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A. By the use of the corresponding shift matrix, the paper gives a criterion
for the unique solvability of linear boundary value problems posed for linear dif-
ferential algebraic equations up to index 2 with well-matched leading coefficients.
The solution is constructed by a proper Green function. Another characterisation
of the solutions is based upon the description of arbitrary affine linear subspaces
of solutions to linear differential algebraic equations in terms of solutions to the
adjoint equation. When applied to boundary value problems, the result provides a
constructive criterion for unique solvability and allows one to reduce the problem
to initial value problems and linear algebraic equations.
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1. I

F  linear differential algebraic equations (DAEs for the sake of brevity in what
follows) of the form

A(t) (D(t)x(t))′ + B(t)x(t) = q(t) (1.1)

with continuous, quadratic matrix-valued functionsA,D andB with complex entries,
the “index-1” and “index-2” notion was introduced in [2]. A theorem on the unique
solvability of the properly formulated initial value problems (IVPs) for (1.1) equipped
with these indices was proven. It was shown that, under the same conditions, the
adjoint equation

−D∗(t)
(
A∗(t)y(t)

)′
+ B∗(t)y(t) = p(t) (1.2)

is of the same index, and the proper IVP for (1.2) is solvable simultaneously with that
for (1.1). Meanwhile, some properties of the inherent ordinary differential equation
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(ODE) of (1.1) were investigated. The fundamental matrices for (1.1) and a specific
one called the normalised fundamental matrix were also introduced.

The main goal of this paper is to study the boundary value problems (BVPs) for
(1.1) up to index 2. The assertion on the simultaneous solvability of (1.1) and (1.2)
turns out to be the keystone in the analysis of BVPs.

The paper is organised as follows. In Section 2, we recall the basic definitions and
some propositions concerning equation (1.1). For the sake of completeness, we also
define “index-0” equations. The results of [2] can be extended to “index-0” equations
in a obvious way. The solvability theorem for IVPs posed for the pair (1.1) and (1.2)
is cited in this section. Existence results for two-point BVPs in terms of Green’s
function and shift matrix will be stated in Section 3. In Section 4, we describe affine
linear subspaces of solutions to (1.1) by the help of solutions to (1.2). The transfer of
boundary conditions (BCs) for BVPs both with separated and non-separated BCs and
the related constructive existence theorem will be the topic of Section 5. The paper
is concluded with some remarks on numerical implementation in the final Section 6.

2. P

We consider equations of the form (1.1), whereA,D andB are continuousm×m
matrix functions with complex entries on closed intervalI = [a,b], andq is a con-
tinuous vector-valued function with complex components onI. Parallel to (1.1),
equation (1.2) is involved in our study,p also being a continuous vector-valued func-
tion with complex components onI. The pair of leading terms in (1.1) is assumed to
bewell-matchedin the following sense:

Condition C1 ([2]). For everyt ∈ I, the equality

kerA(t) ⊕ im D(t) = �m (2.1)

is true, and there exist continuously differentiable functionsa1, . . . ,am−r andd1, . . . ,dr

such that

kerA(t) = span{a1(t), . . . ,am−r (t)}, im D(t) = {d1(t), . . . ,dr (t)}, t ∈ I. (2.2)

We proved

Lemma 1 ([2, Lemma 2.1]). Equation(1.1)has well-matched leading coefficientsA
andD if and only if the leading coefficientsA∗ andD∗ of equation(1.2)do so.

If R is the continuously differentiable projector function realizing the decompo-
sition (2.1), i. e., kerR(t) = kerA(t) and imR(t) = im D(t), t ∈ I, thenR∗ is the
projector function corresponding to the decomposition induced byA∗ andD∗.

Remark1. We are mainly interested in considering singular well-matched leading
pairsA(t) andD(t). Assumption (2.1), however, includes the case where both matri-
cesA(t) andD(t) are nonsingular over the entire intervalI. Then,r = mandR(t) ≡ I
whereI is them×m identity matrix. The considerations of [2] can be easily extended
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to the case of nonsingular well-matched leading terms. Equation (1.1) turns into a
standard explicit ODE ifA(t) ≡ D(t) ≡ I .

Definition 1 ([2, Definition 2.1]). A vector functionx : I → �m is called a solution
of (1.1) if x ∈ C1

D(I) := {x ∈ C(I) : Dx ∈ C1(I)} and (1.1) is satisfied pointwise.

A solution of (1.2) is defined similarly. A kind of Lagrange identity is stated.

Lemma 2. Let the matrix functionsA andD be well-matched. Then, for every pair of
solutionsx ∈ C1

D, y ∈ C1
A∗ of the homogeneous equations(1.1)and(1.2), respectively,

the identity
y∗(t)A(t)D(t)x(t) = const for t ∈ I. (2.3)

holds.

A key tool in the investigation of problems carried out in [2] is a chain of matrix-
valued and subspace-valued functions associated with (1.1), namely,

G0 := AD, B0 := B;
for i = 0, 1, Qi ,Pi ,Wi are projector functions:Q2

i = Qi , W2
i = Wi ,

Ni := kerGi = im Qi , Pi = I − Qi ,
kerWi = im Gi ,
Gi+1 := Gi + BiQi , Bi+1 = BiPi ,
Si := {z ∈ �m : Biz ∈ im Gi} = kerWi Bi .

