

On $\gamma - R_0$ and $\gamma - R_1$ spaces

Aynur Keskin and Takashi Noiri

Miskolc Mathematical Notes Vol. 10 (2009), No. 2, pp. 137–143

ON γ - R_0 **AND** γ - R_1 **SPACES**

AYNUR KESKIN AND TAKASHI NOIRI

Received 9 February, 2009

Abstract. In this paper, we investigate further properties of γ - R_0 and γ - R_1 spaces due to Ekici.

2000 Mathematics Subject Classification: 54A20, 54C10, 54D10

Keywords: γ -R₀ spaces, γ -R₁ spaces, b-open sets, b-closure and b- θ -closure operators

1. INTRODUCTION AND PRELIMINARIES

The separation axioms R_0 and R_1 were introduced and studied by N. A. Shan in [22] and C. T. Yang [23]. In 1963, they were rediscovered by A. S. Davis [4]. Then, their some properties are obtained by some authors [6, 7, 15, 17]. The notion of *b*-open (or *sp*-open) sets was introduced by Andrijević [1] and Dontchev and Przemski [5] independently of each other in 1996. Since then it has been investigated in the literature (see [9, 13, 14, 18, 19]). Ekici [9, 10] introduced γ - R_0 and γ - R_1 spaces and obtained some properties of them. In this paper, we investigate further properties of γ - R_0 and γ - R_1 spaces due to Ekici [9, 10].

In this paper, by (X, τ) and (Y, φ) (or X and Y) we always mean topological spaces on which no separation axioms are assumed, unless otherwise mentioned. For a subset A of (X, τ) , Cl(A) and Int(A) represent the closure of A and the interior of A with respect to τ , respectively.

Definition 1.1. Let (X, τ) be a topological space. A subset A is called

(a) b-open [1] or sp-open [5] or γ -open [14] if $A \subset Int(Cl(A)) \cup Cl(Int(A))$,

(b) α -open [20] if $A \subset Int(Cl(Int(A)))$.

The family of all b-open (resp., α -open) sets in a topological space (X, τ) is denoted by BO(X) (resp., $\alpha(X)$).

Definition 1.2. The complement of a b-open set is called b-closed [1].

Similarly, the family of all b-closed sets in a topological space (X, τ) is denoted by BC(X).

Definition 1.3. The intersection of all b-closed sets containing A is called the b-closure [1] of A and is denoted by bCl(A).

© 2009 Miskolc University Press

The union of all b-open sets contained in A is called the b-interior of A and is denoted by bInt(A). The following lemma is useful in the sequel:

Lemma 1.1 ([1]). Let A be a subset of a space (X, τ) . Then the following properties hold:

(a) $bCl(A) = sCl(A) \cap pCl(A)$,

(b) $b \operatorname{Int}(A) = s \operatorname{Int}(A) \cup p \operatorname{Int}(A)$,

(c) $x \in bCl(A)$ if and only if $A \cap U \neq \emptyset$ for every BO(X, x),

(d) $b\operatorname{Cl}(A) = A \cup [\operatorname{Int}(\operatorname{Cl}(A)) \cap \operatorname{Cl}(\operatorname{Int}(A))],$

(e) $b \operatorname{Int}(A) = A \cap [\operatorname{Cl}(\operatorname{Int}(A)) \cup \operatorname{Int}(\operatorname{Cl}(A))].$

The family of all b-open sets containing x of X will be denoted by BO(X, x). The following basic properties of the b-closure are useful in the sequel:

Lemma 1.2 ([11]). Let A and B be subsets of a space (X, τ) . The following properties hold:

(a) If $A \subset B$, then $bCl(A) \subset bCl(B)$,

(b) $b\operatorname{Cl}(X \setminus A) = X \setminus b\operatorname{Int}(A)$,

(c) $A \in BC(X, \tau)$ if and only if A = bCl(A).

Lemma 1.3 ([1]). *The following assertions hold:*

(a) The union of any family of b-open sets is a b-open set.

(b) The intersection of an open set and a b-open set is a b-open set.

Definition 1.4. [10] Let *X* be a topological space and $S \subset X$. The γ -kernel of *S*, denoted by γ -ker(*S*), is defined to be the set γ -ker(*S*) = $\cap \{U \in BO(X, \tau) \mid S \subset U\}$.

Remark 1.1. In [3], the set γ -ker(S) has been denoted by S^{Λ_b} .

