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1. INTRODUCTION

Let ˝ be a bounded domain in RN with the smooth boundary @˝. Consider the
following initial-boundary value problem for a system of reaction-diffusion equations
of the form

ut D "�uCf .v/ in ˝ � .0;T /; (1.1)

vt D "�vCg.u/ in ˝ � .0;T /; (1.2)

uD 0 on @˝ � .0;T /; (1.3)

v D 0 on @˝ � .0;T /; (1.4)

u.x;0/D u0.x/� 0 in ˝; (1.5)

v.x;0/D v0.x/� 0 in ˝; (1.6)

where f W.�1;b1/! .0;1/ is C 1 convex, increasing function with b1D const> 0,
lims!b1

f .s/DC1,
R b1

0
ds
f .s/

<C1, gW.�1;b2/! .0;1/ is C 1 convex, increas-

ing function with b2 D const> 0, lims!b2
g.s/DC1,

R b2

0
ds
g.s/

<C1. The initial
data .u0;v0/ is such that u0 2 C 1. x̋/, v0 2 C 1. x̋/, u0.x/ � 0 in ˝, u0.x/D 0 on
@˝, v0.x/ � 0 in ˝, v0.x/ D 0 on @˝, supx2˝ u0.x/ < b2, supx2˝ v0.x/ < b1.
Here, .0;T / is the maximal time interval of existence of the solution .u;v/. The time
T may be finite or infinite. When T is infinite, then we say that the solution u exists
globally. When T is finite, then the solution .u;v/ develops a singularity in a finite
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time, namely �
lim
t!T
ku.�; t /k1; lim

t!T
kv.�; t /k1

�
— .b2;b1/;

where ku.�; t /k1Dmaxx2˝ ju.x; t/j. Here, .a;b/— .c;d/means that .a;b/� .c;d/
and at least one of the equalities aD c, b D d is valid.

Solutions for systems of semilinear heat equations which quench in a finite time
have been the subject of investigation of several authors (see [3–5] and the references
cited therein). By standard methods based on the maximum principle, the local exist-
ence, uniqueness, global existence, and quenching have been treated. One may also
find in [1, 6, 7, 9, 10] some results about quenching for semilinear heat equations. In
this paper, we are interested in the asymptotic behaviour of the quenching time as "
goes to zero. Our work is motivated by the paper [8] by Friedman and Lacey, where
they consider the initial-boundary value problem

ut D "�uCg.u/ in ˝ � .0;T /; (1.7)

uD 0 on @˝ � .0;T /; (1.8)

u.x;0/D u0.x/� 0 in ˝; (1.9)

where g.s/ is a positive, increasing, convex function for the nonnegative values of
s and such that

RC1
0

ds
g.s/

< C1. The initial data u0 is a positive and continuous
function in x̋ . Under some additional conditions on the initial data, they showed that
the solution u of (1.7)–(1.9) blows up in a finite time, and its blow-up time goes to
that of the solution ˛.t/ of the

˛0.t/D g.˛.t//; t > 0; ˛.0/DM; (1.10)

when " goes to zero, whereM D supx2˝ u0.x/ (we say that a solution u blows up in
a finite time if it reaches the value infinity in a finite time). Nabongo and Boni have
obtained in [10] an analogous result in the case of the phenomenon of quenching for
semilinear heat equations. In this article, we get a comparable result for the system
described in (1.1)–(1.6). More precisely, under some hypotheses, we show that if "
is small enough, then the solution .u;v/ of (1.1)–(1.6) quenches in a finite time, and
its quenching time tends to that of the solution .˛.t/;ˇ.t// of the differential system
defined below

˛0.t/D f .ˇ.t//; t > 0; (1.11)

ˇ0.t/D g.˛.t//; t > 0; (1.12)

˛.0/DM1; (1.13)

ˇ.0/DM2; (1.14)

as " goes to zero, where M1 D supx2˝ u0.x/, M2 D supx2˝ v0.x/.
Our paper is written in the following manner. In the next section, under some

conditions, we prove that if " is small enough, then the solution .u;v/ of (1.1)–(1.6)
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quenches in a finite time, and its quenching time tends to that of the solution of the
differential system defined in (1.11)–(1.14). Finally, in the last section, we give some
numerical results to illustrate our analysis.