(2.4)

In the sequel,D− denotes the reflexive generalised inverse (RGI) function ofD
such thatDD− = R andD−D = P0; A− is an RGI function ofA such thatA−A = R
and AA− = I − W0; G−1 stands for the RGI function ofG1 such thatG1G−1 = I −
W1 andG−1G1 = P1. We recall [5] that a matrixT− ∈ L(�k,�l) is an RGI of a
matrix T ∈ L(�l ,�k) if it satisfies the equalitiesT−TT− = T− andTT−T = T. The
products PRGI1 := TT− and PRGI2 := T−T are projectors. If PRGI1,PRGI2 are given
projectors such that im PRGI1 = im T and ker PRGI2 = kerT, then they define an RGI
T− uniquely.

Due to condition C1, dim imG0(t) ≡ r. Let dim imG1(t) = r1(t). Based on the
properties of terms in the chain, an index may be assigned to some equations of the
form (1.1) if, in addition to condition C1, another requirement is also fulfilled.

Condition C2 ([2]). The dimensions ofD(t)S1(t) andD(t)N1(t) are constant,

dimD(t)S1(t) =: % and dimD(t)N1(t) =: ν, (2.5)

and there exist continuously differentiable functionssD
1 , . . . , s

D
% andnD

1 , . . . ,n
D
ν such

that for allt ∈ I,

D(t)S1(t) = span{sD
1 (t), . . . , sD

% (t)}, D(t)N1(t) = span{nD
1 (t), . . . ,nD

ν (t)}.
Here, we extend Definition 2.2 from [2] as follows:

Definition 2. Let conditions C1 and C2 be valid. Equation (1.1) is said to be
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(0) an“index-0” tractable DAE if

N0(t) = {0}, t ∈ I, (2.6)

(1) an“index-1” tractable DAE if

N0(t) , {0}, (2.7)

N0(t) ∩ S0(t) = {0}, t ∈ I, (2.8)

(2) an“index-2” tractable DAE if

dimN0(t) ∩ S0(t) = const> 0, (2.9)

N1(t) ∩ S1(t) = {0}, t ∈ I. (2.10)

Whenr < m, the chain associated with an equation is not uniquely defined due to
the freedom in the choices of the projectors. The index, however, does not depend
on these choices. Thus, the index value, if it exists, is an inherent property of the
equation. One may choose a specific projectorQ̂1 so that kerQ̂1(t) = S1(t). The
related terms in the chain will be marked by “ˆ” (a hat). For equations equipped with
an index, the assumptions ensurer1(t) ≡ const=: r1 and% = r + r1 −m, ν = m− r1.
In the “index-0” and “index-1” cases,r1 = m. The functionDP̂1D− is a continuously
differentiable projector function: for everyt, it projects ontoDS1 alongDN1⊕ kerA.

SettingA∗ = −D∗, D∗ = A∗, andB∗ = B∗, one can construct a chain similar to
(2.4) starting withA∗, D∗, B∗, i. e., for equation (1.2). The terms derived in this
chain will be marked by an additional first subscript “∗” (a star).

With the inclusion of the “index-0” equations, Theorem 5.1 of [2] reads as follows:

Theorem 1. Equation(1.1) is of indexµ, µ = 0,1,2, if and only if equation(1.2)
possesses this property.

The main point in the proof [2] of this theorem consists in showing that

DS1 = R(A∗N∗1)⊥ = (A∗N∗1 ⊕ kerD∗)⊥,

A∗S∗1 = R∗(DN1)⊥ = (DN1 ⊕ kerA)⊥. (2.11)

The so-called inherent regular ODE for DAE (1.1) has the form

u′ + DG−1
0 BD−1u = A−1q (2.12)

in the “index-0” case, and it has the form

u′ − R′u + DG−1
1 BD−u = DG−1

1 q (2.13)

in the “index-1” case. If the DAE is of index 2, then the inherent ODE is

u′ − (DP̂1D−)′u + DP̂1Ĝ
−1
2 BD−u = N0q, (2.14)

where

N0q := DP̂1Ĝ
−1
2 q + (DP̂1D−)′DQ̂1Ĝ

−1
2 q, N0q = DP̂1D−N0q.
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For the inherent ODEs derived from an “index-1” DAE it was shown that ifu(t̃) ∈
im D(t̃) for somet̃ ∈ I, thenu(t) ∈ im D(t) for all t ∈ I. Similarly, in the “index-2”
caseu(t̃) ∈ im D(t̃)P̂1(t̃) involvesu(t) ∈ im D(t)P̂1(t). Equations (2.13) and (2.14) are
independent of the choice ofP0 andP0,P1, respectively.

Let x be a solution of equation (1.1). If (1.1) is a DAE of index 0, thenDx is a
solution of (2.12). In the “index-1” case,Dx is a solution of (2.13). In the “index-2”
case, functionDP̂1x is a solution of (2.14).

Finally, we recall the solvability statement for IVPs.