Lemma 1.4 ([10]). Let (X, τ) be a topological space and A be a subset of X. Then $A^{\Lambda_b} = \{x \in X \mid b \operatorname{Cl}(\{x\}) \cap A \neq \emptyset\}.$

2. PRESERVATION THEOREMS

Definition 2.1. A topological space (X, τ) is called γ - R_0 [10] if its every b-open set contains the b-closure of each of its singletons.

Theorem 2.1 ([10]). A topological space $(X, \tau \text{ is a } \gamma \cdot R_0 \text{ space if and only if for any x and y in X, <math>bCl(\{x\}) \neq bCl(\{y\}) \text{ implies } bCl(\{x\}) \cap bCl(\{y\}) = \emptyset$.

Definition 2.2. A function $f:(X,\tau) \to (Y,\varphi)$ is called

- (a) b-continuous [14] (resp., α -continuous [16]) if $f^{-1}(V)$ is b-open (resp., α -open) in (X, τ) for every open set V of (Y, φ) ;
- (b) α -open [16] if f(U) is α -open in (Y, φ) for every open set U of (X, τ) .

Lemma 2.1 ([14]). Let $f:(X,\tau) \to (Y,\varphi)$ be an α -continuous and α -open function. Then the inverse image of each b-open set in Y is b-open in X.

138

Definition 2.3. A function $f:(X,\tau) \to (Y,\varphi)$ is called strongly γ -closed [12] if f(F) is γ -closed in (Y,φ) for every γ -closed set F of (X,τ) .

Theorem 2.2. If (X, τ) is a γ - R_0 space and $f: (X, \tau) \rightarrow (Y, \varphi)$ is an α -continuous, α -open and b-closed surjection, then (Y, φ) is a γ - R_0 space.

Proof. Let V be a b-open set of Y and y any point of of V. Since f is α continuous and α -open, $f^{-1}(V)$ is a b-open set in (X, τ) , by Lemma 2.1. Since (X, τ) is γ -R₀, for a point $x \in f^{-1}(\{y\})$ by Definition 2.1, $bCl(\{x\}) \subset f^{-1}(V)$.
The b-closeness of f implies that $bCl(\{y\}) = bCl(\{f(x)\}) \subset f(bCl(\{x\})) \subset V$.
Therefore, (Y, φ) is γ -R₀.

Definition 2.4. A function $f: (X, \tau) \to (Y, \varphi)$ is called quasi γ -closed [12] if f(F) is closed in (Y, φ) for every γ -closed set F of (X, τ) .

Theorem 2.3. If (X, τ) is a γ - R_0 space and $f:(X, \tau) \to (Y, \varphi)$ is a strongly bclosed and b-continuous surjection, then (Y, φ) is an R_0 space.

Proof. The proof is similar to that of Theorem 2.2 and is thus omitted.

3.
$$\gamma$$
- R_1 SPACES

Definition 3.1. A topological space (X, τ) is called $\gamma \cdot R_1$ [9] if for x and y in X with $bCl(\{x\}) \neq bCl(\{y\})$, there exist disjoint b-open sets U and V such that $bCl(\{x\})$ is a subset of U and $bCl(\{y\})$ is a subset of V.

Proposition 3.1. *Every* γ - R_1 *space is* γ - R_0 .

Proof. Let U be a b-open set such that $x \in U$. If $y \notin U$, since $x \notin bCl(\{y\})$, we have $bCl(\{x\}) \neq bCl(\{y\})$. So, there exists a b-open set V such that $bCl(\{y\}) \subset V$ and $x \notin V$, which implies $y \notin bCl(\{x\})$. Hence $bCl(\{x\}) \subset U$. Therefore, (X, τ) is $\gamma - R_0$.

Remark 3.1. The converse of Proposition 3.1 need not be true as shown in the following example.

Example 3.1. Let (X, τ) be a topological space as in [2, Example 4.16], that is, p be a fixed point of (X, τ) with τ as the cofinite topology on X. If it meaned clearly, $\tau = \{\emptyset, X, U\}$ with $U \subset (X \setminus \{p\})$ and $X \setminus U$ finite. One can obtain $BO(X) = \{\emptyset, X, U, A\}$ such that for each $A \subset U$. Since bCl($\{x\}$) = $\{x\}$ for every $x \in X$, we obtain that (X, τ) is γ - R_0 by using Theorem 2.1. On the other hand, one can easily show that (X, τ) is not γ - R_1 by using Definition 3.1.

