
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 9 (2008), No 1, pp. 3-6 DOI: 10.18514/MMN.2008.190

A class of concave Young functions possessing

a positive �xed point

N. K. Agbeko



Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 9 (2008), No. 1, pp. 3–6

A CLASS OF CONCAVE YOUNG FUNCTIONS POSSESSING
A POSITIVE FIXED POINT

N. K. AGBEKO

Received 10 June, 2008

Abstract. We obtained the class of all concave Young functions which possess a positive fixed
point.

2000 Mathematics Subject Classification: 47H10, 37C25, 47H25

Keywords: concave Young functions, degree of contraction, fixed points

1. INTRODUCTION

Let ' W .0;1/! .0;1/ be a right-continuous and decreasing function such that
it is integrable on every finite interval .0;x/. It is easily seen that the function ˚ W
Œ0;1/! Œ0;1/, defined by the equality

˚ .x/D

Z x

0

' .t/dt; (1.1)

is a nonnegative, increasing and concave function with ˚ .0/D 0. We further assume
that ˚ .1/D1. Function ˚ is thus referred to as a concave Young function in the
literature, and the set of all such functions will be denoted by Yconc. For more about
these functions see, e. g, [1–3, 5].

In [3], we obtained the following results.

Proposition 1.1. Let ˚ 2 Yconc and s 2 .0;1/ be arbitrary. Then

j˚ .x/�˚ .y/j � ' .s/ jx�yj

for all numbers x;y 2 .s;1/.

We sought for all those positive numbers that can be a fixed point for a given
concave Young function.

Theorem 1.1. Let ˚ 2 Yconc and c� be any positive number. In order that the
equality ˚ .c�/ D c� hold, it is necessary and sufficient that the range of the func-
tion ˚ jŒc�;1/ W Œc

�;1/! Œ0;1/, defined by ˚ jŒc�;1/ .x/D˚ .x/, should equal the
interval Œc�;1/.
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Let ˚ 2 Yconc with Z 1
1

' .t/

t
dt <1: (1.2)

In [3], a number c 2 .0;1/ was called the degree of contraction of ˚ ifZ 1
c

' .t/

t
dt D 1

and Z bc

c

' .t/

t
dt D ' .c/

for some b 2 .1;1/. We intend to extend this notion to other concave Young func-
tions which do not possess property (1.2).

2. MAIN RESULT

Theorem 2.1. Let ˚ 2 Yconc be arbitrary with ' denoting its derivative. In order
that there be a constant s > 0 for which ' .s/ < 1, it is necessary and sufficient that
˚ admit a positive fixed point, i. e., ˚ .x/D x for some number x > 0.

Proof. To prove the sufficiency, assume that there is a number s > 0 such that
' .s/ < 1. Then by recalling Proposition 1.1 one can easily observe that ˚ is a con-
traction in the interval .s;1/. Consequently, the Contraction Principle [6] yields
˚ .x/D x for some x � s. Next, let us show the necessity. Assume that there exists
some x0 > 0 for which ˚ .x0/D x0, but in the contrary ' .t/� 1 for all t > 0. Then
it is easy to check that ˚ .x/ � x for all x > 0. Since ˚ is a strictly concave and in-
creasing function, the graph of ˚ must lie below that of the line y D x on the interval
.x0;1/. This fact, however, contradicts the inequality ˚ .x/� x for all x > 0. �

Proposition 2.1. Let ˚ 2 Yconc be arbitrary with ' denoting its derivative. If
x0 2 .0;1/ is such that ˚ .x0/D x0, then ' .x0/ < 1.

Proof. It is not difficult to see that ˚ .t/ � t' .t/ whenever t 2 .0;1/. Assume
the existence of some x0 2 .0;1/ for which ˚ .x0/D x0. Then, as noted above,

x0 D ˚ .x0/� x0' .x0/ ;

and hence ' .x0/� 1. Now, suppose that ' .x0/D 1. Since ' is a decreasing function
on .0;1/, there must be some " 2 .0;1/ such that ' .x0C "/ < 1, making ˚ be
a contraction on .x0C ";1/, via Proposition 1.1. But then it would mean that there
must be some x� 2 .x0C ";1/ with ˚ .x�/D x�. Necessarily, it would ensue that
˚ is not a concave function on the interval .x0;x

��, a contradiction. Therefore,
' .x0/ < 1. �

Now, we are in a position to reformulate the definition of the degree of contraction
to cover a broader class of concave Young functions.
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Definition 2.1. A number s > 0 is called the degree of contraction of a function
˚ 2 Yconc if ' .s/D 1, where ' is the derivative of ˚ .

We note in this case that ' .sC ı/ < 1 for any positive number ı, which makes ˚
be a contraction on the interval .sC ı;1/ for some suitable ı.

Example 1. The degree of contraction of ˚ .x/D 4
p
xC1�4, x 2 Œ0;1/, equals

3.
Example 2. For any fixed number p 2 .0;1/, the degree of contraction of the func-

tion p̊ .x/D x
p, x 2 Œ0;1/ is equal to p1=.1�p/.

Example 3. The function ˚ .x/D log.xC1/, x 2 Œ0;1/, has no degree of con-
traction.

Example 4. The degree of contraction of function ˚ .x/D 2 log.xC1/ exists and
equals 1.

Example 5. The concave Young function ˚ defined by ˚ .x/D
x

2
C
p
x does not

meet condition (1.2). Yet its degree of contraction exists and equals 1.

An algorithm for finding positive fixed points for concave Young functions:
Step 1: Input ˚ .x/ a concave Young function, c0 a positive number.
Step 2: Compute the derivative ' .x/ of ˚ .x/.
Step 3: Starting from c0 find an approximate root of the equation ' .x/�1D 0 and

put the result into c.
Step 4: If c D 0 then STOP else GOTO Step 5.
Step 5: Starting from c apply the Fixed Point algorithm, i. e.,

x0 WD c; xkC1 WD ˚ .xk/; k D kC1.

3. CONCLUDING REMARKS

In dynamic models, stationary equilibrium is typically described as a solution of
the equation x D f .x/, where f is a mapping which determines the current state as
a function of the previous state, or as a function of the expected future state. In many
cases x is a finite dimensional vector, and in general positive solutions (i. e., fixed
points of f ) are rather sought for. Problems of this kind have been investigated for
decades, and often for concave functions. Alfred Tarski in [7] obtained, in particular,
the following result.

Theorem 3.1 (Tarski). Suppose f is an increasing function from Rn to Rn such
that f .a/ > a for some positive vector a, and f .b/ < b for some vector b > a. Then
f has a positive fixed point.

For the proof we refer the reader, e. g., to [4]. In [4], J. Kennan obtained the result
stated below by using Tarski’s theorem and [4, Theorem 3.1]. He observed that it
gave simple sufficient conditions for the existence and uniqueness of a positive fixed
point.
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Theorem 3.2 ([4, Theorem 3.3]). Suppose that f is an increasing and stricly
concave function from Rn to Rn such that f .0/ � 0, f .a/ > a for some positive
vector a, and f .b/ < b for some vector b > a. Then f has a unique positive fixed
point.

We note that the concavity and increasing property of f mean that every compo-
nent fk (k D 1; : : : ;n) of f , considered as a function from Rn to R, is increasing and
strictly concave in every argument xj 2 R, j D 1; : : : ;n.
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