y;v 2 Y ;
(4) for all y;v 2 Y the relations

ŒA.y/;v�C.�/ � kA.y/kC.�/kvkY ;

dH
�
A.y/;B.y/

�
�
ˇ̌
kA.y/kC.�/�kB.y/kC.�/

ˇ̌
;

kA.y/�B.y/kC �
ˇ̌
kA.y/kC�kB.y/k�

ˇ̌
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are fulfilled, where dH .�; �/ is the Hausdorff metric.

Proposition 2 ([18]). The inclusion d 2 co�A.y/ is true if and only if

ŒA.y/;v�C � hd;viY for all v 2 Y:

Proposition 3 ([18]). LetD � Y and a.�; �/WD�Y ! xR WD R[fC1g. For every
y 2D, the functional Y 3w 7! a.y;w/ is positively homogeneous, convex, and lower
semi-continuous if and only if there exists a multi-valued map AWY � Y � such that
D.A/DD and

a.y;w/D ŒA.y/;w�C for all y 2D.A/; w 2 Y:

Remark 1. In what follows, yn*y in Y means that yn weakly converges to y in
a reflexive Banach space Y .

Definition 1. Let us denote the family of all non-empty closed convex bounded
subsets of the space Y by Cv.Y /.

Definition 2. An operator AWX � X� is called a Volterra type operator if, for
any t 2 S , from the equality u.s/D v.s/ for a. e. s 2 Œ0; t � (u;v 2 X ) it follows that
.coA.u//.s/D .coA.v//.s/ for a. e. s 2 Œ0; t �, i. e., ŒA.u/;�t �C D ŒA.v/;�t �C for all
�t 2X such that �t .s/D 0 for a. e. s 2 S n Œ0; t �.

Definition 3. A strict multi-valued map AWY � Y � is called:
(1) C.�/-coercive if there exists a lower bounded, on bounded in RC sets, real

function  WRC! R such that .s/!C1 as s!C1 and

ŒA.y/;y�C.�/ � .kykY /kykY for all y 2 Y I

(2) bounded if for any L> 0 there is l > 0, such that

kA.y/kC � l for all y 2 Y; kykY � LI

(3) locally bounded if for all y 2 Y there exist m> 0 and M > 0 such that

kA.�/kC �M for all � 2 Y; ky� �kY �mI

(4) finite-dimension locally bounded if AjF is locally bounded on .F;k�kY / for
any finite-dimensional subspace F � Y .

Definition 4. We say that a multi-valued map AWX�X� possesses the property
.˘/ if the following implication holds: If for some non-empty bounded subset B �
Y , constant k > 0, and selector d of A, the relation

hd.y/;yiY � k for all y 2 B

holds, then there is a K > 0 such that

kd.y/kY � �K for all y 2 B:
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Definition 5. We say that a function C WRC�RC! R belongs to the class ˚ if
C.r1I �/ W RC! R is continuous for any r1 � 0 and

lim
�!0C

��1C.r1I� r2/D 0

for all r1; r2 � 0.

Now let W be some normed space with the norm k�kW . We suppose that W � Y
with a continuous embedding. Let also k�k0W be a (semi-)norm on Y which is com-
pact with respect to k�kW onW and continuous with respect to k�kY on Y . Moreover,
let C 2 ˚ .

Definition 6. A strict multi-valued map AWY � Y � is called:
(1) radially lower semi-continuous (or, shortly, RLSC) if

liminf
t!0C

ŒA.yC t�/;��C � ŒA.y/;���

for all y;� 2 Y ;
(2) radially upper semi-continuous (or RUSC) if, for all y;� 2 Y , the real func-

tion t 7! ŒA.yC t�/;��C is upper semi-continuous from the right at the point
t D 0;

(3) operator with semi-bounded variation on W (or .Y;W /-SBV) if, for all R �
0 and y1;y2 2 Y such that ky1kY �R and ky2kY �R, the inequality