2. QUENCHING SOLUTIONS

In this section, under some assumptions, we prove that if " is small enough, then
the solution .u;v/ of (1.1)–(1.6) quenches in a finite time, and its quenching time
goes to that of the solution of the differential system defined in (1.11)–(1.14) as "
goes to zero. We start by recalling an important result.

Consider the following eigenvalue problem

��'.x/D �'.x/ in ˝; (2.1)

'.x/D 0 on @˝; (2.2)

'.x/ > 0 in ˝: (2.3)

It is well known that the above eigenvalue problem admits a solution .';�/ such that
� > 0. We can normalize ' so that

R
˝ '.x/dx D 1. Now, let us give our first result

about the quenching time.

Theorem 1. Suppose that u0.x/D 0 and v0.x/D 0. Let

AD �max
�
b2

f .0/
;
b1

g.0/

�
:

If " < 1
A

, then the solution .u;v/ of (1.1)–(1.6) quenches in a finite time, and its
quenching time T obeys the following estimates

0� T �T0 � "T0ACo."/;

where T0 is the quenching time of the solution .˛.t/;ˇ.t// of the differential system
defined in (1.11)–(1.14).

Proof. Since .0;T / is the maximal time interval of existence of the solution .u;v/,
our aim is to show that T is finite and satisfies the above estimates. Introduce the
functions w.t/ and ´.t/ defined as follows

w.t/D

Z
˝

u.x; t/'.x/dx; ´.t/D

Z
˝

v.x; t/'.x/dx; t 2 Œ0;T /:

Due to the fact that the initial data .u0;v0/ is nonnegative in ˝, from the maximum
principle, .u;v/ is also nonnegative in ˝ � .0;T /. Take the derivative of w in t and
use (1.1) to obtain

w0.t/D "

Z
˝

'�udxC

Z
˝

f .v/'dx for t 2 .0;T /:
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Applying Green’s formula, we arrive at the equality

w0.t/D "

Z
˝

u�'dxC

Z
˝

f .v/'dx for t 2 .0;T /:

It follows from (2.1) and Jensen’s inequality that

w0.t/� �"�w.t/Cf .´.t// for t 2 .0;T /:

In the same way, we also get

´0.t/� �"�´.t/Cg.w.t// for t 2 .0;T /:

It is not difficult to see that 0� w.t/� b2 and 0� ´.t/� b1. We deduce that

w0.t/� �"�b2Cf .´.t// for t 2 .0;T /;

´0.t/� �"�b1Cg.w.t// for t 2 .0;T /;

whence

w0.t/� f .´.t//.1�
"�b2

f .´.t//
/ for t 2 .0;T /;

´0.t/� g.w.t//.1�
"�b1

g.w.t//
/ for t 2 .0;T /:

Since f .´.t//� f .0/ and g.w.t//� g.0/, we arrive at the inequalities

w0.t/� f .´.t//.1�
"�b2

f .0/
/ for t 2 .0;T /;

´0.t/� g.w.t//.1�
"�b1

g.0/
/ for t 2 .0;T /:

Taking into account the fact that �b2

f .0/
� A and �b1

g.0/
� A, we find that

w0.t/� f .´.t//.1� "A/ for t 2 .0;T /;

´0.t/� g.w.t//.1� "A/ for t 2 .0;T /:

Let us set

w1.t/D w

�
t

1� "A

�
for t 2 .0; .1� "A/T /;

´1.t/D ´

�
t

1� "A

�
for t 2 .0; .1� "A/T /:

A straightforward computation reveals that

w01.t/� f .´1.t// for t 2 .0; .1� "A/T /; w1.0/D w.0/D 0;