Theorem 2([2, Theorems 3.1 and 3.2]). Let t0 ∈ I. Assume that one of the following
conditions is satisfied:

(i) (1.1) is an “index-0” or “index- 1” DAE, the inclusionq ∈ C(I) holds, and
the initial condition has the form

D(t0)x(t0) = d0 with d0 ∈ im D(t0);

(ii) (1.1) is an “index-2” DAE, the inclusionq ∈ C1
DQ1G−1

2
(I) holds, and the

initial condition has the form

D(t0)P̂1(t0)x(t0) = d0 with d0 ∈ im D(t0)P̂1(t0). (2.15)

Then there exists a unique solutionx of the IVP.

Now, the assertion on simultaneous solvability of DAEs (1.1) and (1.2) with proper
right-hand sides and initial conditions appears to be a direct consequence of Theo-
rems 1 and 2.

Note that for the “index-0” equations the initial condition is equivalent simply to
conditionx0 ∈ �m and the equation may be considered formally a particular case of
“index-1” equations withQ0 = W0 = 0, r = m. In turn, an “index-1” DAE may
be considered formally a particular case of “index-2” equations withQ1 = W1 = 0;
then% = r, DP̂1D− = R, D(t)N1(t) ≡ {0}, G2 = G1. Thus, in the next sections it is
sufficient to prove the statements only for the “index-2” DAEs.

3. T    G’  

Let equation (1.1) be tractable with indexµ, µ ∈ {0, 1, 2}. Denote the maximal
fundamental solution matrix normalised att0 ∈ I by X(t, t0), i. e., X(t, t0) ∈ L(�m)
andX(·, t0) is the matrix-valued solution of the IVP

A(DX)′ + BX = 0, D(t0)P̂1(t0)(X(t0) − I ) = 0. (3.1)

We recall from [2] the following properties of the maximal fundamental solutions:

im X(t, t0) = im Πcanµ(t) kerX(t, t0) = kerΠcanµ(t0), t ∈ I,
whereΠcanµ is a projector function onto the geometric solution space of the homo-
geneous DAE (1.1) (q = 0), Sindµ(t) = im Πcanµ(t),

Πcanµ := KP0P̂1, K := I − Q0P̂1Ĝ
−1
2 BP0 − Q0Q̂1D−(DQ̂1D−)′D, (3.2)
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U is nonsingular.
Let the RGIX(t, t0)− ∈ L(�m) of X(t, t0) be defined by the relations

X(t, t0)X(t, t0)− = Πcanµ(t),

X(t, t0)−X(t, t0) = Πcanµ(t0).

(See Section 2 for the definition of RGI). The usual group properties

X(t1, t2)X(t2, t3) = X(t1, t3), X(t1, t2)− = X(t2, t1).

hold. It follows from Theorem 2 that, for allq ∈ CDQ1G−1
2

(I) andx0 ∈ �m, the IVP

A(Dx)′ + Bx = q, D(t0)P̂1(t0)(x(t0) − x0) = 0, (3.3)

is uniquely solvable. Due to the linearity, the solution can be split into two terms,

x(t) = X(t, t0)x0 + x̃(t), t ∈ I, (3.4)

wherex̃ denotes the solution of the IVP

A(Dx)′ + Bx = q, D(t0)P̂1(t0)x(t0) = 0. (3.5)

In [2], it was shown that every solution of (1.1) can be represented in the formx =

Πcanµx +N1q, where

N1q := (P0Q̂1 + Q0P̂1)Ĝ−1
2 q + Q0Q̂1D−(DQ1G

−1
2 q)′.

Thus, one can obtain the relation

x̃(t) =

∫ t

t0
X(t, s)(N0q)(s)ds+ (N1q)(t), t ∈ I. (3.6)

Now we turn to the BVP for (1.1) with the boundary condition

Kax(a) + Kbx(b) = d, (3.7)

d ∈ LBC, whereLBC := im (Ka | Kb ) ⊆ �m is the linear subspace associated with
the boundary condition. The valuesx0 ∈ �m in (3.4) that yield solutions of the BVP
(1.1), (3.7) must satisfy the linear system

Mx0 = d − Kax̃(a) − Kbx̃(b) (3.8)

with the “shift matrix” M,

M := KaX(a, t0) + KbX(b, t0). (3.9)

Theorem 3. Let DAE(1.1)be tractable with indexµ, µ ∈ {0, 1,2}. Then, for arbitrary
d ∈ LBC andq ∈ C1

DQ1G−1
2

(I), the BVP(1.1), (3.7) is uniquely solvable if and only if

the shift matrixM satisfies the conditions

kerM = kerΠcanµ(t0), (3.10)

im M = LBC. (3.11)
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Proof. By construction, the relations kerΠcanµ(t0) ⊆ kerM, im M ⊆ LBC are true.
Let the BVP (1.1), (3.7) be uniquely solvable for alld ∈ LBC andq ∈ C1

DQ1G−1
2

(I).

Put q = 0. For everyd ∈ LBC, there is anx0 ∈ �m such thatMx0 = d. Hence,
LBC ⊆ im M, i. e., (3.11) holds.