ŒA.y1/;y1�y2�� � ŒA.y2/;y1�y2�C�C.RIky1�y2k
0
W /

is satisfied;
(4) operator with N -semi-bounded variation on W (or N -SBV on W ) if, for

all R � 0 and every y1;y2 2 Y such that ky1kY � R and ky2kY � R, the
condition

ŒA.y1/;y1�y2�� � ŒA.y2/;y1�y2���C.RIky1�y2k
0
W /

holds;
(5) �0-pseudomonotone on W (or W�0-pseudomonotone) if, for arbitrary se-

quences fyngn�0 � W and fdngn�1 such that dn 2 coA.yn/ for all n � 1,
yn*y0 in W , and dn*d0 in Y �, from the inequality

limsup
n!1

hdn;yn�y0iY � 0

it follows that there exist subsequences fynkgk�1�fyngn�1 and fdnkgk�1�
fdngn�1 for which the inequality

liminf
k!1

hdnk ;ynk �wiY � ŒA.y0/;y0�w��

holds for all w 2 Y .

Remark 2. The idea on passing to a subsequence in the definition of a single-valued
pseudomonotone operator was proposed by Skrypnik [15].
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Lemma 1 ([18]). Any strict multi-valued operator AWY � Y � with .Y IW /-SBV
is bounded-valued, locally bounded, and satisfies property .˘/. Furthermore, if A is
RLSC, then it is also �0-pseudomonotone on W .

Let Y WD Y1 \ Y2, where .Y1;k�kY1/ and .Y2;k�kY2/ are some reflexive Banach
spaces.

Definition 7. A pair .AIB/ of maps AWY1 ! Cv.Y
�
1 / and BWY2 ! Cv.Y

�
2 / is

called s-mutually bounded if, for any constant M > 0, bounded set D � Y , and
selectors dA of A and dB of B , there exists aK > 0 such that the relations y 2D and

hdA.y/;yiY1ChdB.y/;yiY2 �M

imply that kdA.y/kY �1 �K or kdB.y/kY �2 �K:

Remark 3. A bounded strict multi-valued map AWY � Y � satisfies condition (˘ ).
If one operator of the pair .AIB/ is bounded, then the pair .AIB/ is s-mutually

bounded. Moreover, if both operators from .AIB/ satisfy condition .˘/, then their
sum also satisfies condition .˘/ and the pair .AIB/ is s-mutually bounded.

Let now W WD W1\W2, where .W1;k�kW1/ and .W2;k�kW2/ are Banach spaces
such that Wi � Yi , i D 1;2; with a continuous embedding.

Lemma 2 ([7]). Let A W Y1 ! Cv.Y
�
1 / and B W Y2 ! Cv.Y

�
2 / be multi-valued

maps which are �0-pseudomonotone on W1 and W2, respectively, and such that the
pair .AIB/ is s-mutually bounded. Then the map C WD ACB W Y ! Cv.Y

�/ is
�0-pseudomonotone on W .

Definition 8. We say that a multi-valued map AWX�X� satisfies condition (H )
if, for any y 2 X , n � 1, fdigniD1 � A.y/ and measurable Ej � S .j D 1; : : : ;n/
such that

�n
jD1Ej D S and Ei \Ej D¿ for all i;j D 1; : : : ;n, i ¤ j , the inclusion

d 2 coA.y/ holds, where d D
Pn
jD1dj�Ej and

�Ej .�/ WD

(
1 for � 2Ej ;
0 for � 2 S nEj :

4. MAIN RESULT

Theorem 1. Let �A � 0 be fixed, p0 WD minfp1;p2g, the space V be compactly
embedded in some Banach space V0, and the embedding V0 � V � be continuous.
Moreover, let the map� AC �AI WX ! Cv.X

�/ be C-coercive and RLSC multi-
valued map of the Volterra type with .X IW /-SBV (k�k0W D k�kLp0 .S IV0/) satisfying
condition .H/. Let BWY ! Cv.Y

�/ be a multi-valued operator of the Volterra type
which fulfils condition (H ), the growth condition

kBykC � c1kykY C c2 for all y 2 Y (4.1)

�Here, I WX !X� is the identical motion.
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with some c1; c2 � 0, and the continuity condition

dH .B.´/;B.´0//! 0 as ´! ´0: (4.2)

Then for any a0 2 V and f 2 X� there exist at least one solution u of problem
(2.1) with u0 2W .