´01.t/� g.w1.t// for t 2 .0; .1� "A/T /; ´1.0/D ´.0/D 0:

From the maximum principle, we get

w1.t/� ˛.t/ for t 2 .0;T�/;
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´1.t/� ˇ.t/ for t 2 .0;T�/;

where T� DminfT0; .1� "A/T g, which implies that

T �
T0

1� "A
: (2.4)

In fact, suppose that T > T0

1�"A
D T 0. We deduce that�

w.T 0/;´.T 0/
�
D
�
w1.T0/;´1.T0/

�
�
�
˛.T0/;ˇ.T0/

�
— .b2;b1/:

Since �
ku.�;T 0/k1;kv.�;T

0/k1
�
�
�
w.T 0/;´.T 0/

�
;

we have a contradiction because .0;T / is the maximum time interval of existence of
.u;v/. On the other hand, let .u1.x; t/;v1.x; t// be such that

u1.x; t/D ˛.t/ in x̋ � Œ0;T0/;

v1.x; t/D ˇ.t/ in x̋ � Œ0;T0/:

A routine computation reveals that

u1t D "�u1Cf .v1/ in ˝ � .0;T0/;

v1t D "�v1Cg.u1/ in ˝ � .0;T0/;

u1 � 0 on @˝ � .0;T0/, v1 � 0 on @˝ � .0;T0/, and

u1.x;0/� 0 in ˝;

v1.x;0/� 0 in ˝:

The maximum principle implies that

0� u.x; t/� u1.x; t/D ˛.t/ in ˝ � .0;T 0/;

0� v.x; t/� v1.x; t/D ˇ.t/ in ˝ � .0;T 0/;

where T 0 DminfT;T0g. We deduce that

T � T0: (2.5)

Indeed, assume that T < T0. We get�
ku.�;T /k1;kv.�;T /k1

�
� .˛.T /;ˇ.T // < .b2;b1/;

which is a contradiction because .0;T / is the maximal time interval of existence of
the solution .u;v/. Applying Taylor’s expansion, we obtain

1

1� "A
D 1C "ACo."/:

Using (2.4), (2.5) and the relation above, we complete the proof. �
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Now, let us consider the case where the initial data is not null. In the sequel, we
suppose that there exists a 2˝ such that

sup
x2˝

u0.x/D u0.a/ and sup
x2˝

v0.x/D v0.a/:

Consider the following eigenvalue problem

�� .x/D �ı .x/ in B.a;ı/; (2.6)

 .x/D 0 on @B.a;ı/; (2.7)

 .x/ > 0 in B.a;ı/; (2.8)

where ı > 0, such that, B.a;ı/D fx 2 RN Ikx�ak< ıg �˝.
It is well known that the above problem has a solution . ;�ı/ such that �ı D

�1

ı2 ,
where �1 is the eigenvalue corresponding to the above eigenvalue problem for ıD 1.

We are in position to state our result in the case where the initial data is not null.

Theorem 2. Suppose thatM1D supx2˝ u0.x/ > 0,M2D supx2˝ v0.x/ > 0, and
let K be an upper bound of the first derivatives of u0 and v0. Let

AD �1max
�
K2b2

f .0/
;
K2b1

g.0/

�
:

If
" <min

˚
.M1=2/

3; .M2=2/
3; .2A/�3; .K dist.a;@˝//3

	
;

then the solution .u;v/ of (1.1)–(1.6) quenches in a finite time, and its quenching
time T obeys the estimates

0� T �T0 � .T0ACC/"
1=3
Co

�
"1=3

�
;

where
C D

1

min
n
1
2
f
�
M2

2

�
; 1
2
g
�
M1

2

�o
and T0 is the quenching time of the solution .˛.t/;ˇ.t// of the differential system
defined in (1.11)–(1.14).