Moreover, since the homogeneous BVP (1.1), (3.7) withd = 0 andq = 0 has only
the trivial solution, the IVP

A(Dx)′ + Bx = 0, D(t0)P̂1(t0)(x(t0) − x0) = 0, x0 ∈ kerM

may have only the identically vanishing solution. This means that

kerM ⊆ kerD(t0)P̂1(t0) = kerΠcanµ(t0)

must be true, and consequently, (3.10) holds.
Conversely, let (3.10) and (3.11) be satisfied. Then, for everyd ∈ LBC andq ∈

C1
DQ1G−1

2
(I), a solution of the BVP is determined by (3.4) and (3.8). The relations

d = 0 andq = 0 imply x̃ = 0 andMx0 = 0. Thus,x0 ∈ kerM = kerX(t, t0). Now
(3.4) leads us to the solutionx which equal identically to zero. �

Remark2. The conditions (3.10), (3.11) ensure that rankM = % = r + r1 −m.

When (3.10) and (3.11) are true, we can introduce an RGIM− ∈ L(�m) of M such
thatM−M = Πcanµ(t0) holds.

Theorem 4. Let DAE(1.1)have tractability indexµ, µ ∈ {0,1, 2}, and let conditions
(3.10)and(3.11)be satisfied. Then the solution of BVP(1.1), (3.7)with d ∈ LBC, q ∈
C1

DQ1G−1
2

(I) is given by the formula

x(t) = X(t, t0)M−d +

∫ b

a
G(t, s)(N0q)(s)ds

+ (N1q)(t) − X(t, t0)M− {Ka(N1q)(a) + Kb(N1q)(b)} , (3.12)

where Green’s functionG is defined as follows:

G(t, s) =


X(t, t0)M−KaX(a, t0)X(s, t0)−, s≤ t,

−X(t, t0)M−KbX(b, t0)X(s, t0)−, s> t.

Proof. It follows from (3.8) thatΠcanµ(t0)x0 = M−(d − Kax̃(a) − Kbx̃(b)), whereas
from (3.4), one obtains (3.12) by standard calculations. Note that (3.12) is defined in
a unique manner, while there is freedom in the choice ofM−. �

Remark3. The mapL : C1
D(I)→ C(I) × LBC defined by the relation

Lx := (A(Dx)′ + Bx,Kax(a) + Kbx(b)), x ∈ C1
D(I)

is linear and bounded. It acts bijectively betweenC1
D(I) andC1

DQ1G1
2
(I)×LBC. Recall

that, in the case whereµ = 2, the setC1
DQ1G−1

2
(I) is a proper dense subset ofC(I).
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Hence, whenµ = 2,L has a densely defined unbounded inverseL−1. However, if we
equipC1

DQ1G−1
2

(I) with a natural norm and considerL as a mappingL : C1
D(I) →

C1
DQ1G−1

2
(I) × LBC, in this setting,L has a bounded inverse.

4. A    

In [1], for a subclass of homogeneous “index-1” DAEs (1.1) withD = P0 and con-
tinuously differentiable coefficientsA, P0 andB, we described the linear subspaces of
solutions in terms of the adjoint equation. In this section, we formulate and prove an
analogous theorem for the affine linear subspaces of the solutions for DAE (1.1) with
an arbitrary functionD well-matched withA. The DAE is assumed to be of index
µ, µ ∈ {0, 1,2}, and it is not necessarily homogeneous. The smoothness conditions
on the coefficientsA,D andB are exactly as in Section 2, i. e., they must allow for
assignment of an index only. The functionq is assumed to be of the class required
by Theorem 2; in the “index-0” and “index-1” cases,q is only continuous, whereas
q ∈ C1

DQ1G−1
2

(I) in the “index-2” case.

A set of functionsM ⊂ C1
D(I) is called an affine linear subspace of functions

x ∈ C1
D(I) if M = x̃ +LM, wherex̃ ∈ C1

D(I) andLM ⊂ C1
D(I) is a linear subspace.

Let us put
M(t) = {v ∈ �m : v = x(t), x ∈ M}

and
LM(t) = {w ∈ �m : w = z(t), z ∈ LM}.

If dim LM(t) ≡ const=: l, then dimM := dimL := l.
The setMindµ of all solutions of the DAE (1.1) is an affine linear subspace of

dimension% = r + r1 − m in C1
D(I). This fact follows immediately from the repre-

sentation (3.4). The linear subspaceLMindµ(t) ∈ �m corresponding to the affine linear
subspaceMindµ(t) describes the geometric constraint to which every solution of the
homogeneous equation is subjected. It reads as follows:

LMindµ(t) = Sindµ(t) = im Πcanµ(t).

