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1. INTRODUCTION

There are many works dealing with constructive methods for approximate inte-
gration of boundary value problems for ordinary differential equations, which allow
one to obtain a direct algorithm to error estimation (see, e. g., [4, 10, 11] and refer-
ences therein). These methods include the two-sided methods, which give provide
a possibility to construct approximate solutions and, on every step of iteration, obtain
a posteriori error estimates of the successive approximations. Numerous research
papers are devoted to the construction of new modifications of two-sided methods
aimed at the study of various boundary value problems for ordinary differential equa-
tions (see, e. g., [1-3,9].

This paper is devoted to the investigation of a four-point boundary-value problem
of the Vallée—Poussin type for a system of non-linear differential equations with ar-
gument deviation by using a suitable version of the two-sided method generalising
the works [5, 6].

2. PROBLEM SETTINGS, DEFINITIONS AND NOTATIONS

Let us consider the following problem of Vallée-Poussin’s type: to find a solution
Y = (yi)7_, of the system of differential equations

Y® () = F(x.Y(x).(§aY)(x).(FoY)(x)). x€[0,4], (2.1)
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which satisfies the conditions
Y0O)= A1, Y(/3)=Az, YQL/3)= A3, Y({)= Ay, 2.2)
and
) @(x) ifx €[Ao,0],
W(x) ifxel[L,00],
where F:[0, £] x R3” — R”, the vector-functions A = (Ai)7—; and © = (6;)7_, from
C ([0, £],R™)* are such that A; (x) < x, 6;(x) > x forall x € [0,£],i = 1,n,
Ao = min{)t,-(x) | x €[0,£], i =1,_n}, Op := max{@i(x) | x €]0,£], i =1,_n}
and A5 = (a;s)7_, € R" for s = 1,4, and @ € C([Ao,0],R"), ¥ € C([£, 6], R") are
given initial vector-functions satisfying the conditions
®0)=A;, ¥(l)=Aq. (2.4)
The operator §:C([Lo, 6o], R"?) — C(]0, £], R"™) appearing in (2.1) is defined by the
formula

Y(x) 2.3)

FrY)x) == (i), xe0.4],
forany I' = (y;)"_, € C([0,£],R") and Y = (3;)"_, € C([Ao. fo], R").

3. ASSUMPTIONS

In the sequel, let us suppose that the right-hand side F: [0, £] x D3 — R", D € R",
of the equation (2.1) belongs to the class Mg ([0, £]), where M o ([0, £]) denotes the
set of the vector-functions F satisfying the following conditions:

(1) F eC([0,£] x D3, R");
(2) there exists a vector-function H € C([0, £] x D, R") such that:
(a) the equality
Hx,UU)=F(x,U)
holds for all x € [0, £] and U € D3;
(b) the inequality

H (x, P1(x),($4P1)(x). (§0 P1)(x). Q2(x). (§4 02)(x). (§002)(x))
> H(x,01(x),($4Q1)(x). ($0 Q1) (x). P2(x),(§4 P2)(x).(§0 P2)(x)) (3.1)

is satisfied for all x € [0, £] and every vector-functions Py, Q: [0, 00] —
R”, k = 1,2, whose restrictions on [0, £] belong to C*([0, £], R"), such
that Py (x), Qr(x) € D forall x € [Ag,60], k = 1,2, and

Pr(x) < Or(x) forxel0,£/31U[2£/3,4], k =1,2,
Pr(x)> Or(x) forxe[l/3,20/3], k=1,2,

PP )= 0W(x) forxe0.4], k=1,2.

*C([0,£],R™) is the usual Banach space of continuous vector-functions from [0, £] to R”.
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(c) the vector-function H satisfies the Lipschitz condition with a non-negative
matrix K = (kij)?/.zl, i.e.,

|H(x, P1o, P11, P12, Q10. Q11, Q12) — H(x, Poo, Po1, Po2. Qoo, Qo1, Q02)]

2
= K(Z(lpls_Pm'+|Q1s_Q0s|))v (3~2)

s=0
for all Psg, Ps1, Ps2, Os0, Qs1, Qs2 from D, s =0, 1, and all x € [0, £].