Proof. Due to the fact that u0 2 C 1. x̋/ and v0 2 C 1. x̋/, using the mean value
theorem and the triangle inequality, we get

u0.x/� u0.a/� "
1=3 for x 2 B.a;ı/�˝;

v0.x/� v0.a/� "
1=3 for x 2 B.a;ı/�˝;

where ı D "1=3

K
. Since the initial data .u0;v0/ is nonnegative in ˝, from the max-

imum principle, .u;v/ is also nonnegative in˝�.0;T /. Introduce the functionsw.t/
and ´.t/ defined as follows

w.t/D

Z
B.a;ı/

u.x; t/ .x/dx; ´.t/D

Z
B.a;ı/

v.x; t/ .x/dx; t 2 Œ0;T /:
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Take the derivative of w in t and use (1.1) to obtain

w0.t/D "

Z
B.a;ı/

 �udxC

Z
B.a;ı/

f .v/ dx for t 2 .0;T /:

Applying Green’s formula, we arrive at

w0.t/D "

Z
B.a;ı/

u� dx� "

Z
@B.a;ı/

u
@ 

@�
dsC "

Z
@B.a;ı/

 
@u

@�
ds

C

Z
B.a;ı/

f .v/ dx for t 2 .0;T /;

where � is the exterior normal unit vector on @B.a;ı/. Taking into account (2.6),
(2.7) and the fact that @ 

@�
� 0, we arrive at the relation

w0.t/� �"�ıw.t/C

Z
B.a;ı/

f .v/ dx for t 2 .0;T /:

It follows from Jensen’s inequality that

w0.t/� �"�ıw.t/Cf .´.t// for t 2 .0;T /:

In the same way, we also prove that

´0.t/� �"�ı´.t/Cg.w.t// for t 2 .0;T /:

As in the proof of Theorem 1, we get

w0.t/� f .´.t//

�
1�

"�ıb2

f .0/

�
for t 2 .0;T /;

´0.t/� g.w.t//

�
1�

"�ıb1

g.0/

�
for t 2 .0;T /;

which implies that

w0.t/� f .´.t//

 
1�

"1=3�1K
2b2

f .0/

!
for t 2 .0;T /;

´0.t/� g.w.t//

 
1�

"1=3�1K
2b1

g.0/

!
for t 2 .0;T /;

because �ı D
�1

ı2 D
�1K

2

"2=3 . Consequently,

w0.t/� f .´.t//
�
1� "1=3A

�
for t 2 .0;T /;

w.0/�M1� "
1=3;

and

´0.t/� g.w.t//
�
1� "1=3A

�
for t 2 .0;T /;
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´.0/�M2� "
1=3:

We have

w0.t/� f .´.0//.1� "1=3A/�
1

2
f .M2=2/

for t 2 .0;T /. In the same way, we get ´0.t/ � 1
2
g.M1=2/ for t 2 .0;T /, which

implies that

w0.t/�
1

C
; ´0.t/�

1

C
for t 2 .0;T /. Using the mean value theorem, we get

w
�
C"1=3

�
�M1; ´

�
C"1=3

�
�M2:

Set

w1.t/D w

�
t

1� "1=3A
CC"1=3

�
for t 2

�
0;.T �C"1=3/.1� "1=3A/

�
, and

´1.t/D ´

�
t

1� "1=3A
CC"1=3

�
for t 2

�
0;.T �C"1=3/.1� "1=3A/

�
. A straightforward computation reveals that

w01.t/� f .´1.t// for t 2
�
0;.T �C"1=3/.1� "1=3A/

�
;

w1.0/�M1

and

´01.t/� g.w1.t// for t 2
�
0;.T �C"1=3/.1� "1=3A/

�
;

´1.0/�M2:

It follows from the maximum principle that

w1.t/� ˛.t/ for t 2 .0;T �/;

´1.t/� ˇ.t/ for t 2 .0;T �/;

where T � DminfT0; .T �C"1=3/.1� "1=3A/g. We deduce that

T �
T0

1� "1=3A
CC"1=3: (2.9)

Indeed, suppose that

T >
T0

1� "1=3A
CC"1=3 D T 0:

We get �
w.T 0/;´.T 0/

�
D .w1.T0/;´1.T0//� .˛.T0/;ˇ.T0//— .b2;b1/:
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Since
�
ku.�;T 0/k1;kv.�;T

0/k1
�
� .w.T 0/;´.T 0//, we have a contradiction because

.0;T / is the maximal time interval of existence of the solution .u;v/. On the other
hand, setting

w2.x; t/D ˛.t/ in x̋ � Œ0;T0/;

´2.x; t/D ˇ.t/ in x̋ � Œ0;T0/;

it is not difficult to see that
.w2/t D "�w2Cf .´2/ in ˝ � .0;T0/;

.´2/t D "�´2Cg.w2/ in ˝ � .0;T0/;

w2 � 0 on @˝ � .0;T0/;

´2 � 0 on @˝ � .0;T0/;

w2.x;0/� u0.x/ in ˝;

´2.x;0/� v0.x/ in ˝:

It follows from the maximum principle that

˛.t/D w2.x; t/� u.x; t/ in ˝ � .0;T �� /;

ˇ.t/D ´2.x; t/� v.x; t/ in ˝ � .0;T �� /;

where T �� DminfT0;T g. We deduce that

T � T0: (2.10)

Indeed, suppose that T < T0. We get�
ku.�;T /k1;kv.�;T /k1

�
� .˛.T /;ˇ.T // < .b2;b1/;

which is a contradiction because .0;T / is the maximal time interval of existence of
the solution .u;v/. Applying Taylor’s expansion, we obtain

1

1� "1=3A
D 1C "1=3Co."1=3/:

Using (2.9), (2.10) and the above relation, we complete the proof. �

3. NUMERICAL EXPERIMENTS

In this section, we give some computational results to confirm the theory estab-
lished in the previous section. We consider the radial symmetric solution of the prob-
lem (1.1)–(1.6) in the case where ˝ D B D fx 2 RN Ikxk < 1g, @˝ D S D fx 2
RN Ikxk D 1g, f .v/D .1� v/�p, g.u/D .2�u/�q with p > 0, q > 0. The above
problem may be rewritten in the following form

ut D ".urrC
N �1

r
ur/C .1�v/

�p; r 2 .0;1/; t 2 .0;T /; (3.1)

vt D ".vrrC
N �1

r
vr/C .2�u/

�q; r 2 .0;1/; t 2 .0;T /; (3.2)
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ur.0; t/D 0; u.1; t/D 0; t 2 .0;T /; (3.3)

vr.0; t/D 0; v.1; t/D 0; t 2 .0;T /; (3.4)

u.r;0/D '.r/; r 2 .0;1/; (3.5)

v.r;0/D  .r/; r 2 .0;1/: (3.6)

Here, we take

'.r/D a sin.�r/ ;

 .r/D b sin.�r/ ;

with a 2 Œ0;2/, b 2 Œ0;1/. We begin by the construction of some adaptive schemes as
follows.

Let I be a positive integer and let hD 1=I . Define the grid xi D ih, 0 � i � I ,
and approximate the solution .u;v/ of (3.1)–(3.6) by the solution

�
U
.n/

h
;V

.n/

h

�
of the

explicit scheme

U
.nC1/
0 �U

.n/
0

�tn
D "N

2U
.n/
1 �2U

.n/
0

h2
C
�
1�V

.n/
0

��p
;

V
.nC1/
0 �V

.n/
0

�tn
D "N

2V
.n/
1 �2V

.n/
0

h2
C
�
2�U

.n/
0

��q
;

U
.nC1/
i �U

.n/
i

�tn
D "

 
U
.n/
iC1�2U

.n/
i CU

.n/
i�1

h2
C
.N �1/

ih

U
.n/
iC1�U

.n/
i�1

2h

!
C
�
1�V

.n/
i

��p
; 1� i � I �1;

V
.nC1/
i �V

.n/
i

�tn
D "

 
V
.n/
iC1�2V

.n/
i CV

.n/
i�1

h2
C
.N �1/

ih

V
.n/
iC1�V

.n/
i�1

2h

!
C
�
2�U

.n/
i

��q
; 1� i � I �1;