Lemma 3. The setMindµ admits an equivalent description in the form
{
x ∈ C1

D(I) : W0Bx = W0q, Hx = H(q)
}

(4.1)

where the matrix functionH is defined by the relation

H = DQ̂1D−[A−B− (DQ̂1D−)′D] (4.2)

and the linear mapH : C1
DQ1G−1

2
(I)→ C(I) is given by the formula

H(q) = DQ̂1D−
[
A−q− (DQ1G

−1
2 q)′

]
. (4.3)
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Proof. Let us denote the set (4.1) bỹM. Multiplying equation (1.1) byW0, we get
the first required relation, while the second one,Hx = H(q), is the so-called hidden
constraint derived in [2]. Thus,Mindµ ⊂ M̃. Now it is enough to study the kernels of
W0B andH (argumentt is omitted). Instead of showing that dim(kerW0B∩ kerH) =

%, we check the intersection of kernels ofW0BK andHK with invertible matrix func-
tion K from (3.2), noting that the identitiesW0BK = W0Ĝ2 and

HK = DQ̂1D−A−Ĝ2(I − P̂1P0)

can be verified by direct computation (we omit the details for the sake of brevity).
If W0Ĝ2x = 0, then there existy : y = P0y, x = Ĝ−1

2 ADy = P̂1P0y = P̂1y, i. e.,
Q̂1x = 0. If, additionally, 0= HKx = DQ̂1D−A−Ĝ2(I − P̂1P0)x, then 0= DQ̂1P0y,
i. e.,Ĝ2y = ADy. Therefore,Ĝ2y = Ĝ2x, i. e., x = y. Finally, x = y = P0y = P0x =

P0P̂1x. This yields kerH ∩ kerW0B = im KP0P̂1 = im Πcanµ. �

Remark4. Observe thatMind 0(t) coincides with�m becauseW0 = 0 andQ̂1 = 0.
For µ = 1, W0 is non-trivial while Q̂1 vanishes. Forµ = 2, bothW0 and Q̂1 are
non-trivial, and the hidden constraintH(t)z = H(q)(t) is active.

For the purposes of the following assertions, we decompose equation (1.1) using
the identity

I = Q∗∗0 + Q̂∗∗1P∗∗0 + P̂∗∗1P∗∗0. (4.4)

We obtain

Q∗∗0Bx = Q∗∗0q, (4.5)

Q̂∗∗1A(Dx)′ + Q̂∗∗1P∗0Bx = Q̂∗∗1P∗∗0q, (4.6)

P̂∗∗1A(Dx)′ + P̂∗∗1P∗∗0Bx = P̂∗∗1P∗∗0q. (4.7)

Equations (4.6) and (4.7) are equivalent to

A∗−∗Q̂∗∗1A(Dx)′ + A∗−∗Q̂∗∗1P∗∗0Bx = A∗−∗Q̂∗∗1P∗∗0q, (4.8)

A∗−∗P̂∗∗1A(Dx)′ + A∗−∗P̂∗∗1P∗∗0Bx = A∗−∗P̂∗∗1P∗∗0q. (4.9)

SinceQ̂∗∗1Q∗∗0B = Q̂∗∗1AD, it follows from (4.5) that

A∗−∗Q̂∗∗1ADx = A∗−∗Q̂∗∗1Q∗∗0q. (4.10)

Due to Condition C2 and Theorem 1, the projectorsA∗Q̂∗1A∗− and A∗P̂∗1A∗− are
differentiable functions, therefore so are the functionsA∗−∗Q̂∗∗1A and A∗−∗P̂∗∗1A. It
immediately gives thatA∗−∗Q̂∗∗1Q∗∗0q ∈ C1 is a necessary condition for a functionx
to be a solution. One can check, however, that

DQ̂1Ĝ
−1
2 = A∗−∗Q̂∗∗1Q∗∗0. (4.11)

Further, due toAD = Ĝ2P1P0 andAD = −P∗∗0P∗∗1Ĝ
∗
∗2, the identitiesDP̂1 = DĜ−1

2 AD =

−DĜ−∗∗2 AD = A∗−∗P̂∗∗1AD hold. Thus, in Theorem 2, we could use matrix functions
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associated with equation (1.2), i. e., we could suppose

A∗−∗Q̂∗∗1Q∗∗0q ∈ C1,

and replace (2.15) by

P∗∗1(t0)A(t0)D(t0)x(t0) = d, d ∈ im P∗∗1(t0)A(t0)D(t0).

If x ∈ C1
D, then the first term in (4.8) rewrites as

A∗−∗Q̂∗∗1A[(A∗−∗Q̂∗∗1ADx)′ − (A∗−∗Q̂∗∗1A)′Dx].

Thus, combined with (4.10), i. e., with (4.5), equation (4.8) rewrites as

A∗−∗Q̂∗∗1A[(A∗−∗Q̂∗∗1Q∗∗0q)′ − (A∗−∗Q̂∗∗1A)′Dx] = A∗−∗Q̂∗∗1P∗∗0(q− Bx). (4.12)

This is exactly the so-called hidden constraintHx = H(q) in a different form. Indeed,
since kerW0 = kerQ∗∗0 and (4.5) hold, the multiplierI−W0 may be inserted before the
termq− Bx in (4.12). On the other hand, the relation kerW0 = kerQ∗∗0 involves that
(4.5) andW0Bx = W0q are equivalent. In fact, we checked the following statement:

Lemma 4. A functionx ∈ C1
D satisfies (4.5) and (4.6) if and only ifx ∈ Mindµ.