In (3.1), (3.2), and all similar relations below, the inequalities between vectors and
the absolute value sign are understood component-wise.

4. PRELIMINARY CONSIDERATIONS

Due to the fact that the corresponding linearised homogeneous boundary value

problem has only the trivial solution on [0, £], the solution Y of problem (2.1)—(2.3)
can be represented in the form

D(x) for x € [Ao,0],
Y(x) = {2x)=(TFY0).(FaY)0). (FoY)() (x) forx€[0.£], (4.1
w(x) for x € [£, 60,
where the vector-function £2(x) = (w; (x))}_, has the components
X 0 x2 X3
2431 L 4n—aq B £
o) =an+ |3 2N g 24 xelodl,
46 (2L 40 g, 2 8L
3 i3 i1 9 zg
[ aijg —dajl [2 [

the operator 7: C([0, £], R") — C([0, £],R") for any Z € C(]0,£],R") is defined by
the formula

(T2 = e / G(r.6)Z(E)dE, x < [0.1],

and & is the Green function [7, 8] of the problem given by the relations

‘ R11(x,6), 0<§ <x,
G1(x,6), 25 S§2’£ Ria(x g),xsssé,

GO =1G2(x5). 3 =x=F G D=4 T g g
2L o3

G3(x.6), F <x <UL, Ria(x,£), % £<L,

Roi(x,£), 0<g<¥, R3i(x.§), 0<§ <%,

) Raa(x,6), L=< <x, ) Raa(x,6), L<g <,
PO R v e <2, BEO TN pue, L g,
Roa(x,8), <t <1, R34(x.§), x <§ = ¢,
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x (x—£&3 x2 X3 X 0 x2 X3
L odog3y £ 8 L 0 e e
Rkl(-xaé)z 23( 23Z 3 422 82;3 ’Rk4(xa'i:): 23£ 4%2 82573
3 (5-07 T oF 30 e 57
L (=83 12 1 L (L—§)3 12 1
fork = 1,3,
X 0 x2 X3 x (x—=§3 x? x3
Lo (d_g)y3 2B L 0 2
Ro(.8) =5 5 o3 a2 s3] B8 =15 T
3 (587 S SF 3 0 5 57
L (=83 1?2 ¢ L (L—=§)3 1?2 !
and
x (x=£3 x? x3
£ 0 A
Ra(x,§) = Raa(x.8) = | 5 CL g 22 8|
3 3 9 2
L (=83 12 1
b 0 x2 X3
£ 0 e
Ri3(x.§) = Ra3(x.8) = | 5 L _gy3 22 8|
3 3 9 27
L (=83 12 1

It is easy to see that

§1(x.§) =20, §2(x,8) =0, §3(x.§) =0 for(x,§) €[0.£]x[0.£]. (4.2)

Definition. Vector-functions Zg, Vp:[Ag,00] — O whose restrictions on [0, £] be-
long to the space C*([0, /], R?) are called comparison functions of problem (2.1)—
(2.3) if they satisfy the boundary conditions (2.2), the initial condition (2.3), and the
inequalities

Zo(x) < Vo(x) forxel0,£/31U[2£/3,1], 13
Zo(x) = Vo(x) forxe[l/3,2¢/3]. (4.3)

Notation. For any vector-functions P, Q:[Ag,09] — R” we set

(P,Q)={ueR" min{P(x), Q(x)} <u <max{P(x), Q(x)} for some x € [Ag, 6]},

where the operations “min” and “max” for vectors are understood component-wise.
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5. CONSTRUCTION OF THE ALTERNATIVE TWO-SIDED METHOD FOR PROBLEM
(2.1)-(2.3)