U
.n/
I D 0; V

.n/
I D 0;

U
.0/
i D a sin.�ih/ ; 0� i � I;

V
.0/
i D b sin.�ih/ ; 0� i � I;

where n� 0 and U .n/
h
D
�
U
.n/
0 ;U

.n/
1 ; : : : ;U

.n/
I

�T , V .n/
h
D
�
V
.n/
0 ;V

.n/
1 ; : : : ;V

.n/
I

�T .
In order to permit the discrete solution to reproduce the property of the continuous

one when the time t approaches the quenching time T , we need to adapt the size of
the time step so that we take

�tn Dmin
�
h2

2N"
; h2

�
1�

V .n/
h


1

�pC1
; h2

�
2�

U .n/
h


1

�qC1�
:
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We also approximate the solution .u;v/ of (3.1)–(3.6) by the solution
�
U
.n/

h
;V

.n/

h

�
of the following implicit scheme:

U
.nC1/
0 �U

.n/
0

�tn
D "N

2U
.nC1/
1 �2U

.nC1/
0

h2
C
�
1�V

.n/
0

��p
;

V
.nC1/
0 �V

.n/
0

�tn
D "N

2V
.nC1/
1 �2V

.nC1/
0

h2
C
�
2�U

.n/
0

��q
;

U
.nC1/
i �U

.n/
i

�tn
D "

 
U
.nC1/
iC1 �2U

.nC1/
i CU

.nC1/
i�1

h2
C
.N �1/

ih

U
.nC1/
iC1 �U

.nC1/
i�1

2h

!
C
�
1�V

.n/
i

��p
; 1� i � I �1;

V
.nC1/
i �V

.n/
i

�tn
D "

 
V
.nC1/
iC1 �2V

.nC1/
i CV

.nC1/
i�1

h2
C
.N �1/

ih

V
.nC1/
iC1 �V

.nC1/
i�1

2h

!
C
�
2�U

.n/
i

��q
; 1� i � I �1;

U
.nC1/
I D 0; V

.nC1/
I D 0;

U
.0/
i D a sin.�ih/; 0� i � I;

V
.0/
i D b sin.�ih/; 0� i � I:

Here, similarly to the case of the explicit scheme, we choose

�tn Dmin
n
h2
�
1�

V .n/
h


1

�pC1
; h2

�
2�

U .n/
h


1

�qC1o
:

We note that

lim
r!0

ur.r; t/

r
D urr.0; t/:

Hence, if t D 0, then we have

ut .0; t/D "Nurr.0; t/C .1�v.0; t//
�p:

This observation has been used in the construction of our schemes when i D 0. Let
us notice that in the explicit scheme, the restriction on the time step ensures the
nonnegativity of the discrete solution. For the implicit scheme, the existence and
nonnegativity are also guaranteed by standard methods (see, e. g., [2]).

We need the following definition.

Definition 1. We say that the discrete solution
�
U
.n/

h
;V

.n/

h

�
of the explicit or im-

plicit scheme quenches in a finite time if�
lim

n!C1
kU

.n/

h
k1; lim

n!C1
kV

.n/

h
k1

�
— .2;1/;



38 THEODORE K. BONI, HALIMA NACHID, AND DIABATE NABONGO

and the series
PC1
nD0�tn converges. The quantity

PC1
nD0�tn is called the numerical

quenching time of the solution
�
U
.n/

h
;V

.n/

h

�
.

In the following tables, in rows, we present the numerical quenching times, the
numbers of iterations, CPU times and the orders of the approximations corresponding
to meshes of 16, 32, 64, 128, 256. We take for the numerical quenching time

T n D

n�1X
jD0

�tj ;

which is computed at the first time when

jT nC1�T nj � 10�16:

The order s of the method is computed according to the formula

s D
log
�
.T4h�T2h/=.T2h�Th/

�
log.2/

:

3.1. Numerical experiments for p D 1, q D 1, aD 0, b D 0, N D 2

3.1.1. First case: "D 1
10

I T n n CPU time s

16 1.011490 8172 – –
32 1.010694 31009 1 –
64 1.010360 118245 4 1.26
128 1.010207 450669 30 1.13
256 1.010135 1714170 230 1.10

TABLE 1. Numerical quenching times, numbers of iterations, CPU
times (seconds), and orders of the approximations obtained with the
explicit Euler method.