Using (4.5) and (4.12), we can rewrite (4.9) as a regular ODE

u′ − (A∗−∗P̂∗∗1A)′u− (A∗−∗P̂∗∗1A)A∗−∗BG−∗∗2 Au

= [(A∗−∗P̂∗∗1A)′D − A∗−∗P̂∗∗1P∗∗0B]G−∗∗2 Q∗∗0q + A∗−∗P̂∗∗1P∗∗0q,
(4.13)

for u := A∗−∗P̂∗∗1A(Dx). Equation (4.13) is nothing else but the inherent ODE (2.14)
in terms connected with (1.2). Indeed, the term by term coincidence can be verified by
direct computation. The forms (4.12) and (4.13) show that both the hidden constraint
and the inherent ODE are independent of the chosen projectorsP0,P1 since so are
P∗0,P∗1; this assertion was proven in [2] in a different way.

Remark5. SinceQ∗∗0G
∗
∗2 = Q∗∗0B, (4.5) defines the projection of the functionx onto

im G−∗∗2 Q∗∗0G
∗
∗2:

G−∗∗2 Q∗∗0G
∗
∗2x = G−∗∗2 Q∗∗0q. (4.14)

This is an equivalent of the first equation in formula (4.1) of Lemma 3. A combination
of (4.14) with the second equationHx = H(q) in (4.1) defines another projection of
the functionx. Namely, we can obtain the relations

G−∗∗2V∗G∗∗2x = G−∗∗2
[
Q̂∗∗1(P∗∗0 − Q∗∗0)q− Q̂∗∗1A(A∗−∗Q̂∗∗1Q∗∗0q)′

]
, (4.15)

V =
[
P∗0 + A∗−(A∗P̂∗1A∗−)′A∗

]
Q̂∗1, V2 = V, VQ∗0 = Q∗0V = 0,

and, therefore, the system of equations in (4.1) becomes equivalent to system (4.14)–
(4.15) which defines two projections of the functionx. This observation will be used
in Section 5.
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Theorem 5. Let (1.1) be tractable with indexµ, µ ∈ {0,1, 2} and q ∈ C1
DQ1G−1

2
(I).

Then a setK ⊂ C1
D(I) is a k-dimensional affine linear subspace of solutions of the

DAE (1.1) if and only if, for all t ∈ I,

K(t) =
{
w ∈ �m : y∗(t)A(t)D(t)w + v∗(t) = 0, w ∈ Mindµ(t)

}
(4.16)

wherey : I → L(�s,�m), dim imy(t) ≡ s, v : I → �s, s = % − k, and

−D∗(A∗y)′ + B∗y = 0, (4.17)

v′ + q∗y = 0. (4.18)

Theorem 5 states that any affine linear subspace within the whole solution set can
be segregated by the help of functions that are solutions of the homogeneous adjoint
DAE and solutions of an explicit ODE.

Proof. We denote the set on the right-hand side of (4.16) byK̃(t) and provide the
proof forµ = 2.

LetK ∈ C1
D(I) be ak–dimensional affine linear subspace of solutions of the DAE

(1.1) of index 2 and choose an arbitraryxa ∈ K . Let

LK :=
{
` ∈ C1

D(I) : ` = x− xa, x ∈ K
}

be the linear subspace of functions corresponding toK andLK(t) ∈ �m, t ∈ I, t ∈ I,
be the corresponding subspaces. Note that, for everyt, we haveD(t)Q̂1(t)LK(t) ≡ {0}
and dimD(t)LK(t) = dimLK(t). Fix t0 ∈ I. Let

Lc
K(t0) :=

(
D(t0)LK (t0) ⊕ DN1(t0) ⊕ kerA(t0)

)⊥.
One has

dimLc
K (t0) = m− [k + ν + (m− r)] = r − k− ν = s.

Thus, there exists linearly independent vectorsz0
1, . . . , z

0
s spanningLc

K (t0). Since

Lc
K (t0) ⊂ (

DN1(t0) ⊕ kerA(t0)
)⊥

= A∗(t0)S∗1(t0),

the IVPs for the homogeneous equation (1.2) (p = 0) with the initial conditions

A∗(t0)P̂∗1(t0)y(t0) = zi , i = 1, . . . , s,

have unique solutionsyi .
The above solutionsy1, . . . , ys of the homogeneous equation (1.2) are linearly in-

dependent. Indeed, assume the contrary, that is for the solution

ξ(t) =

s∑

i=1

ciyi(t)

with at least one non-zeroci , the equalityξ(t̃) = 0 holds for somẽt. The IVP for
homogeneous equation (1.2) with initial conditionA∗(t̃)P̂∗1(t̃)y(t̃) = 0 has the unique
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solutiony = 0. This is in contradiction to the fact that

A∗(t0)P̂∗1(t0)ξ(t0) =

s∑

i=1

cizi , 0.

Setv0i = −z0∗
i D(t0)xa(t0) and letvi : I → � be the solution of the IVP for the ODE

v′i + q∗yi = 0 satisfyingvi(t0) = v0i .
Let x ∈ K . Then

(y∗i (t)A(t)D(t)x(t) + v∗i (t))
′ =[

(y∗i (t)A(t))′D(t)
]

x(t) + y∗i (t)
[
A(t)(D(t)x(t))′

] − y∗i (t)q(t) =

y∗i (t)B(t)x(t) + y∗i (t)[q(t) − B(t)x(t)] − y∗i (t)q(t) = 0.

Thus,
y∗i (t)A(t)D(t)x(t) + v∗i (t) ≡ y∗i (t0)A(t0)D(t0)x(t0) + v∗i (t0). (4.19)

Note that
A∗(t0)Q̂∗1(t0)yi(t0) = 0.