Let us construct the successive approximations {Z,}72 ; and {V;,}72 ; of a solu-
tion of problem (2.1)—(2.3) according to the formulae

d(x) for x € [A¢.0],
Zpt1(x) = { 2(x)— (TFp)(x) forxel0,£],
w(x) for x € [£,6p],
(5.1)
D(x) for x € [Ao,0],
Vot1(x) = { R2(x)—(TFP)(x) forxel0,/],
¥(x) for x € [£, 6p],

where
FP(x) = H(x, Zp(x),($4Zp)(x). ($6Zp)(x), Vp(x),($4Vp)(x),($6Vp) (X)),
Fp(x) = H(x.Vp(x),(§4Vp) (X).($6Vp)(x). Zp(x).(§4Zp) (x). ($0 Zp) (x))
for all x € [0, /], and the zero approximations Zo and Vp are comparison functions
of problem (2.1)—(2.3) satisfying the conditions
ao(x) := Z§P (x) = Fo(x) 2 0.

(5.2)
Bo(x) := VP (x) = F(x) <0

for all x € [0, £].
The iteration process (5.1) can be represented in the form
Zpt1(xX)=Zp(x) = (Tap)(x), Vpr1(x)=Vp(x)=(Thp)(x), xe€[0.£], (5.3)
where
=ZWx)—F =V®(x)—FP 0,4 N
ap(x) 1= Zp" (x) = Fp(x),  Bp(x) =V, (x) (x). xe€[0.f]. peN.
(5.4)
Hence, from (5.3) and (5.4), for any p € N U {0}, we obtain
p1(x) = Fp(X) = Fp41(x),  Bp+1(x) = FP(x)—F?T(x), x€0./], (5.5)
Zp(x) = Zpta(x) = =T(ap +op41)(x), x€][0,£],

Vo) = Vpa(x) = —T(Bp + Bps1)(x).  x €[0.4], ©.6)

o p 1 () 02 (¥) = Fp() = Fpiax), % € [0,2],
Bo1(0) + Bpaa(x) = FP(x) = FP*2(x).  x€[0.£].
Taking into account conditions (4.2), (5.2), and (5.3) with p = 0, we can see that
Z1(x)—Zo(x) =0, Vi(x)—Vo(x)<0, xe€[0,£/3]U[2£/3,1],
Z1(x)—Zp(x) <0, Vi(x)—Vp(x)=>0, xe[l/3,2L/3].

5.7

(5.8)
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Thus, if Z1(x), V1(x) € D for all x € [Ag, 6], then from (5.5) with p = 0, by virtue
of (5.2), (5.8), and (3.1), we obtain a1 (x) <0, B1(x) > 0 for all x € [0, £]. Therefore,
from (4.2) and (5.3) with p = 1 we get

Zr(x)—Z1(x) <0, Va(x)—Vi(x)=>0, xel0,£/3]U2£/3,1],
Zr(x)—Z1(x) =0, Va(x)—Vi(x) <0, x e[L/3,2L/3].
Assume, in addition, that
ao(x)+a1(x) >0, PBo(x)+p1(x)<0, x€]0,7]. (5.10)
Then from (5.6) with p = 0 we obtain
Zo(x)—Z2(x) =0, Vo(x)=Va(x) =0, x€[0,£/3]U[2£/3,1],
Zo(x)—Za2(x) =0, Vo(x)—Va(x) <0, xe€[l/3,2¢/3],
and thus (5.9) and (5.11) result in

Zo(x) = Z2(x) = Z1(x), Vi(x) < Va(x) = Vo(x),
for x € [0,£/3]U[2£/3,£], (5.12)

(5.9

(5.11)

and
Z1(x) = Za(x) = Zo(x), Vo(x) =Va(x) = Vi(x) forxe[l/3,20/3]. (5.13)

Therefore, we have proved that if (Zg,Z1) C D, (V1,Vy) C D, and conditions
(5.10) hold, then the values Z»(x) and V;(x) of the next approximations which are
obtained according to (5.1) also belong to the set D.

