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Abstract. We obtained the class of all concave Young functions which possess a positive fixed
point.
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1. INTRODUCTION

Let ¢ : (0,00) — (0,00) be a right-continuous and decreasing function such that
it is integrable on every finite interval (0,x). It is easily seen that the function @ :
[0,00) — [0, 00), defined by the equality

@(x)z/o o (t)dt, (1.1

is a nonnegative, increasing and concave function with @ (0) = 0. We further assume
that @ (00) = oco. Function @ is thus referred to as a concave Young function in the
literature, and the set of all such functions will be denoted by ¥.on.. For more about
these functions see, e. g, [1-3,5].

In [3], we obtained the following results.

Proposition 1.1. Let @ € Yo and s € (0,00) be arbitrary. Then
|2 (x) =P ()| =¢(s)|x—yl
for all numbers x,y € (s,00).

We sought for all those positive numbers that can be a fixed point for a given
concave Young function.

Theorem 1.1. Let @ € Yoone and ¢* be any positive number. In order that the
equality @ (¢*) = ¢* hold, it is necessary and sufficient that the range of the func-
tion @ |[¢x o0 : [c*,00) = [0,00), defined by @ |(c+ o0) (X) = P (x), should equal the
interval [¢*, 00).
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Let @ € Yeone with
oo
t
/ er < 00. (1.2)
1

In [3], a number ¢ € (0, 00) was called the degree of contraction of @ if
o0
t
c

and

bc
/ PO it = o)

c
for some b € (1,00). We intend to extend this notion to other concave Young func-
tions which do not possess property (1.2).

2. MAIN RESULT

Theorem 2.1. Let @ € Yo be arbitrary with ¢ denoting its derivative. In order
that there be a constant s > 0 for which ¢ (s) < 1, it is necessary and sufficient that
@ admit a positive fixed point, i. e., @ (x) = x for some number x > 0.

Proof. To prove the sufficiency, assume that there is a number s > 0 such that
¢ (s) < 1. Then by recalling Proposition 1.1 one can easily observe that @ is a con-
traction in the interval (s,00). Consequently, the Contraction Principle [6] yields
@ (x) = x for some x > s. Next, let us show the necessity. Assume that there exists
some xg > 0 for which @ (x¢) = x¢, but in the contrary ¢ (¢) > 1 for all # > 0. Then
it is easy to check that @ (x) > x for all x > 0. Since @ is a strictly concave and in-
creasing function, the graph of @ must lie below that of the line y = x on the interval
(x0,00). This fact, however, contradicts the inequality @ (x) > x forall x > 0. [

Proposition 2.1. Let @ € Y.y be arbitrary with ¢ denoting its derivative. If
xo € (0,00) is such that @ (x¢) = xo, then ¢ (xo) < 1.

Proof. 1t is not difficult to see that @ (¢) > t¢ (t) whenever ¢ € (0,00). Assume
the existence of some x¢ € (0, 00) for which @ (xp) = x¢. Then, as noted above,

xo = P (x0) = xo¢ (o),
and hence ¢ (x¢) < 1. Now, suppose that ¢ (xo) = 1. Since ¢ is a decreasing function
on (0,00), there must be some ¢ € (0,1) such that ¢ (x¢9 +¢&) < 1, making @ be
a contraction on (xg + &, 00), via Proposition 1.1. But then it would mean that there
must be some x* € (xg + &,00) with @ (x*) = x*. Necessarily, it would ensue that

@ is not a concave function on the interval (x¢,x*], a contradiction. Therefore,
¢ (x9) < 1. g

Now, we are in a position to reformulate the definition of the degree of contraction
to cover a broader class of concave Young functions.
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Definition 2.1. A number s > 0 is called the degree of contraction of a function
@ € Yoone if ¢ (s) = 1, where g is the derivative of @.

We note in this case that ¢ (s + §) < 1 for any positive number §, which makes @
be a contraction on the interval (s 4 8, co0) for some suitable §.

Example 1. The degree of contraction of @ (x) =4+/x + 1—4, x € [0,00), equals
3.

Example 2. For any fixed number p € (0, 1), the degree of contraction of the func-
tion @, (x) = x?, x € [0,00) is equal to pl/A=p),

Example 3. The function @ (x) =log(x + 1), x € [0,00), has no degree of con-
traction.

Example 4. The degree of contraction of function @ (x) = 2log (x + 1) exists and
equals 1.

X
Example 5. The concave Young function @ defined by @ (x) = 5 + /x does not

meet condition (1.2). Yet its degree of contraction exists and equals 1.

An algorithm for finding positive fixed points for concave Young functions:

Step 1: Input @ (x) a concave Young function, ¢ a positive number.

Step 2: Compute the derivative ¢ (x) of @ (x).

Step 3: Starting from c¢ find an approximate root of the equation ¢ (x) —1 =0 and
put the result into c.

Step 4: 1If ¢ = 0 then STOP else GOTO Step 5.

Step 5: Starting from ¢ apply the Fixed Point algorithm, i.e.,
X0:=C;Xp41 =P (xg)  k=k+1.

3. CONCLUDING REMARKS

In dynamic models, stationary equilibrium is typically described as a solution of
the equation x = f (x), where f is a mapping which determines the current state as
a function of the previous state, or as a function of the expected future state. In many
cases x is a finite dimensional vector, and in general positive solutions (i.e., fixed
points of f) are rather sought for. Problems of this kind have been investigated for
decades, and often for concave functions. Alfred Tarski in [7] obtained, in particular,
the following result.

Theorem 3.1 (Tarski). Suppose f is an increasing function from R" to R" such
that f (a) > a for some positive vector a, and f (b) < b for some vector b > a. Then
f has a positive fixed point.

For the proof we refer the reader, e. g., to [4]. In [4], J. Kennan obtained the result
stated below by using Tarski’s theorem and [4, Theorem 3.1]. He observed that it
gave simple sufficient conditions for the existence and uniqueness of a positive fixed
point.



6 N. K. AGBEKO

Theorem 3.2 ([4, Theorem 3.3]). Suppose that f is an increasing and stricly
concave function from R" to R" such that f(0) >0, f (a) > a for some positive
vector a, and f (b) < b for some vector b > a. Then f has a unique positive fixed
point.

We note that the concavity and increasing property of f mean that every compo-

nent fr (k =1,...,n) of f, considered as a function from R” to R, is increasing and
strictly concave in every argument x; € R, j = 1,...,n.
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