Thus, the expression in right-hand side of (4.19) can be brought to the form

y∗i (t0)P̂∗∗1(t0)A(t0)D(t0)x(t0) − z0∗
i D(t0)xa(t0) = z∗i D(t0)[x(t0) − xa(t0)].

Sincex(t0) − xa(t0) ∈ LK (t0), the latter expression vanishes by construction.
Let y : I → L(�s,�m) be defined “columnwise” by vector-valued functions

yi , i = 1, . . . , s, asy(t) := (y1(t), . . . , ys(t)). Clearly,y is a solution of DAE (4.3).
Similarly, v : I → �s, v(t) := (v1(t), . . . , vs(t)) satisfies ODE (4.4).

Thus, we checked that forx ∈ K ⊂ Mindµ and every fixedt ∈ I, w := x(t) belongs
to the setK̃(t).

For the second part, for eacht let the setK̃(t) be given. We have

y∗AD = y∗Π∗∗ can 2AD = y∗ADΠcan 2= y∗ADP̂1.

On the other hand, by construction, the equality

s = dim imy = dim imA∗y

holds. Thus,

dim(kery∗A∩ DS1) = (m− s) − [ν − (m− r)] = r − s− ν = r − (% − k) − ν = k,

i. e., dimK̃(t) ≡ k.
Fix a t̃ ∈ I. Due to the above considerations, there existsw0 ∈ �m such that

w0 ∈ K̃(t̃) and there existk linearly independent vectorsw1, . . . , wk ∈ �m such that

y∗(t̃)A(t̃)D(t̃)wi = 0

and
wi = Πcan 2wi .
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Let us consider the solutionx0 of (1.1) with initial valuex0(t̃) = w0 and solutions
x1, . . . , xk of homogeneous equations (1.1) with initial valuesxi(t̃) = wi , i = 1, . . . , k,
respectively. For everyt, we have

x0(t) + span{x1(t), . . . , xk} ⊂ K̃(t).

A similar reasoning that we applied when showing the linear independence of the so-
lutions of the homogeneous adjoint equation with linearly independent initial values
yields that for eacht, the affine linear setx0(t)+span{x1(t), . . . , xk(t)} is of dimension
k. Thus,

K̃(t) = x0(t) + span{x1(t), . . . , xk(t)}.
On the other hand,x0 + span{x1, . . . , xk} is an affine linear solution set as it was
claimed. �

5. T   

5.1. Separated boundary conditions.First let us consider the BVP for (1.1) with
separated boundary condition (3.7), i. e.,K∗a =

(
K∗a1 | 0

)
, K∗b =

(
0 | K∗b2

)
, d∗ =

(
d∗1 |

d∗2
)
, whereKa1 ∈ L(�m,�ma), Kb2 ∈ L(�m,�mb), d1 ∈ �ma, d2 ∈ �mb, and the symbol

0 stands for the zero matrix of the appropriate dimension.
Both sets of solutions defined by one and the other boundary conditions, i. e.,

Ka := {x ∈ Mind 2 : Ka1x(a) = d1}
and

Kb := {x ∈ Mind 2 : Kb2x(b) = d2}
are affine linear solution sets and so isK := Ka

⋂Kb, the solution set of BVP. Due
to Remark 5,Ka andKa admit the equivalent representation

Ka := {x ∈ Mind 2 : K̃a1x(a) = d̃1},
Kb := {x ∈ Mind 2 : K̃b2x(b) = d̃2},

where

K̃a1 = Ka1G
−∗
∗2 (a)(I − Q∗∗0(a) − V∗(a))G∗∗2(a), (5.1)

K̃b2 = Kb2G
−∗
∗2 (b)(I − Q∗∗0(b) − V∗(b))G∗∗2(b), (5.2)

d̃1 = d1 −G−∗∗2 (a)[(P∗∗1(a)Q∗∗0(a) + Q∗∗1(a)P∗∗0(a))q(a) (5.3)

− Q∗∗1(a)A(a)(A∗−∗Q∗∗1Q∗∗0q)′(a)], (5.4)

d̃2 = d2 −G−∗∗2 (b)[(P∗∗1(b)Q∗∗0(b) + Q∗∗1(b)P∗∗0(b))q(b) (5.5)

− Q∗∗1(b)A(b)(A∗−∗Q∗∗1Q∗∗0q)′(b)].

Note that

(I − Q∗∗0(t) − V∗(t))G∗∗2(t) = −[I + A(t)(A∗−∗Q∗∗1A)′(t)A∗−∗(t)]P∗∗1(t)A(t)D(t).
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We can always assume that the boundary conditions are given in their modified form
and the matrices̃Ka1, K̃a1 are of full rank. Let us set

yaa := K∗(a)A∗−(a)D∗−(a)K̃∗a1

and

ybb := K∗(b)A∗−(b)D∗−(b)K̃∗b2,

whereK∗ is the counterpart ofK from (3.2), i. e.,

K∗ := I − Q∗0P̂∗1Ĝ−1
∗2 B∗P∗0 − Q∗0Q̂∗1A∗−(A∗Q̂∗1A∗−)′A∗

Clearly, the conditions̃Ka1x(a) = d̃1 andy∗aaA(a)D(a)x(a) = d̃1 are identical, and the
same is true for the pair of conditions̃Kb2x(b) = d̃2 andy∗bbA(a)D(a)x(a)x(b) = d̃2.