Theorem 3.1 ([9]). A topological space (X, τ) is $\gamma \cdot R_1$ if and only if for $x, y \in X$, $\{x\}^{\Lambda_b} \neq \{y\}^{\Lambda_b}$, there exist disjoint b-open sets U and V such that $bCl(\{x\}) \subset U$ and $bCl(\{y\}) \subset V$.

Definition 3.2. A set U in a topological space (X, τ) is called b-neighborhood [11] of x if U contains a b-open set V such that $x \in V$.

Theorem 3.2. A topological space (X, τ) is $\gamma \cdot R_1$ if and only if the inclusion $x \in X \setminus bCl(\{y\})$ implies that x and y have disjoint b-open neighborhoods.

Proof. Necessity: Let $x \in X \setminus bCl(\{y\})$. Then $bCl(\{x\}) \neq bCl(\{y\})$ and x, y have disjoint b-open neighborhoods.

Sufficiency: First, we show that (X, τ) is $\gamma - R_0$. Let U be a b-open set and $x \in U$. Suppose that $y \notin U$. Then, $bCl(\{y\}) \cap U = \emptyset$ and $x \notin bCl(\{y\})$. There exist b-open sets U_x and U_y such that $x \in U_x$, $y \in U_y$ and $U_x \cap U_y = \emptyset$. Hence, $bCl(\{x\}) \subset bCl(U_x)$ and $bCl(\{x\}) \cap U_y \subset bCl(U_x) \cap U_y = \emptyset$. Therefore, $y \notin bCl(\{x\})$. Consequently, $bCl(\{x\}) \subset U$ and (X, τ) is $\gamma - R_0$. Next, we show that (X, τ) is $\gamma - R_1$. Suppose that $bCl(\{x\}) \neq bCl(\{y\})$. Then, we can assume that there exists $z \in bCl(\{x\})$ such that $z \notin bCl(\{y\})$. There exist b-open sets V_z and V_y such that $z \in V_z$, $y \in V_y$ and $V_z \cap V_y = \emptyset$. Since $z \in bCl(\{x\})$, $x \in V_z$. Since (X, τ) is $\gamma - R_0$, we obtain $bCl(\{x\}) \subset V_z$, $bCl(\{y\}) \subset V_y$ and $V_z \cap V_y = \emptyset$. This shows that (X, τ) is $\gamma - R_1$. \Box

Corollary 3.1. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is a γ - R_1 space,
- (2) $bCl({x}) \neq bCl({y})$ implies that x and y have disjoint b-open neighborhoods.

Proof. The implication $(1) \Rightarrow (2)$ is obvious.

(2) \Longrightarrow (1): Suppose that $x \in X \setminus bCl(\{y\})$. Then, $bCl(\{x\}) \neq bCl(\{y\})$ and by (2) x and y have disjoint b-open neighborhoods. By Theorem 3.2, (X, τ) is $\gamma \cdot R_1$. \Box

The following notions are due to Park [21]. A point x of X is called a b- θ -cluster point of A if bCl(U) $\cap A \neq \emptyset$ for every $U \in BO(X, x)$. The set of all b- θ -cluster points of A is called the b- θ -closure of A and is denoted by bCl $_{\theta}(A)$. A subset A is said to be b- θ -closed if $A = bCl_{\theta}(A)$. The complement of a b- θ -closed set is said to be b- θ -closed.

Lemma 3.1. For any subset A of a topological space (X, τ) , $bCl(A) \subseteq bCl_{\theta}(A)$.

Theorem 3.3. A topological space (X, τ) is a γ - R_1 space if and only if for each $x \in X$, $bCl_{\theta}(\{x\}) = bCl(\{x\})$.

Proof. Necessity: Let (X, τ) be γ - R_1 and x any point of X. Assume that $y \in X \setminus bCl(\{x\})$). By Theorem 3.2, there exist disjoint b-open sets U and V such that $x \in U$ and $y \in V$. Thus, we have $\{x\} \cap bCl(V) \subset U \cap bCl(V) = \emptyset$ and hence $y \notin bCl_{\theta}(\{x\})$. Therefore, we obtain $bCl_{\theta}(\{x\}) \subseteq bCl(\{x\})$. So, by using Lemma 3.1, we have $bCl_{\theta}(\{x\}) = bCl(\{x\})$.