From (3.1), (5.10), (5.12), (5.13), and (5.3), (5.5), (5.7) with p =2,1,0, we get

a2(x) >0, pa(x) <0, xe€[0,/],
Z3(x)—Z3(x) >0, Vi(x)—Va(x) <0, xe[0,£/31U[2£/3,1],
Z3(x) = Z2(x) 20, Va(x)=Va(x) >0, xe€[l/3,2¢/3],
and
a1(x)+oaz(x) <0, Bi1(x)+p2(x)=>0, x€]0,/].
Hence, from (5.6) with p = 1 we obtain
Z1(x)=Z3(x) =0, Vi(x)—=V3(x) <0, xe€l0,£/3]U[2L/3,1],
Z1(x)—Z3(x) =0, Vi(x)—V3(x) =0, xe€[l/3,2L/3].
Consequently,
Zo(x) = Z2(x) = Z3(x) = Z1(x), Vi(x) = V3(x) = Va(x) = Vo(x),
x €[0,£/3]U[2L/3,1],
Z1(x) = Z3(x) = Za(x) = Zo(x), Vo(x) = Va(x) = V3(x) = Vi(x),
x€l/3,20/3],
and thus Z3(x), V3(x) € O for all x € [Lg, bp].
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Using the method of the mathematical induction we can show that if (Zg, Z1) C
D, (V1.Vo) € D, and conditions (5.10) hold, then the sequences {Z,}72 | and
{Vp}p=1, which are constructed according to (5.1), satisfy the inequalities

Zop(x) < Zopi2(x) £ Zopy3(x) < Zopt1(x),
Vap+1(x) < Vapt3(x) < Vapra(x) < Vap(x)

forx €[0,£/3]U[2£/3,/], p=0,1,2,..., and

Zop+1(x) = Zop43(x) = Zop42(X) < Z2p(x),
Vap(x) < Vapia(x) < Vapis(x) < Vapgi(x)
forx e[{/3,2L/3], p=0,1,2,....

Let us now find a sufficient condition for the uniform, on [A¢, 6p], convergence of
the sequences {Z,}72 | and {V}}77 ; to the unique solution of the boundary value
problem (2.1)—(2.3).

For any vector P = (p;)7_, € R", we set

| Pl := max |p;].
i=1,n

Let us also put

Wp(x) = Zp(x)_Vp(x)’ XG[AO,QO], p:Ovl’z---’

e:= max {1Zo(x) = Z1@)| [Vo(x) = V()] [Wo)] .
x€[0,£]

and

L 4£10
d:= max/o |9(x,$)|d£=3—7.

x€[0,4]
Then using (5.3), (5.5), we can prove by induction the error estimate

|

max 4|2y (0) = Zp (0|

Vpr1(0) = V()] |

81 p 4 r
<el——d6|K||) ==K 14
_e(8£6d6ll II) 6(9II II) (5.14)

valid for all p € N, where K is the matrix appearing in the Lipschitz condition (3.2)
and [|K|| = max; _7; {37 kij -
If || K || satisfies the inequality

9
1Kl < 7% (5.15)

o0

then it follows from estimate (5.14) that the approximations {Z, };11 and {Vp} _ |

converge, respectively, to certain limits Yy and Y * uniformly on [A¢, 6p].
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Let us show that Y« (x) = Y *(x). From (5.1) we have

0 for x € [A0,0],
Wpr1(x) = { (T(FP — Fp))(x) forx €[0,£],
0 for x € [£, 6p)].
It is easy to show that the estimate
81 P o4 i
s 100 < (g d6lKl) = (5 1K1) (5.16

is true for p € N. If condition (5.15) holds, then lim, o Wy (x) = 0 uniformly on
[0, /], and thus
Yi(x) =Y*(x) =:Y(x), x € [Ao,bo].