I T n n CPU time s

16 1.015745 9004 – –
32 1.014494 34740 3 –
64 1.014196 134302 16 2.08
128 1.014124 518394 118 2.06
256 1.014107 1996487 954 2.09

TABLE 2. Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
implicit Euler method.
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3.1.2. Second case: "D 1
100

I T n n CPU time s

16 1.000142 8084 – –
32 1.000100 30610 1 –
64 1.000088 116756 4 1.81
128 1.000022 454329 31 2.46
256 1.000006 1726227 231 2.05

TABLE 3. Numerical quenching times, numbers of iterations, CPU
times (seconds), and orders of the approximations obtained with the
explicit Euler method.

I T n n CPU time s

16 1.000288 8087 – –
32 1.000134 30620 1 –
64 1.000100 116520 14 2.18
128 1.000093 443127 101 2.28
256 1.000091 1681491 861 1.81

TABLE 4. Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
implicit Euler method.

3.2. Numerical experiments for p D 1, q D 1, aD 0, b D 0, N D 2

3.2.1. First case: "D 1
100

I T n n CPU time s

16 0.393420 11468 – –
32 0.393698 43641 1 –
64 0.393784 166383 6 1.70
128 0.393809 633406 45 1.78
256 0.393817 2405445 338 1.65

TABLE 5. Numerical quenching times, numbers of iterations, CPU
times (seconds), and orders of the approximations obtained with the
explicit Euler method.
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I T n n CPU time s

16 0.393440 11469 – –
32 0.393703 43641 2 –
64 0.393785 166384 19 1.69
128 0.393810 633407 153 1.72
256 0.393817 2405445 1093 1.84

TABLE 6. Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
implicit Euler method

3.2.2. Second case: "D 1
500

I T n n CPU time s

16 0.375615 11613 – –
32 0.375680 44079 –
64 0.375702 167676 6 1.57
128 0.375709 636904 45 1.66
256 0.375711 2413063 354 1.81

TABLE 7. Numerical quenching times, numbers of iterations, CPU
times (seconds), and orders of the approximations obtained with the
explicit Euler method.

I T n n CPU time s

16 0.375619 11613 – –
32 0.375682 44079 3 –
64 0.375702 167677 19 1.66
128 0.375709 636904 150 1.52
256 0.375711 2413063 1120 1.81

TABLE 8. Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
implicit Euler method.

Remark. If we consider the problem (3.1)–(3.6) in the case where the initial data
is null and p D 1, q D 1, it is not difficult to see that the quenching time of the
solution of the differential system defined in (1.11)–(1.14) equals one. We observe
from Tables 1–4 that when " diminishes, then the numerical quenching time tends to
one. This result has been proved in Theorem 1.

When the initial data .'.r/; .r// are such that '.r/ D 1
2

sin.�r/ and  .r/ D
1
2

sin.�r/ ; and p D 1, q D 1, then we see that the quenching time of the solution
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of the differential system defined in (1.11)–(1.14) equals 0:375. We observe from
Tables 5–8 that when " diminishes, then the numerical quenching time decays to
0:375. This result has been established in Theorem 2.
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E-mail address: nabongo diabate@yahoo.fr

http://projecteuclid.org/getRecord?id=euclid.bbms/1103055721
http://dx.doi.org/10.1016/S0764-4442(01)02078-X
http://dx.doi.org/10.1016/0362-546X(93)90044-S
http://dx.doi.org/10.1137/S0036141091223881
http://dx.doi.org/10.1137/0518054
http://dx.doi.org/10.1007/BF01765943