Here, dH .�; �/ is the Hausdorff metric on Cv.Y �/, i. e.,

dH .C;D/ WDmaxfdist.C ID/; dist.D;C /g

with dist.C ID/ WD supc2C infd2D kc�dkY � for C;D 2 Cv.Y �/.

Proof. Let us reduce the evolution inclusion (2.1) to a first-order inclusion. Let
RWX !X (resp., RWY ! Y ) be the Volterra type operator defined by the relation

.Rv/.t/D a0C

Z t

0

v.s/ds for all t 2 S and every v 2X .resp., v 2 Y /:

It is clear thatR is a Lipschitz continuous operator fromX intoX (resp., from Y into
Y ). Consider the problem (

v0CA.v/CB.Rv/ 3 f;

v.0/D x0; v 2W:
(4.3)

If v 2 W is a solution of problem (4.3), then u D Rv 2 X is a solution of problem
(2.1) such that u0 2W �X .

Let us set A WDACB ıRWX!Cv.X
�/ and �D �AC�B , where �B D 1Cc1c3

and c3 is the Lipschitz constant for the operator RWY ! Y . For an arbitrary y 2 X
and a. e. t 2 S , we set

y�.t/D e
��ty.t/; yy�.t/D e

�ty.t/; (4.4)

and

.A�y/.t/D e
��t .Ayy�/.t/C�y.t/:

Then g 2A�.y�/” hg;wiX � ŒA.y/C�y;w��C for all w 2X . The set A�.y�/
is non-empty because every g defined by the relation

g.t/D e��td.t/C�y�.t/ for a. e. t 2 S and all d 2A.y/

belongs to A�.y�/.
We note that A�WX ! Cv.X

�/ and v 2 W is a solution of problem (4.3) if and
only if v� 2W is such that

v0�CA�v� 3 f�; v�.0/D x0; (4.5)

where f�.t/D e��tf .t/. It turns out that A�WX ! Cv.X
�/ possesses the following

properties:
(˛1) A� isC-coercive on X ,
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(˛2) A� is �0-pseudomonotone on W ,
(˛3) A� is locally bounded on X ,
(˛4) A� satisfies condition (˘ ) on X .

Let us prove the assertion above.
PROPERTY (˛1). Let us fix y 2X , kykX ¤ 0. As ky�kX � kykX , then

ky�k
�1
X ŒA�y�;y��C � kyk

�1
X sup

�.y/2A.y/

Z
S

e�2�t
�
�.y/.t/C�Ay.t/;y.t/

�
dt

Ckyk�1X inf
�.y/2B.Ry/

Z
S

e�2�t
�
�.y/.t/C�By.t/;y.t/

�
dt: (4.6)

We first estimate the first term. We remark that

Œ.AC�AI /y;y�C � y.kykX /kykX for all y 2X;

where y W RC ! R can be chosen as a non-decreasing function lower bounded on
bounded, in RC, sets such that y.r/!C1 as r!1.

Since A is a Volterra type operator, we see that, for any u 2X ,

sup
�.u/2A.u/

Z t

0

�
�.u/.�/C�Au.�/;u.�/

�
d� � y.kukXt /kukXt for all t 2 S;

where kukXt D kutkX . Let us set

g�.y/.�/D
�
�.y/.�/C�Ay.�/;y.�/

�
; �.y/ 2 A.y/; � 2 S;

and h.t/D y.kykXt /kykXt for t 2 S . Then h.t/�minfy.0/;0gkykX and

sup
�.y/2A.y/

Z t

0

g�.y/.�/d� � h.t/

for all t 2 S . Similarly to the definition of A�, for any u 2X and a. e. t 2 S , we put

.A1u/.t/D
�
e�2�t � e�2�T

��
.Au/.t/C�Au.t/

�
;

.A2u/.t/D e
�2�T

�
.Au/.t/C�Au.t/

�
;

and

. yAu/.t/D e�2�t
�
.Au/.t/C�Au.t/

�
:

Then, due to Proposition 1, we get

Œ yAy;y�C D ŒA1y;y�CC ŒA2y;y�C

� e�2�T h.T /C2�T sup
�.y/2A.y/

inf
s2S

e�2�s
Z s

0

�
�.y/.�/C�Ay.�/;y.�/

�
d�:
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Further, using condition .H/ for the operator A, we prove that

sup
�.y/2A.y/

inf
s2S

e�2�s
Z s

0

�
�.y/.�/C�Ay.�/;y.�/

�
d� � �C1kykX ;

where C1 Dmaxf�y.0/;0g � 0 does not depend on y. Consequently, we obtain

kyk�1X sup
�.y/2A.y/

Z T

0

e�2��
�
�.y/.�/C�Ay.�/;y.�/

�
d�

� e�2�T y.kykX /�2�C1T: (4.7)

Let us estimate the second term. Analogously to the previous case, using the
Volterra property of the operator B ıR, we obtain that, for all t 2 S ,

inf
�.y/2B.Ry/

Z t

0

�
�.y/.�/C�By.�/;y.�/

�
d� � �.c2C c1kRx0kY /c4kykX > �1;

where c4 > 0 is such that k�kY � c4 k�kX . Then

inf
�.y/2B.Ry/

Z T

0

e�2��
�
�.y/.�/C�By.�/;y.�/

�
d� �

� e�2�T .c2C c1kRx0kY /c4kykX

C2�

Z T

0

e�2�s inf
�.y/2B.Ry/

Z s

0

�
�.y/.�/C�By.�/;y.�/

�
d�ds

� �.c2C c1kRx0kY /c4kykX :

Therefore, in view of (4.7), it follows from (4.6) that

ky�k
�1
X ŒA�y�;y��C � e

�2�T y.ky�kX /�2�C1T � .c2C c1kRx0kY /c4;

because kykX � ky�kX and the function y is non-decreasing. Since y is arbitrary,
we have proved that A�WX ! Cv.X

�/ isC-coercive.
PROPERTY (˛2). For any y 2X and a. e. t 2 S we set

.A1�y/.t/D e
��t .Ayy�/.t/C�Ay.t/; .A2�y/.t/D e

��t .B.Ryy�//.t/C�By.t/;

where yy� is given by (4.4). Let us note that A1
�
CA2

�
D A�.

At first we show that A1
�

is an RLSC operator with (X IW )-SBV. Let us prove the
semi-boundedness of the variation. By virtue of the assumptions of the theorem, for
all R > 0 and y;� 2X such that kykX �R and k�kX �R, we have

ŒA.y/�A.�/C�Ay��A�;y� ���CCA.RIky� �k
0
W /� 0:

Let us set yCA.RI t / WDmax�2Œ0;t�CA.RI�/ for all R;t � 0 (note that yCA 2 ˚ ) and

´t .�/ WD

(
´.�/ for 0� � � t;
x0 for t < � � T
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for a. e. t 2 S and all ´ 2X . Let � and � be fixed selectors of A. Since A is a Volterra
type operator, for all y;� 2X and t 2 S , we haveZ t

0

�
�.y/.�/C�Ay.�/��.�/.�/��A�.�/;y.�/� �.�/

�
d�C yCA.RIky� �k

0
Wt
/

� Œ.AC�AI /.yt /� .AC�AI /.�t /;yt � �t ��C yCA.RIkyt � �tk
0
W /� 0

because kytkX � kykX and kyt ��tk0W � ky��k
0
W . Here, k�k0Wt D k�kLp0 .Œ0;t�IV0/.

Let us fix y;� 2X and set

g.�/D
�
�.y/.�/C�Ay.�/��.�/.�/��A�.�/;y.�/� �.�/

�
; � 2 S;

and h.t/D yCA.RIky� �k0Wt /, t 2 S . We have proved thatZ t

0

g.�/d� � �h.t/ for all t 2 S:

The function S 3 t 7! h.t/ is non-decreasing and, thus,Z T

0

e�2��g.�/d� D e�2�T
Z T

0

g.�/d�C2�

Z T

0

e�2��
Z �

0

g.s/dsd� � �h.T /:

Consequently,

ŒA1�y�;y�� ����

� ŒA1���;y�� ���C�
yCA.RIky� �kLp0 .S IV0/

/ for all y;� 2X: (4.8)