Sufficiency: Let x, y be distinct points of X and $y \in X \setminus bCl(\{x\})$. Then $y \in X \setminus bCl_{\theta}(\{x\})$) and hence there exists a b-open neighborhood V of y such that $bCl(V) \cap \{x\} = \emptyset$. Then V and $X \setminus bCl(V)$) are disjoint b-open neighborhoods of y and x, respectively. By Theorem 3.2, (X, τ) is γ - R_1 .

140

The following notion is due to Ekici and Caldas [13].

Definition 3.3. A topological space (X, τ) is said to be b-regular [13] if for each b-closed set *F* and each point $x \in X \setminus F$, there exist disjoint b-open sets *U* and *V* such that $x \in U$ and $F \subset V$.

Now, we can give a characterization of b-regular spaces.

Theorem 3.4. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is b-regular,
- (2) $bCl_{\theta}(A) = bCl(A)$ for every subset A of X,
- (3) $bCl_{\theta}(A) = A$ for every b-closed subset A of X.

Proof. (1) \Rightarrow (2): Since $bCl(A) \subseteq bCl_{\theta}(A)$ by Lemma 3.1, we will show that $bCl_{\theta}(A) \subseteq bCl(A)$. Assume that $x \notin bCl(A)$. Since (X, τ) is b-regular, there exist disjoint b-open sets U and V such that $x \in U$ and $bCl(A) \subset V$. Hence $A \cap bCl(U) \subset bCl(A) \cap bCl(U) = \emptyset$. This implies $x \notin bCl_{\theta}(A)$.

(2) \Rightarrow (3): Let *A* be a b-closed subset of *X*, then we have $A = b \operatorname{Cl}(A)$ and $b \operatorname{Cl}_{\theta}(A) = A$.

(3)⇒(1): Let *V* be a b-open set containing *x* in *X*. Hence $X \setminus V$ is b-closed. By (3), $X \setminus V = b \operatorname{Cl}_{\theta}(X \setminus V)$. Then there exists an $U \in BO(X, x)$ such that $b \operatorname{Cl}(U) \cap (X \setminus V) = \emptyset$. This implies $b \operatorname{Cl}(U) \subset V$. Consequently, the proof is completed. □

Corollary 3.2. *Every b-regular space is a* γ *-R*₁ *space.*

Proof. This immediately follows from Theorems 3.3 and 3.4.

Definition 3.4. Let ∇ be a filter base of a topological space (X, τ) .

- (1) The b-adherence (resp., b- θ -adherence) of a filter base ∇ , denoted by $ad_b \nabla$ (resp., θ -ad_b ∇), is defined by $\cap \{ bCl(V) \mid V \in \nabla \}$ (resp., $\cap \{ bCl_{\theta}(V) \mid V \in \nabla \}$),
- (2) ∇ b-converges [8] (resp., ∇ b- θ -converges) to x if for each b-open set U containing x, there is $V \in \nabla$ such that $V \subset U$ (resp., $V \subset bCl(U)$).

Theorem 3.5. If a topological space (X, τ) is $\gamma \cdot R_1$, then $\operatorname{ad}_b \nabla \subset \operatorname{bCl}(\{x\})$ for each filter base $\nabla b \cdot \theta$ -converging to $x \in X$.

Proof. Let (X, τ) be a γ - R_1 space, $x \in X$, and ∇ be a filter base in X b- θ -converging to x. If $ad_b \nabla = \emptyset$, then the assertion of the theorem holds trivially. Assume that $y \in ad_b \nabla$ and $y \in X \setminus bCl_{\theta}(\{x\})$. Then there exists a b-open set U containing y such that $x \in X \setminus bCl(U)$. Since ∇ b- θ -converging to x, there exists $V \in \nabla$ such that $V \subset bCl(X \setminus bCl(U))$. This implies that $V \cap U = \emptyset$ which contradicts the assumption that $y \in ad_b \nabla$. Thus $y \in bCl_{\theta}(\{x\})$ and $ad_b \nabla \subset bCl_{\theta}(\{x\})$. Since (X, τ) is γ - R_1 , by Theorem 3.3 we obtain $ad_b \nabla \subset bCl(\{x\})$.