Let ya andyb be the solutions of (4.17) with initial valuesya(a) = yaa andyb(a) =

ybb. In parallel, letva andvb be the solutions of (4.18) constructed with the corre-
spondingya andyb and initial valuesv(a) = d̃1 andv(b) = d̃2, respectively. Due to
Theorem 5, a functionx ∈ C1

D is a solution of BVP (1.1) if and only if, for everyt,
x(t) satisfies the system

y∗a(t)A(t)D(t)x(t) = −v∗a(t) (5.6)

y∗b(t)A(t)D(t)x(t) = −v∗b(t), (5.7)

V∗(t)G∗∗2(t)x(t) = Q̂∗∗1(t)(P∗∗0(t) − Q∗∗0(t))q(t)

− Q̂∗∗1(t)A(t)(A∗−∗Q̂∗∗1Q∗∗0q)′(t), (5.8)

Q∗∗0(t)B(t)x(t) = Q∗∗0(t)q(t). (5.9)

By construction, the first pair of equations is linearly independent of the second one.
Let τ := dim im(ya | yb). Also by construction, the equalities

dim imD∗A∗ (ya | yb) ≡ dim im(ya | yb) ≡ dim im(yaa | ybb)

hold. We have proved above that dimM(t) ≡ r + r1 − m. The Fredholm alternative
for (5.6)–(5.9) now yields the following statement.

Theorem 6. For anyq ∈ C1
DQ̂1G−1

2

andd̃1 ∈ im K̃a1, d̃2 ∈ im K̃b2, a unique solutionx

exists if and only if

r + r1 −m− τ = 0.

5.2. Non-separated boundary conditions.By using Moszỳnski’s trick [4], we trans-
form the problem into an equivalent one with separated boundary conditions. For
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t ∈ [a, (a + b)/2], set

x̄(t) :=

(
x(t)

x(b + a− t)

)
, q̄(t) :=

(
q(t)

q(b + a− t)

)
,

Ā(t) := diag(A(t),A(b + a− t)), D̄(t) := diag(D(t),D(b + a− t)),

B̄(t) := diag(B(t),−B(b + a− t)),

K̄a =

(
Ka Kb

0 0

)
, K̄ a+b

2
=

(
0 0
Im −Im

)
, d̄ =

(
d
0

)
,

whereIm is them×m identity matrix. Obviously, the original boundary value problem
is equivalent to the BVP of doubled dimension on the halved interval [a, (a + b)/2]
with the above data. This latter problem for ¯x is a BVP with separated boundary
conditions, and all considerations of the previous subsection apply.

6. F 

Remark6. The homogeneous IVPs for (1.2) with our initial datay(a) = yaa and
y(b) = ybb in Section 5 are always solvable. Thus, integrating system (1.2) from
each of the interval ends up to an arbitrary common pointt0, one obtainsya(t0) and
yb(t0). In parallel, the IVPs for equation (4.18) are to be solved. One should compute
(preserve) the values only at pointst̂ where the solutionx is needed. At these points,
the other two matrices,G∗2(t̂)V(t̂) andB∗(t̂)Q∗0(t̂), should also be calculated. If the
linear system (5.6)–(5.9) is nonsingular at an arbitraryt̂ = t0, then so is it for all̂t, and
one can establish the solvability and uniqueness of the solution and get the solution
at all t̂.

Remark7. To go in line with this program, a reliable integrator for (1.2) is needed
and all of the other coefficients occurring in (5.6)–(5.9) must be available. It is worth
noting that in this system we need onlyA∗(t)y(t) = A∗(t)P̂∗1y(t), i. e., the solution of
the inherent ODE of the adjoint equation. One may prefer solving this homogeneous
inherent ODE instead of the homogeneous DAE (1.2). Practically, there is no differ-
ence in computational complexity. A reliable integrator for any DAE would use its
inherent ODE to keep the numerical solution in the corresponding subspace at least
implicitly [3].

Remark8. Theoretically, a properly discretised version of the transfer method would
yield an algorithm for the numerical solution of the BVPs for (1.1). However, the
resulting procedure may be very sensitive to the accumulation of numerical errors.
This phenomenon may appear even when the BVP is well-conditioned and the rele-
vant subspaces vary slowly. Therefore, a modification of the transfer algorithm seems
reasonable. That modification would rely on the orthonormalisation of basis vectors
of the subspaces in question at the meshpoints or it would build a smoothly varying
basis on the whole interval. These issues will be reported in another publication.
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Remark9. There is no gain in the complexity if one avoids using the adjoint equation
and the method relies upon any kind of shooting. In that case the computational
effort is spent on keeping either a fundamental matrix (not necessarily the maximal
normalised fundamental matrix) of the homogeneous DAE (1.1) in the corresponding
subspace or some solutions of the DAE (1.1) in the corresponding affine subspace.
To achieve this aim, one must use projectors not simpler than those in our analysis.
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