Now we consider the spaceLp0;�.S IV0/ that consists of measurable functions gWS!
V0 for which the integral

R
S e

�tp0kg.t/k
p0
V0
dt is finite. Then

ky� �kLp0 .S IV0/
D

�Z
S

e�tp0ky�.t/� ��.t/k
p0
V0
dt

�1=p0
D ky�� ��kLp0;�.S IV0/

:

Therefore, from (4.8) we obtain

ŒA1�y�;y�� ���� � ŒA
1
���;y�� ���C�

yCA.RIky�� ��kLp0;�.S IV0/
/:

The proof of the fact that the mapping A1
�
W X ! Cv.X

�/ has (X IW )-SBV is con-
cluded by taking into account the compactness of the embedding W � Lp0;�.S IV0/
[10, Theorem 1.5.1]. The RLSC for A1

�
is clear.

Since an arbitrary RLSC multi-valued operator with (X IW )-SBV is �0-pseudo-
monotone on W [8], we have proved that A1

�
is �0-pseudomonotone on W .

Let us now consider A2
�

. We first show that A2
�

is an operator with N -SBV on W
(the radial upper semi-continuity is clear).
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We first prove that .B ıR/ WX!Cv.X
�/ is the operator withN -SBV onW with

k�k
0
W D k�kY . For all R � 0 and t � 0, we set

CB.R; t/D t sup
˚
dH .B.R´1/;B.R´2// j ´1;´2 2X W k´1�´2kY � t

and k´ikX �R; i D 1;2
	
:

Similarly to [17], we show that CB 2 ˚ . Then for any R > 0 and y;� 2 X such that
kykX �R, k�kX �R it follows that

ŒB.Ry/C�By;y� ���� ŒB.R�/C�B�;y� ���CCB.RIky� �kY /� 0:

Let us set yCB.RI �/Dmax�2Œ0;t�CB.RI�/ for all R;t � 0 (note that yCB 2 ˚ ).
Since B ıR is the Volterra type operator, for all y;� 2X and t 2 S , we have

inf
�.y/2B.Ry/

Z t

0

�
�.y/.�/C�By.�/;y.�/� �.�/

�
d�

� inf
�.�/2B.R�/

Z t

0

�
�.�/.�/C�B�.�/;y.�/� �.�/

�
d�

C yCB.RIky� �kYt /� 0;

where k�kYt D k�kL2.Œ0;t�IH/. Let us fix some y;� 2X and set

gˇ .�/D
�
ˇ.�/;y.�/� �.�/

�
; ˇ 2X�; � 2 S;

and h.t/D yCB.RIky� �kYt /, t 2 S . We have thus proved that

inf
�2B.Ry/C�By

Z t

0

g� .�/d� � inf
�2B.R�/C�B�

Z t

0

g�.�/d� � �h.t/ for all t 2 S:

The function S 3 t 7! h.t/ is non-decreasing and thus, for an arbitrary � 2 B.Ry/C
�By, we getZ T

0

e�2��
�
�.�/;y.�/� �.�/

�
d� � inf

�2B.R�/C�B�

Z T

0

e�2��
�
�.�/;y.�/� �.�/

�
d�

D sup
�2B.R�/C�B�

Z T

0

e�2��
�
�.�/��.�/;y.�/� �.�/

�
d�

�e�2�T inf
�2B.R�/C�B�

Z T

0

�
�.�/��.�/;y.�/� �.�/

�
d�

C sup
�2B.R�/C�B�

Z T

0

�
e�2�� � e�2�T

��
�.�/��.�/;y.�/� �.�/

�
d�

�� e�2�T h.T /C2�T sup
�2B.R�/C�B�

inf
s2S

e�2�s
Z s

0

�
�.�/��.�/;y.�/� �.�/

�
d�:
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Using property .H/ of the operatorB we can prove that, for an arbitrary � 2B.Ry/C
�By, the relation

sup
�2B.R�/C�B�

inf
s2S

e�2�s
Z s

0

�
�.�/��.�/;y.�/� �.�/

�
d� � �h.T /

holds. Consequently,

inf
�2B.Ry/C�By

Z T

0

e�2��
�
�.�/;y.�/� �.�/

�
d�

� inf
�2B.R�/C�B�

Z T

0

e�2��
�
�.�/;y.�/� �.�/

�
d�

� �
�
e�2�T C2�T

�
yCB.RIky� �kY /:

Let us set zCB.RI t /D
�
e�2�T C2�T

�
yCB.RI t / forR;t � 0 (note that zCB 2˚ ). Then�

A2�y�;y�� ��
�
�
�
�
A2���;y�� ��

�
�
� � zCB.RIky� �kY /

D� zCB.RIky� �kL2.S IH//:
(4.9)

Now we consider the spaceL2;�.S IH/ consisting of the measurable functions gWS!
H for which the integral

R
S e

2�tkg.t/k2Hdt is finite. Then

ky� �kL2.S IH/ D

�Z
S

e2�tky�.t/� ��.t/k
2
Hdt

�1=2
D ky�� ��kL2;�.S IH/:

Therefore, from (4.9), we obtain�
A2�y�;y�� ��

�
�
�
�
A2���;y�� ��

�
�
� zCB.RIky�� ��kL2;�.S IH//:

To prove that A2
�
WX ! Cv.X

�/ is N -SBV, it is sufficient to note that embedding
W � L2;�.S IH/ is compact. This is a direct sequence of the compactness of the
embedding W � Y .

Let us now check the �0-pseudomonotony of A2
�

onW . Let y�;n! y� weakly in
W (therefore y�;n! y� in Y� WDL2;�.S IH/), A2�.y�;n/ 3 d�;n! d� 2X

� weakly
in X�, and

limsup
n!1

hd�;n;y�;n�y�i � 0:

Since A2
�

is an operator with N -SBV on W , we conclude that for every v 2X

liminf
n!1

hd�;n;y�;n�v�i � liminf
n!1

ŒA2�.y�;n/;y�;n�v���

� liminf
n!1

ŒA2�.v�/;y�;n�v����
zCB.RIky��v�kY�/: (4.10)

At first we estimate the first term at the right-hand side of (4.10). It is easy to show
that the function Y� 3 h 7! ŒA2

�
.v�/;h�� is continuous for all v 2X .
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Therefore, from (4.10) we obtain that hd�;n;y�;n�y�i ! 0 and

liminf
n!1

hd�;n;y��v�i � ŒA
2
�.v�/;y��v����

zCB.RIky��v�kY�/

for all v 2 X . Substituting tw�C .1� t /y�, where w 2 X , t 2 Œ0;1�, for v� in the
last inequality, dividing the result by t , and passing to the limit as t! 0C, due to the
RUSC for A2

�
, we obtain

liminf
n!1

hd�;n;y�;n�w�i � ŒA
2
�.y�/;y��w���

for all w 2X . Therefore, the �0-pseudomonotony A2
�

on W is proved.
In order to prove the �0-pseudomonotony of A� on W , we use Lemma 2. Let

us note that the pair (A1
�
;A2
�

) is s-mutually bounded because A2
�

is bounded as a
consequence of (4.1) and the boundedness of the identity map.

PROPERTIES (˛3) AND (˛4). These properties follow from .X IW /-SBV of A1
�

,
N -SBV of A2

�
, and Lemma 1.

In order to prove the solvability for problem (4.3) we use [8, Theorem 3.1]. Let
L W Wx0 � X ! X� be a densely defined linear operator, L´ D ´0, D.L/ D Wx0 D
f´ 2W j ´.0/D x0g, and A� W X ! Cv.X

�/ be a multi-valued map. Let us consider
the problem

L´CA�´ 3 f�; ´ 2Wx0: (4.11)

Let us note that D.L/ D Wx0 is a reflexive Banach space with respect to the graph
norm of the derivative. Conditions (˛1)–(˛4) guarantee that there exists at least one
solution ´ of problem (4.3) inW0. The function ý� is then a solution of problem (4.3)
and Rý� is a solution of the original problem. �

Corollary 1. Assume that �A � 0 is fixed, p2 � 2, p0 D minfp1;p2g, the space
V is compactly embedded in a Banach space V0, and the embedding V0 � V � is
continuous. Moreover, let AC�AI WX! Cv.X

�/ be aC-coercive and RLSC multi-
valued operator of the Volterra type with .X IW /-SBV (k�k0W D k�kLp0 .S IV0/) satis-
fying condition .H/, and BWY ! Cv.Y

�/ be a multi-valued operator of the Volterra
type satisfying condition .H/, the growth condition (4.1), and the continuity condi-
tion (4.2)�, and C WX !X� be an operator with the property

.Cu/.t/D C0.u.t// for all u 2X; t 2 S;

where C0WV2! V �2 is a linear, bounded, self-conjugate, and monotone operator.
Then for arbitrary a0 2 V and f 2 X� there exists at least one solution of the

problem (
y00CAy0CByCCy 3 f;

y.0/D a0; y
0.0/D x0; y 2 C.S IV /; y0 2 C.S IH/:

(4.12)

�We recall that dH .�; �/ is the Hausdorff metric on Cv.Y �/
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5. AN EXAMPLE

Let ˝ � Rn be a bounded region with the regular boundary @˝, S D Œ0;T �, QD
˝ �S , �T D @˝ �S , 1 < p D p1 D p2, and ˚ WR! R be a continuous function
which satisfies the “growth condition”

j˚.t/j � c1jt jC c2 for all t 2 R; (5.1)

where c1; c2 2 R, and the “sign condition”

.˚.t/�˚.s//.t � s/� �c3.s� t /
2 for all t; s 2 R (5.2)

with some c3 > 0. Moreover, let S �R 3 .t;y/ 7! �i .t;y/ 2 RC, i D 1;2, be single-
valued continuous functions such that

� c2.1Cjxj/� �1.t;x/� �2.t;x/� c1.1Cjxj/ for all t 2 S; x 2 R; (5.3)

where c1; c2 � 0. For an any f 2 X� D L2.S IL2.˝//CLq.S IW �1;q.˝//, we
consider the problem

@2y.x; t/

@t2
�

nX
iD1

@

@xi

�ˇ̌̌̌
@2y.x; t/

@xi @t

ˇ̌̌̌p�2
@2y.x; t/

@xi @t

�
C

ˇ̌̌̌
@y.x; t/

@t

ˇ̌̌̌p�2
@y.x; t/

@t

C˚

�
@y.x; t/

@t

�
��y.x; t/

C Œ�1.t;y.x; t//I�2.t;y.x; t//� 3 f .x; t/ a. e. on Q;

y.x;0/D 0;
@y.x; t/

@t

ˇ̌̌
tD0
D 0 a.e. on ˝;

y.x; t/D 0 a. e. on @˝:

(5.4)

For the operator AWLp.S IW
1;p
0 .˝//! Lq.S IW

�1;q.˝//, we take .Au/.t/ D
A.u.t//, t 2 S [16, 17], where A.'/D A1.'/CA2.'/,

A1.'/D�

nX
iD1

@

@xi

 ˇ̌̌̌
@'

@xi

ˇ̌̌̌p�2
@'

@xi

!
Cj'jp�2';

and A2.'/D ˚.'/ for all ' 2 C 20 . x̋/. For the map BWL2.Q/! L2.Q/, we take

B.u/D fv 2 L2.Q/ j �1.t;u.x; t//� v.x; t/� �2.t;u.x; t// for a. e. .x; t/ 2Qg;

and let the operator C WL2.S IH 1
0 .˝//!L2.S IH

�1.˝// be defined by the relation
.Cu/.t/ D C0.u.t//; t 2 S , where C0.v/ D ��v for v 2 H 1

0 .˝/. Moreover, let
H D L2.˝/, V1 DW

1;p
0 .˝/, V2 DH 1

0 .˝/, and let Y D L2.S IH/D L2.Q/,

X D Lp.S IV1/\L2.S IH/\L2.S IV2/; X� D Lq.S IV
�
1 /CL2.S IV

�
2 /:

Then, according to Corollary 1, problem (5.4) has a solution y 2 C.S IV / such that
y0 2 C.S IH/ and y00 2X�.
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