AYNUR KESKIN AND TAKASHI NOIRI

REFERENCES

- [1] D. Andrijević, "On *b*-open sets," *Mat. Vesnik*, vol. 48, no. 1-2, pp. 59–64, 1996.
- [2] M. Caldas, D. N. Georgiou, and S. Jafari, "Characterizations of low separation axioms via α-open sets and α-closure operator," *Bol. Soc. Parana. Mat.* (3), vol. 21, no. 1-2, pp. 97–111, 2003.
- [3] M. Caldas, S. Jafari, and T. Noiri, "On Λ_b -sets and the associated topology τ^{Λ_b} ," Acta Math. Hungar., vol. 110, no. 4, pp. 337–345, 2006. [Online]. Available: http: //dx.doi.org/10.1007/s10474-006-0028-6
- [4] A. S. Davis, "Indexed systems of neighborhoods for general topological spaces," Amer. Math. Monthly, vol. 68, pp. 886–893, 1961.
- [5] J. Dontchev and M. Przemski, "On the various decompositions of continuous and some weakly continuous functions," *Acta Math. Hungar.*, vol. 71, no. 1-2, pp. 109–120, 1996. [Online]. Available: http://dx.doi.org/10.1007/BF00052199
- [6] K. K. Dube, "A note on R₀-topological spaces," Mat. Vesnik, vol. 11(26), pp. 203–208, 1974.
- [7] K. K. Dube, "A note on R₁-topological spaces," *Period. Math. Hungar.*, vol. 13, no. 4, pp. 267–271, 1982. [Online]. Available: http://dx.doi.org/10.1007/BF01849239
- [8] E. Ekici, "On contra-continuity," Ann. Univ. Sci. Budapest. Eötvös Sect. Math., vol. 47, pp. 127– 137 (2005), 2004.
- [9] E. Ekici, "On γ-US spaces," *Indian J. Math.*, vol. 47, no. 2-3, pp. 131–138, 2005.
- [10] E. Ekici, "On R spaces," Int. J. Pure Appl. Math., vol. 25, no. 2, pp. 163–172, 2005.
- [11] E. Ekici, "On a weaker form of open sets," An. Univ. Vest Timiş. Ser. Mat.-Inform., vol. 44, no. 2, pp. 41–49, 2006.
- [12] E. Ekici, "On γ-normal spaces," Bull. Math. Soc. Sci. Math. Roumanie (N.S.), vol. 50(98), no. 3, pp. 259–272, 2007.
- [13] E. Ekici and M. Caldas, "Slightly γ-continuous functions," Bol. Soc. Parana. Mat. (3), vol. 22, no. 2, pp. 63–74, 2004.
- [14] A. A. El-Atik, "A study on some types of mappings on topological spaces," Master's thesis, Tanta University, Egypt, 1997.
- [15] D. Janković, "On R₀ and R₁ topological spaces," *Mat. Vesnik*, vol. 5(18)(33), no. 2, pp. 163–171, 1981.
- [16] A. S. Mashhour, I. A. Hasanein, and S. N. El-Deeb, "α-continuous and α-open mappings," Acta Math. Hungar., vol. 41, no. 3-4, pp. 213–218, 1983. [Online]. Available: http://dx.doi.org/10.1007/BF01961309
- [17] M. G. Murdeshwar and S. A. Naimpally, "*R*₁-topological spaces," *Canad. Math. Bull.*, vol. 9, pp. 521–523, 1966.
- [18] A. A. Nasef, "Another weak form of faint continuity," *Chaos Solitons Fractals*, vol. 12, no. 12, pp. 2219–2225, 2001. [Online]. Available: http://dx.doi.org/10.1016/S0960-0779(00)00156-9
- [19] A. A. Nasef, "On b-locally closed sets and related topics," Chaos Solitons Fractals, vol. 12, no. 10, pp. 1909–1915, 2001. [Online]. Available: http://dx.doi.org/10.1016/S0960-0779(00)00115-6
- [20] O. Njástad, "On some classes of nearly open sets," Pacific J. Math., vol. 15, pp. 961–970, 1965.
- [21] J. H. Park, "Strongly θ-b-continuous functions," Acta Math. Hungar., vol. 110, no. 4, pp. 347–359, 2006. [Online]. Available: http://dx.doi.org/10.1007/s10474-006-0021-0
- [22] N. A. Shanin, "On separation in topological spaces," C. R. (Doklady) Acad. Sci. URSS (N.S.), vol. 38, pp. 110–113, 1943.
- [23] C.-T. Yang, "On paracompact spaces," Proc. Amer. Math. Soc., vol. 5, pp. 185–189, 1954.

Authors' addresses

Aynur Keskin

Department of Mathematics, Faculty of Sciences, Selcuk University, Campus, 42075, Konya, Turkey *E-mail address:* akeskin@selcuk.edu.tr

Takashi Noiri

2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142, Japan *E-mail address:* t.noiri@nifty.com