Passing in equalities (5.1) to the limit as p — oo, we obtain the equality

P(x) for x € [A0,0],
Y(x)={2(x)—(TH)(x) forxel0,£],
¥(x) for x € [£, 6o,

where

H(x):=H(x.Y(x).($4Y)(x).($0Y)(x).Y(x).(§4Y)(x).($0Y)(x))
= F(x,Y(x),(aY)(x), (goY)(x)), x€[0,4],
i.e., Y is a solution of problem (2.1)—(2.3).

The uniqueness of the solution Y under the condition (5.15) can be easily proved
by using the Lipschitz condition (3.2).

Consequently, we have proved the following

Theorem. Let F € Mo ([0,0]) and Zo, Vo be comparison functions of prob-
lem (2.1)—(2.3) satisfying conditions (5.2). In addition, let the first approximations
Z1 and V1 constructed according to formulae (5.1) be such that (Zo,Z1) € D,
(V1, Vo) C D, and conditions (5.10) hold. Assume also that condition (5.15) is satis-
fied.

Then the sequences of approximations {Zl,};;o:1 and {Vp}:ozl constructed ac-

cording to (5.1) converge uniformly on [Ag,00] to the unique solution Y of problem
(2.1)—(2.3) and, moreover,

Zop(x) < Zopt2(x) SY(x) < Zop+3(X) < Zopt+1(x),
Vap+1(x) < Vapi3(x) S Y(x) < Vapia(x) < Vap(x)

forx €[0,£/31U[2¢/3,2], p=0,1,2,..., and

Zop+1(X) £ Zopy3(x) Y (X) < Zopia(x) < Zop(x),
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Vap(x) < Vapta(x) S Y(x) < Vap43(x) < Vapt1(x)
forx e[£)3.20/3], p=0.1,2,...

Remark. 1f the domain D is “large” enough, then there exist comparison functions
Zy, Vo of problem (2.1)—(2.3) satisfying conditions (5.2).

Indeed, let U:[Ag,0p] — R be an arbitrary vector-function which satisfies the
boundary conditions (2.2) and the initial condition (2.3) and is such that U|jg 4] €
C*([0,£],R™) and U(x) € D for all x € [Ag,fo]. Then we set

a(x) :=UWD ()= F (x.U(x).(§a0)(x).(FoU)(x)). x€[0.£].  (5.17)
It is clear that the problems
n™ = Ja(x)],

n(0)=0, n(/3)=0, n2L/3)=0, n)=0

and
q@ = —|(x)],

q(0)=0, ¢q(£/3)=0, ¢q(2£/3)=0, q()=0

have unique solutions 7 and ¢, respectively. Relations (4.1) and (4.2) yield
n(x) <0, ¢q(x)>0, xel0,£/3]U[2£/3,1],

n(x) >0, q(x)<0, xel[t/3,20/3]. (5.18)
Now we put
Zo(x) = U +1(0). Vo) =U(x) +4(x). xe[0.0].
Zo(x) =U(x), Vo(x) = U(x), x € [Ao,0]U[£, o).

It is easy to see that Zo and Vj satisfy the boundary conditions (2.2), the initial
condition (2.3), and inequalities (4.3). If Zo(x), Vo(x) € D for all x € [Lo, bp], then
Zy, Vp are comparison functions of problem (2.1)—(2.3) and, using (5.17), (5.18) and
assumptions (2a) and (2b) of Section 3, we get

Z$ ()~ Fo(x) = UM () + |a(x)| — Fo(x) =
= a(x) +|a(x)|+ F (x.U(x), (FaU)(x).(FoU)(x)) — Fo(x) = 0
and
V@) = FO(0) = U () o) | - FO(x) =
= a(x) = | (X)|+ F (x, U(x), (§aU)(x), (oU)(x)) = FO(x) <0
for all x € [0, £]. Consequently, Zo and Vj also satisfy conditions (5.2).
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